Specifications Volume 2 of 2 Exhibit D Bid Set

City of Madison Metro Transit Phase 3A – Maintenance and Driver Facility Improvements

Mead & Hunt, Inc. 4503500-1190896.03

Contract # 8981 Project # 11230 Munis # 11230-85-140-114403

Prepared for:

City of Madison Metro Transit Madison, Wisconsin

Prepared by:

April 8, 2021

This page intentionally left blank.

ARCHITECT Mead & Hunt, Inc. 2440 Deming Way Middleton, WI 53562 Tel: 608.273.6390 Fax: 608.273.6391 Tel: 608.273.6390 Fax: 608.273.6391

THIS PAGE BLANK BY INTENTION

ELECTRICAL ENGINEER Mead & Hunt, Inc. 2440 Deming Way Middleton, WI 53562 Tel: 608.273.6390 Fax: 608.273.6391 MARK A. MLADENOFF D-1960-E MACHESNEY PARK ILLINOIS MARK A. MLADENOFF D-1960-E MACHESNEY PARK

END OF SECTION 000107

THIS PAGE BLANK BY INTENTION

SECTION 00 01 10 CONTENTS

VOLUME 1

DIVISION 00 – PROCUREMENT AND CONTRACTING REQUIREMENTS

- 00 01 07 CERTIFICATIONS AND SEALS
- 00 01 15 LIST OF DRAWING SHEETS
- 00 31 32 GEOTECHNICAL DATA
- 00 32 32-2 GEOTECH REPORT
- 00 31 46 PERMITS
- 00 43 25 SUBSTITUTION REQUEST FORM (DURING BIDDING)
- 00 43 43 WAGE RATES FORM
- 00 62 76.13 SALES TAX FORM

DIVISION 01 – GENERAL REQUIREMENTS

- 01 10 00 SUMMARY
- 01 23 00 ALTERNATES
- 01 25 13 PRODUCT SUBSTITUTUION PROCEDURES
- 01 26 13 REQUEST FOR INFORMATION (RFI)
- 01 26 46 CONSTRUCTION BULLETIN (CB)
- 01 26 57 CHANGE ORDER REQUESTS (COR)
- 01 26 63 CHANGE ORDER (CO)
- 01 29 73 SCHEDULE OF VALUES
- 01 29 76 PROGRESS PAYMENT PROCEDURES
- 01 31 13 PROJECT COORDINATION
- 01 31 19 PROJECT MEETINGS
- 01 31 23 PROJECT MANAGEMENT WEB SITE
- 01 32 16 CONSTRUCTION PROGRESS SCHEDULES
- 01 32 19 SUBMITTALS SCHEDULE
- 01 32 23 SURVEY AND LAYOUT DATA
- 01 32 26 CONSTRUCTION PROGRESS REPORTING
- 01 32 33 PHOTOGRAPHIC DOCUMENTATION
- 01 33 23 SUBMITTALS
- 01 41 00 REGULATORY REQUIREMENTS
- 01 45 16 FIELD QUALITY CONTROL PROCEDURES
- 01 45 29 TESTING LABORATORY SERVICES
- 01 50 00 TEMPORARY FACILITIES AND CONTROLS
- 01 58 13 TEMPORARY PROJECT SIGNAGE
- 01 60 00 PRODUCT REQUIREMENTS
- 01 71 23 FIELD ENGINEERING
- 01 73 29 CUTTING AND PATCHING
- 01 74 13 PROGRESS CLEANING
- 01 74 19 CONSTRUCTION WASTE MANAGEMENT AND DISPOSAL
- 01 76 00 PROTECTING INSTALLED CONSTRUCTION
- 01 77 00 CLOSEOUT PROCEDURES
- 01 78 13 COMPLETION AND CORRECTION LIST
- 01 78 23 OPERATION AND MAINTENANCE DATA
- 01 78 36 WARRANTIES
- 01 78 39 AS-BUILT DRAWINGS

- 01 78 43 SPARE PARTS AND EXTRA MATERIALS
- 01 79 00 DEMONSTRATION AND TRAINING
- 01 91 00 COMMISSIONING

DIVISION 02 – EXISTING CONDITIONS

02 41 19 SELECTIVE DEMOLITION

02 65 00 REMOVAL AND DISPOSAL OF STORAGE TANKS

DIVISION 03 – CONCRETE

03 30 00 CAST-IN-PLACE CONCRETE

DIVISION 04 – MASONRY

04 20 00 UNIT MASONRY ASSEMBLIES

DIVISION 05 – METALS

- 05 12 00 STRUCTURAL STEEL FRAMING
- 05 40 00 COLD-FORMED METAL FRAMING
- 05 50 00 METAL FABRICATIONS
- 05 52 13 PIPE AND TUBE RAILINGS

DIVISION 06 – WOOD, PLASTICS, AND COMPOSITES

- 06 10 53 MISCELLANEOUS ROUGH CARPENTRY
- 06 40 23 INTERIOR ARCHITECTURAL WOODWORK
- 06 41 16 PLASTIC-LAMINATE-CLAD ARCHITECTURAL CABINETS
- 06 42 19 PLASTIC-LAMINATE-FACED WOOD PANELING

DIVISION 07 – THERMAL AND MOISTURE PROTECTION

- 07 01 53 ROOF MEMBRANE PATCHING AND REPAIR
- 07 21 00 THERMAL INSULATION
- 07 27 26 FLUID-APPLIED MEMBRANE AIR BARRIER
- 07 42 13 METAL WALL PANELS
- 07 62 00 SHEET METAL FLASHING AND TRIM
- 07 84 13 PENETRATION FIRESTOPPING
- 07 92 00 JOINT SEALANTS
- 07 95 00 EXPANSION CONTROL
- 07 95 13 EXPANSION JOINT COVER ASSEMBLIES

DIVISION 08 – OPENINGS

- 08 11 13 HOLLOW METAL DOORS AND FRAMES
- 08 16 13 FIBERGLASS REINFORCED POLYESTER (FRP) DOORS AND ALUMINUM FRAMES
- 08 31 13 ACCESS DOORS AND FRAMES
- 08 33 23 OVERHEAD COILING DOORS
- 08 33 30 HIGH SPEED RUBBER ROLL-UP DOORS
- 08 41 13 ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS
- 08 71 00 DOOR HARDWARE
- 08 81 00 GLAZING
- 08 91 19 FIXED LOUVERS

DIVISION 09 – FINISHES

- 09 01 90.52 MAINTENANCE REPAINTING
- 09 05 61.13 MOISTURE VAPOR EMISSION CONTROL
- 09 22 16 NON-STRUCTURAL METAL FRAMING
- 09 29 00 GYPSUM BOARD
- 09 30 13 CERAMIC TILING
- 09 51 13 ACOUSTICAL PANEL CEILINGS
- 09 54 23 LINEAR METAL CEILINGS
- 09 65 13 RESILIENT AND METAL BASE AND ACCESSORIES
- 09 65 19 RESILIENT TILE FLOORING
- 09 68 13 TILE CARPETING
- 09 72 00 WALL COVERINGS
- 09 77 23 FABRIC-WRAPPED PANELS
- 09 80 00 ACOUSTIC TREATMENT
- 09 91 13 EXTERIOR PAINTING
- 09 91 23 INTERIOR PAINTING

DIVISION 10 – SPECIALTIES

- 10 14 00 INTERIOR SIGNAGE
- 10 21 13.19 PLASTIC TOILET COMPARTMENTS
- 10 22 39 FOLDING PANEL PARTITIONS
- 10 28 13 TOILET AND SHOWER ACCESSORIES
- 10 44 11 FIRE PROTECTION CABINET KNOX BOX
- 10 44 13 FIRE EXTINGUISHER CABINETS
- 10 44 16 FIRE EXTINGUISHERS

DIVISION 11 – EQUIPMENT

- 11 11 19 LUBRICATION SYSTEMS
- 11 11 28 VEHICLE FUEL EQUIPMENT
- 11 13 19 STATIONARY LOADING DOCK EQUIPMENT
- 11 24 29 INDUSTRIAL FALL PROTECTION

DIVISION 12 – FURNISHINGS

- 12 24 13 ROLLER WINDOW SHADES
- 12 46 00 MAGNETIC GLASS DRY-ERASE BOARDS
- 12 64 00 UPHOLSTERY

DIVISION 13 – SPECIAL CONSTRUCTION

NOT USED

DIVISION 14 – CONVEYING EQUIPMENT

14 40 00 LIFTS (HOISTS) AND VERTICAL STORAGE UNITS

DIVISION 21 – FIRE SUPPRESSION

21 90 00 WATER BASED FIRE SUPPRESSION SYSTEMS

DIVISION 22 – PLUMBING

- 22 05 00COMMON WORK RESULTS FOR PLUMBING22 05 19METERS AND GAGES FOR PLUMBING22 05 23GENERAL-DUTY VALVES FOR PLUMBING
- 22 05 29 HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

- 22 05 53 IDENTIFICATION FOR PLUMBING
- 22 07 00 INSULATION FOR PLUMBING
- 22 08 00 COMMISSIONING OF PLUMBING SYSTEMS
- 22 11 16 SUPPLY PIPING FOR PLUMBING
- 22 11 19 SUPPLY PIPING SPECIALTIES FOR PLUMBING
- 22 11 23 SUPPLY PIPING PUMPS FOR PLUMBING
- 22 13 16 DRAIN AND VENT PIPING
- 22 13 19 DRAIN PIPING SPECIALTIES FOR PLUMBING
- 22 13 23 DRAIN INTERCEPTORS FOR PLUMBING
- 22 15 13 COMPRESSED AIR PIPING
- 22 15 19 AIR COMPRESSORS AND RECEIVERS
- 22 31 00 DOMESTIC WATER SOFTENERS
- 22 34 00 FUEL-FIRED, DOMESTIC-WATER HEATERS
- 22 40 00 PLUMBING FIXTURES
- 22 45 00 EMERGENCY PLUMBING FIXTURES
- 22 47 00 WATER COOLERS

VOLUME 2

DIVISION 23 – HEATING VENTILATING AND AIR CONDITIONING

- 23 05 00 COMMON WORK RESULTS FOR HVAC
- 23 05 13 COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT
- 23 05 14 VARIABLE FREQUENCY DRIVES
- 23 05 16 EXPANSION FITTINGS AND LOOPS FOR HVAC PIPING
- 23 05 19 METERS AND GAGES FOR HVAC PIPING
- 23 05 23 GENERAL-DUTY VALVES FOR HVAC PIPING
- 23 05 29 HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT
- 23 05 48.13 VIBRATION CONTROLS FOR HVAC
- 23 05 53 IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT
- 23 05 66 AIRBORNE DISINFECTION SYSTEMS
- 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC
- 23 07 13 DUCT INSULATION
- 23 07 16 HVAC EQUIPMENT INSULATION
- 23 07 19 HVAC PIPING INSULATION
- 23 08 00 COMMISSIONING OF HVAC
- 23 09 00 INSTRUMENTATION AND CONTROL FOR HVAC
- 23 09 24 DIRECT DIGITAL CONTROL SYSTEM FOR HVAC
- 23 09 93 SEQUENCE OF OPERATIONS FOR HVAC CONTROLS
- 23 11 13 FACILITY FUEL-OIL PIPING
- 23 11 23 FACILITY NATURAL-GAS PIPING
- 23 21 13 HYDRONIC PIPING
- 23 21 16 HYDRONIC PIPING SPECIALTIES
- 23 21 23 HYDRONIC PUMPS
- 23 23 00 REFRIGERANT PIPING
- 23 25 00 HVAC WATER TREATMENT
- 23 31 13 METAL DUCTS
- 23 33 00 AIR DUCT ACCESSORIES
- 23 34 00 FUME EXHAUST EQUIPMENT
- 23 34 23 HVAC POWER VENTILATORS
- 23 34 39 HIGH VOLUME, LOW-SPEED FANS
- 23 36 00 AIR TERMINAL UNITS

- 23 37 13 DIFFUSERS, REGISTERS, AND GRILLES
- 23 41 00 PARTICULATE AIR FILTRATION
- 23 51 00 BREECHINGS, CHIMNEYS, AND STACKS
- 23 52 16 CONDENSING BOILERS
- 23 73 33.16 INDOOR, INDIRECT, GAS-FIRED HEATING AND VENTILATING UNITS
- 23 74 16.11 PACKAGED, SMALL-CAPACITY, ROOFTOP AIR-CONDITIONING UNITS
- 23 74 23.13 PACKAGED, DIRECT-FIRED, OUTDOOR, HEATING-ONLY MAKEUP-AIR UNITS
- 23 81 26 SPLIT-SYSTEM AIR-CONDITIONERS
- 23 82 16 AIR COILS
- 23 82 33 CONVECTORS
- 23 82 36 FINNED-TUBE RADIATION HEATERS
- 23 82 39 UNIT HEATERS
- 23 83 16 RADIANT-HEATING HYDRONIC PIPING

DIVISION 26 – ELECTRICAL

- 26 05 00 COMMON WORK RESULTS FOR ELECTRICAL
- 26 05 02 ELECTRICAL DEMOLITION AND ALTERATION
- 26 05 19 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES
- 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS
- 26 05 29 HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS
- 26 05 33 RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS
- 26 05 43 UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS
- 26 05 44 SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING
- 26 05 53 IDENTIFICATION FOR ELECTRICAL SYSTEMS
- 26 05 73.13 SHORT-CIRCUIT STUDIES
- 26 05 73.16 COORDINATION STUDIES
- 26 05 73.19 ARC-FLASH HAZARD ANALYSIS
- 26 09 23 LIGHTING CONTROL DEVICES
- 26 09 43.23 RELAY-BASED/DISTRIBUTED LIGHTING CONTROL SYSTEM
- 26 22 13 LOW-VOLTAGE DISTRIBUTION TRANSFORMERS
- 26 24 13 SWITCHBOARDS
- 26 24 16 PANELBOARDS
- 26 27 13 ELECTRICITY METERING
- 26 27 26 WIRING DEVICES
- 26 28 13 FUSES
- 26 28 16 ENCLOSED SWITCHES AND CIRCUIT BREAKERS
- 26 29 13 ENCLOSED CONTROLLERS
- 26 32 13 ENGINE GENERATORS
- 26 36 00 TRANSFER SWITCHES
- 26 43 13 SURGE PROTECTION FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS
- 26 51 19 LED INTERIOR LIGHTING
- 26 56 19 LED EXTERIOR LIGHTING

DIVISION 27 – COMMUNICATIONS

- 27 05 26 GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS
- 27 05 53 IDENTIFICATION FOR COMMUNICATIONS SYSTEMS
- 27 11 00 COMMUNICATIONS EQUIPMENT ROOM FITTINGS
- 27 11 16 COMMUNICATIONS RACKS, FRAMES, AND ENCLOSURES
- 27 13 23 COMMUNICATIONS OPTICAL FIBER BACKBONE CABLING

- 27 15 13 COMMUNICATIONS COPPER HORIZONTAL CABLING
- 27 51 23.20 INTERCOM SYSTEM

DIVISION 28 – ELECTRONIC SAFETY AND SECURITY

- 28 10 00 ACCESS CONTROL SYSTEM (KEYSCAN)
- 28 20 00 VIDEO SURVEILLANCE
- 28 46 21.11 ADDRESSABLE FIRE-ALARM SYSTEMS

DIVISION 31 – EARTHWORK

- 31 11 00 EROSION CONTROL
- 31 20 00 EARTH MOVING
- 31 23 19 DEWATERING
- 31 66 15 HELICAL PILES

DIVISION 32 – EXTERIOR IMPROVEMENTS

- 32 12 16 ASPHALT PAVING
- 32 13 13 CONCRETE PAVING
- 32 13 73 CONCRETE PAVING JOINT SEALANTS
- 32 17 23 PAVEMENT MARKINGS
- 32 91 13 SOIL PREPARATION
- 32 92 00 TURF AND GRASSES

DIVISION 33 – UTILITIES

- 33 05 00 COMMON WORK RESULTS FOR UTILITIES
- 33 11 16 SITE WATER UTILITY DISTRIBUTION PIPING
- 33 13 13 SANITARY SEWERS
- 33 41 00 STORM UTILITY DRAINAGE PIPING

DIVISION 41 - MATERIAL PROCESSING AND HANDLING EQUIPMENT NOT USED

END OF SECTION 00 01 10

SECTION 23 05 00 COMMON WORK RESULTS FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 ACCURACY OF DATA AND CONTRACT DRAWINGS

- A. The design drawings are diagrammatic, and they may not show all physical arrangements, offsets, bends, or elbows which may be required for installation of various materials, equipment, piping, and ductwork systems in allotted spaces. The Contractor shall examine these and other available drawings to determine space limitations and interferences. The Contractor shall be responsible for making any minor changes in location of equipment, pipe, and ductwork from that shown on drawings and for all physical details required for installation. Cost for adapting Contractor's work to jobsite conditions shall not be considered as basis of an extra cost to contract. The Contractor shall get approval before proceeding with any change.
- **B.** Elevation of piping, ductwork and equipment indicated on drawings are to be used as guidelines to assist Contractor with installations. Minor changes to these elevations may be necessary to eliminate unforeseen interferences. The Contractor shall get approval before proceeding with any changes in elevations.
- C. Information pertaining to new and existing conditions that are described in the specifications or appear on drawings are based on available records. While such data has been collected with reasonable care, there is no expressed or implied guarantee that conditions so indicated are entirely representative of those actually existing or that unlooked for developments may not occur. Such information is merely provided to assist the Contractor in his investigation of conditions.
- D. The Contractor must carefully examine the drawings, specifications, and project site, and verify all measurements, distances, levels, materials, equipment, etc. before starting work.
- E. Drawings shall not be scaled for determining exact dimensions or location of equipment.
- F. Check, verify, and coordinate work with drawings and specifications prepared for other trades. Include modifications, relocations, or adjustments necessary to complete work or to avoid interference with other trades.
- G. Contractor may install additional piping, fittings, and valves, not shown on drawings, for testing purposes or for convenience of installation or start-up. Where such materials are installed, they shall comply with specifications and shall be sized to be compatible with system design. Remove such installed materials when they interfere with design conditions or as directed by Architect.

- H. Except as otherwise specified herein or indicated on drawings, furnish, and install all piping, tubing, valves, specialties and supports to connect fixtures and equipment into their respective systems as required for or incidental to the proper operation of the indicated systems. This shall include the following systems:
 - 1. All miscellaneous piping called for on piping and instrument diagrams, regardless of whether or not indicated in the specifications or on the drawings. Reference shall be made to piping and instrument diagrams, control air piping drawings, and manufacturer's equipment drawings to determine full extent or required piping.

1.3 SUMMARY

- A. This Section includes the following:
 - 1. Piping materials and installation instructions common to most piping systems.
 - 2. Transition fittings.
 - 3. Dielectric fittings.
 - 4. Mechanical sleeve seals.
 - 5. Sleeves.
 - 6. Escutcheons.
 - 7. Grout.
 - 8. HVAC demolition.
 - 9. Equipment installation requirements common to equipment sections.
 - 10. Painting and finishing.
 - 11. Concrete bases.
 - 12. Supports and anchorages.

1.4 DEFINITIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct chases, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.
- D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and chases.
- E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
- F. Except as otherwise defined in greater detail, terms "provide", "furnish", and "install" as used in these Contract Documents shall have the following meanings:
 - 1. "Provide" or "provided" shall mean "furnish and install."
 - 2. "Furnish" or "furnished" does not include installation.

- 3. "Install" or "installed" does not include furnishing.
- G. The following are industry abbreviations for rubber materials:
 - 1. EPDM: Ethylene-Propylene Diene Monomer rubber.

1.5 SUBMITTALS

A. Product Data: None.

1.6 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify processes and operators according to AWS D1.1, "Structural Welding Code--Steel."
- B. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- C. Electrical Characteristics for HVAC Equipment: Equipment of higher electrical characteristics may be furnished provided such proposed equipment is approved in writing and connecting electrical services, circuit breakers, and conduit sizes are appropriately modified at no cost to the Owner. If minimum energy ratings or efficiencies are specified, equipment shall comply with requirements.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
- B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.
- C. The Contractor or the Contractor's authorized representative must be present to accept delivery of all equipment and materials furnished by him. The Owner's personnel will not knowingly accept, unload, or store anything delivered to the site for the Contractor's use. Inadvertent acceptance of delivered items by a representative of the Owner shall not constitute acceptance or responsibility for any of the materials or equipment. It shall be the Contractor's responsibility to assume all liability for any equipment or materials furnished by him which are delivered to the job site.
- D. Storage of materials on the grounds and within the building shall be in strict accordance with instructions of the Owner. Storage of materials within building shall at no time exceed design carrying capacity of the structural system.

- E. The Owner assumes no responsibility for materials stored in building or on the site. Each Contractor shall assume full responsibility for all losses or damage due to the storing of his materials.
- F. Handle items carefully to avoid damage to components, enclosures and finishes. Follow the manufacturer's rigging instructions when handling and moving equipment.

1.8 COORDINATION

- A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for HVAC installations.
- B. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.
- C. Coordinate requirements for access panels and doors for HVAC items requiring access that are concealed behind finished surfaces. Access panels and doors are specified in Division 08.

1.9 RELATED WORK – UTILITY SERVICES

- A. Determine utility connection requirements and include in BASE BID all costs to Owner for utility service.
- B. Include costs for temporary service, temporary routing of piping or any other requirements of a temporary nature associated with utility service.

1.10 CODES AND REGULATIONS

A. All codes and regulations of Federal, State, and Local Authorities and utility companies shall become part of this specification and must be adhered to where they exceed requirements as shown on the drawings or stated in the specifications, without additional cost to the Contract.

1.11 CONTINUITY OF EXISTING SERVICES

A. Do not interrupt or change existing services without prior written approval. When interruption is required, coordinate length of service time with Owner to minimize disruption of occupant activities.

1.12 OPERATING AND MAINTENANCE INSTRUCTIONS

- A. The Contractor shall provide operating and maintenance instruction manuals covering each and every item of equipment and devices furnished or erected by the Contractor prior to "Substantial Completion" as required by Division 1.
- B. Each separate manual shall consist of the following:
 - 1. Neatly typewritten table of contents including contractor's name, address, and telephone number; list of each product referenced in manual; and name, address and telephone number of installing contractor and maintenance contractor for each product.

- 2. Tabbed sections of catalog data and literature for each product including model number, description and component parts; operating procedures; maintenance procedures; servicing and lubrication schedules; description of sequence of operations; parts lists; illustrations, assembly drawings and diagrams required for maintenance; any additional drawings, diagrams, charts or written text which may be required to supplement product data for particular installation; certified test and balance report; list of control point labels, and wiring diagrams.
- 3. Copy of warranty, bond and/or service contract issued for each product including an information sheet for operations personnel with proper procedures in event of a product failure and instances which might affect validity of warranties or bonds.
- 4. Full size sheets, if required, shall be folded into special holding pockets. Faxed, handwritten, or illegible materials are not acceptable.
- C. Prior to final inspection or acceptance, fully instruct designated facility operating and maintenance personnel on operation, adjustment and maintenance of products, equipment, and systems. Review contents of operating and maintenance manual with personnel in full detail to explain all aspects of operations and maintenance.

1.13 POSTED OPERATIONS INSTRUCTIONS (POIs)

- A. Provide comprehensive posted operations instructions for all equipment and systems. Instructions shall be developed as CADD schematics, files, or plans and include printed text. Information shall include but not be limited to air system schematics, water system schematics, equipment schedules, valve charts, controls points list, sequence of operations, and building plan showing equipment locations. They shall be framed under glass with extruded metal frame and shall be bolted to the mechanical room wall. Instructions shall be in color and use color graphics for illustrative purposes.
- B. As an alternative to posting in mechanical rooms, POIs may be incorporated into the graphics package of the base central Energy Management and Control System (EMCS).

1.14 PROTECTION OF ROOF

- A. Contractors are cautioned that they must exercise extreme care in any activity involving contact with any installed roof membrane.
- B. Construct protective plywood (3/4 in. thick) runways across the roof for moving, setting, and installing equipment and piping systems. No activity on the roof will be permitted without this protection. Start runways at the point of origin of any equipment placed on roof and terminate at the point of installation on curb or base. At completion of work, or when directed by the Owner, completely remove, neatly and cleanly, without damage to roofing system, these protective items and runways.
- C. Any and all repairs necessary to bring the roofing system to its original condition shall be made by an approved Roofing Contractor and paid for by the Contractor responsible for the damage.

1.15 WORK COORDINATION

A. All Trades shall work in cooperation with each other, and fit their work into the structure as job conditions may demand. All final decisions as to right-of-way and run of pipes

and ducts, etc. shall be made by the Owner. In general, priority shall be arranged as follows: (in order of preference)

- 1. Recessed lighting fixtures
- 2. Piping which must be drainable
- 3. Sheet metal ductwork
- 4. Lighting fixtures
- 5. Plumbing waste lines, downspouts, vents, and sprinkler piping
- 6. Gravity water lines
- 7. Heating hot water lines
- 8. Refrigerant lines
- 9. Plumbing water and gas and air lines
- 10. Electrical conduit
- 11. Control wiring conduit

1.16 INSPECTION

- A. The Contractor shall verify the location of underground service, utilities, structures, etc., which may be encountered or be affected by his work and shall be responsible for any damage caused by neglect to provide proper precautions or protection.
- B. Any work that is to be concealed, such as inside walls, above ceilings, soffits, shall be inspected by Owner or Architect/Engineer prior to concealment.

1.17 TEMPORARY HVAC

- A. Occupied Spaces: Provide temporary heating, ventilation, and air conditioning in occupied areas when HVAC cannot be provided from existing or new systems as designed. A minimum of 0.5 cfm/ft² ventilation air shall be provided. When heating, the system shall maintain the room temperature at 68°F or warmer. When cooling, the system shall maintain the room temperature at 78°F or cooler and maintain the relative humidity below 60%. Existing systems may be modified to meet these requirements. Direct-fired heaters are not permitted. All temporary HVAC provisions must be approved. Visible portions, such as diffusers, grilles, thermostats, and any exposed ductwork, must also be approved.
- B. In normally unoccupied spaces that are only heated, provide temporary heating to maintain the temperature at 55°F or warmer. Use of direct-fired heaters is acceptable, provided ventilation is adequate and condensation is minimized. Any damage from condensation shall be repaired by this contractor at no additional cost to the Contract.

PART 2 - PRODUCTS

2.1 PIPE, TUBE, AND FITTINGS

- A. Refer to individual Division 23 piping Sections for pipe, tube, and fitting materials and joining methods.
- B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings.

2.2 JOINING MATERIALS

- A. Refer to individual Division 23 piping Sections for special joining materials not listed below.
- B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
 - 2. AWWA C110, rubber, flat face, 1/8 inch (3.2 mm) thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.
- C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- E. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for generalduty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.
- F. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.3 DIELECTRIC FITTINGS

- A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials.
- B. Insulating Material: Suitable for system fluid, pressure, and temperature.
- C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig minimum working pressure at 180 deg F.
 - 1. Available Manufacturers:
 - a. Capitol Manufacturing Co.
 - b. Central Plastics Company.
 - c. Eclipse, Inc.
 - d. Epco Sales, Inc.
 - e. Hart Industries, International, Inc.
 - f. Watts Industries, Inc.; Water Products Div.
 - g. Zurn Industries, Inc.; Wilkins Div.

- D. Dielectric Flanges: Factory-fabricated, companion-flange assembly, for 150- or 300-psig minimum working pressure as required to suit system pressures.
 - 1. Available Manufacturers:
 - a. Capitol Manufacturing Co.
 - b. Central Plastics Company.
 - c. Epco Sales, Inc.
 - d. Watts Industries, Inc.; Water Products Div.
- E. Dielectric-Flange Kits: Companion-flange assembly for field assembly. Include flanges, full-face- or ring-type neoprene or phenolic gasket, phenolic or polyethylene bolt sleeves, phenolic washers, and steel backing washers.
 - 1. Available Manufacturers:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Central Plastics Company.
 - d. Pipeline Seal and Insulator, Inc.
 - 2. Separate companion flanges and steel bolts and nuts shall have 150- or 300-psig working pressure where required to suit system pressures.
- F. Dielectric Couplings: Galvanized-steel coupling with inert and noncorrosive, thermoplastic lining; threaded ends; and 300-psig minimum working pressure at 225 deg F.
 - 1. Available Manufacturers:
 - a. Calpico, Inc.
 - b. Lochinvar Corp.
- G. Dielectric Nipples: Electroplated steel nipple with inert and noncorrosive, thermoplastic lining; plain, threaded, or grooved ends; and 300-psig minimum working pressure at 225 deg F.
 - 1. Available Manufacturers:
 - a. Perfection Corp.
 - b. Precision Plumbing Products, Inc.
 - c. Sioux Chief Manufacturing Co., Inc.
 - d. Victaulic Co. of America.

2.4 MECHANICAL SLEEVE SEALS

- A. Description: Modular sealing element unit, designed for field assembly, to fill annular space between pipe and sleeve.
 - 1. Available Manufacturers:
 - a. Advance Products & Systems, Inc.

- b. Calpico, Inc.
- c. Metraflex Co.
- d. Pipeline Seal and Insulator, Inc.
- 2. Sealing Elements: EPDM interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
- 3. Pressure Plates: Carbon steel. Include two for each sealing element.
- 4. Connecting Bolts and Nuts: Carbon steel with corrosion-resistant coating of length required to secure pressure plates to sealing elements. Include one for each sealing element.

2.5 SLEEVES

- A. Galvanized-Steel Sheet: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
- B. Steel Pipe: ASTM A 53, Type E, Grade B, Schedule 40, galvanized, plain ends.
- C. Cast Iron: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- D. Stack Sleeve Fittings: Manufactured, cast-iron sleeve with integral clamping flange. Include clamping ring and bolts and nuts for membrane flashing.
 - 1. Underdeck Clamp: Clamping ring with set screws.

2.6 ESCUTCHEONS

- A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with polished chromeplated finish.
- C. One-Piece, Stamped-Steel Type: With spring clips and chrome-plated finish.
- D. Split-Plate, Stamped-Steel Type: With concealed hinge, spring clips, and chrome-plated finish.
- E. One-Piece, Floor-Plate Type: Cast-iron floor plate.
- F. Split-Casting, Floor-Plate Type: Cast brass with concealed hinge and set screw.

<u>2.7</u> <u>GROUT</u>

- A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 - 1. Characteristics: Post-hardening, volume-adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

3. Packaging: Premixed and factory packaged.

2.8 SEALANTS

A. Reference Division 07 specification for sealant requirements.

PART 3 - EXECUTION

<u>3.1</u> <u>GENERAL</u>

A. Verify elevations and measurements prior to installation of materials.

3.2 HVAC DEMOLITION

- A. Refer to Division 01 for cutting and patching and Division 02 for general demolition requirements and procedures.
- B. Disconnect, demolish, and remove HVAC systems, equipment, and components indicated to be removed.
 - 1. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
 - 2. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material.
 - 3. Ducts to Be Removed: Remove portion of ducts indicated to be removed and plug remaining ducts with same or compatible ductwork material.
 - 4. Ducts to Be Abandoned in Place: Cap or plug ducts with same or compatible ductwork material.
 - 5. Equipment to Be Removed: Disconnect and cap services and remove equipment.
 - 6. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational.
 - 7. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to Owner.
- C. If pipe, insulation, or equipment to remain is damaged in appearance or is unserviceable, remove damaged or unserviceable portions and replace with new products of equal capacity and quality.
- D. Removed materials must not be reused unless otherwise specified or directed to be so.
- E. Arrange and pay for disconnecting, removing, and capping utility services within areas of demolition. Place markers to indicate location of disconnected services. Identify service lines and capping locations on Project Record Documents.
- F. Refrigerant shall be recovered from any refrigeration unit that will be removed or salvaged. Recovered refrigerants must be bottled in pressure containers suitable for shipping per DOT requirement and remain property of the Government. Salvage or disposal by Contractor is not permitted

G. For any existing equipment being relocated and re-installed, the contractor shall test functionality of existing unit and report in writing any functional deficiencies. Failure to submit this report shall imply that the unit is fully functional and will obligate the contractor to repair any discovered deficiencies prior to project closeout. If functionality test report identifies unit deficiencies, the contractor shall notify the Owner and Architect/Engineer immediately.

3.3 PIPING SYSTEMS - COMMON REQUIREMENTS

- A. Install piping according to the following requirements and Division 23 Sections specifying piping systems.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas.
- D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- F. Install piping to permit valve servicing.
- G. Install piping at indicated slopes.
- H. Install piping free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Install piping to allow application of insulation.
- K. Full lengths of pipe shall be used. Short lengths and couplings will not be permitted.
- L. Where more than one pipe material specification or valve is allowed for particular service, the Contractor is required to use one and only one of the pipe materials specified throughout project. Two or more different piping materials or valves for same service will not be allowed unless indicated otherwise on drawings or specified herein.
- M. Independently support piping so that its weight shall not be supported by the equipment to which it is connected.
- N. Size reduction shall be made using reducing fittings; bushings are not acceptable.
- O. Mitered ells, notched tees, and orange peel reducers are not acceptable. On threaded piping, bushings are not acceptable.

- P. "Weldolets" and "Threadolets" may be used for branch takeoffs up to one-half (1/2) the diameter of the main.
- Q. Cover ends of piping during installation to keep inside of piping clean.
- R. Piping shall not be routed through electrical rooms or transformer vaults, or above transformers, panelboards, or switchboards, including the required service space for this equipment, unless the piping is serving this equipment.
- S. Use only wrenches having square flat jaws, or non-metallic strap wrenches on brass specialties; wrench marks not permitted.
- T. Select system components with pressure rating equal to or greater than system operating pressure.
- U. Install escutcheons for penetrations of walls, ceilings, and floors according to the following:
 - 1. New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deeppattern type.
 - b. Insulated Piping: One-piece, stamped-steel type with spring clips.
 - c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Onepiece, stamped-steel type.
 - d. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge and set screw.
 - e. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type with concealed hinge and spring clips.
 - f. Bare Piping in Equipment Rooms: One-piece, stamped-steel type with spring clips.
 - g. Bare Piping at Floor Penetrations in Equipment Rooms: One-piece, floorplate type.
 - 2. Existing Piping: Use the following:
 - a. Insulated Piping: Split-plate, stamped-steel type with concealed hinge and spring clips.
 - b. Bare Piping at Wall and Floor Penetrations in Finished Spaces: Splitplate, stamped-steel type with concealed hinge and spring clips.
 - c. Bare Piping at Ceiling Penetrations in Finished Spaces: Split-plate, stamped-steel type with concealed hinge and set screw.
 - d. Bare Piping in Unfinished Service Spaces: Split-plate, stamped-steel type with concealed hinge and set screw or spring clips.
 - e. Bare Piping in Equipment Rooms: Split-plate, stamped-steel type with set screw or spring clips.
 - f. Bare Piping at Floor Penetrations in Equipment Rooms: Split-casting, floor-plate type.
- V. Sleeves are not required for core-drilled holes thru solid concrete walls.

- W. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.
- X. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend castiron sleeve fittings below floor slab as required to secure clamping ring if ring is specified.
 - 2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
 - 3. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials:
 - a. Steel Pipe Sleeves: For pipes smaller than NPS 6.
 - b. Steel Sheet Sleeves: For pipes NPS 6 and larger, penetrating gypsumboard partitions.
 - c. Stack Sleeve Fittings: For pipes penetrating floors with membrane waterproofing. Secure flashing between clamping flanges. Install section of cast-iron soil pipe to extend sleeve to 2 inches above finished floor level. Refer to Division 07 for flashing.
 - 1) Seal space outside of sleeve fittings with grout.
 - 4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. Refer to Division 07 for materials and installation.
- Y. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - 1. Install steel pipe for sleeves smaller than 6 inches in diameter.
 - 2. Install cast-iron "wall pipes" for sleeves 6 inches and larger in diameter.
 - 3. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.
- Z. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
 - 1. Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe

and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

- AA. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Refer to Division 07 for materials.
- BB. Verify final equipment locations for roughing-in.
- CC. Refer to equipment specifications in other Sections of these Specifications for roughingin requirements.
- DD. Unions and/or flanges shall be installed at a minimum of 100 feet intervals in piping runs and near each piece of equipment to facilitate removal of same for repair, replacement, or inspection.
- EE. Vent Piping (aboveground):
 - 1. Install vent and relief valve discharge lines as indicated on the drawings, as detailed, and as specified for each specific valve or piping specialty item. In no event is a termination to occur less than six feet above a roof line.

3.4 PIPING JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and Division 23 Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.

H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.

3.5 PIPING CONNECTIONS

- A. Make connections according to the following, unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 - 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.
 - 3. Wet Piping Systems: Install dielectric coupling and nipple fittings to connect piping materials of dissimilar metals.

3.6 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS

- A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated.
- B. Install equipment level and plumb, parallel, and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated.
- C. Install HVAC equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations.
- D. Install equipment to allow right of way for piping installed at required slope.

3.7 PAINTING

- A. Painting of HVAC systems, equipment, and components is specified in Division 09.
- B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.8 CONCRETE BASES

- A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.
 - 1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
 - 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of the base.
 - 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
 - 4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

- 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
- 6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
- 7. Use 3000-psi, 28-day compressive-strength concrete and reinforcement as specified in Division 03.

3.9 ERECTION OF METAL SUPPORTS AND ANCHORAGES

- A. Reference to Division 05 specifications for structural steel and metal products.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor HVAC materials and equipment.
- C. Field Welding: Comply with AWS D1.1.

3.10 GROUTING

- A. Mix and install grout for HVAC equipment base bearing surfaces, pump and other equipment base plates, and anchors.
- B. Clean surfaces that will come into contact with grout.
- C. Provide forms as required for placement of grout.
- D. Avoid air entrapment during placement of grout.
- E. Place grout, completely filling equipment bases.
- F. Place grout on concrete bases and provide smooth bearing surface for equipment.
- G. Place grout around anchors.
- H. Cure placed grout.

END OF SECTION 23 05 00

SECTION 23 05 13 COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 COORDINATION

- A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 - 1. Motor controllers.
 - 2. Torque, speed, and horsepower requirements of the load.
 - 3. Ratings and characteristics of supply circuit and required control sequence.
 - 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

- 2.1 GENERAL MOTOR REQUIREMENTS
- A. Comply with NEMA MG 1 unless otherwise indicated.
- 2.2 MOTOR CHARACTERISTICS
- A. Duty: Continuous duty at ambient temperature of 104 °F or 40 °C and at altitude of 3300 feet above sea level.
- B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE INDUCTION MOTORS WITH ADDITIONAL REQUIREMENTS

- A. Motors Used with Reduced-Voltage and Multispeed Controllers: Match wiring connection requirements for controller with required motor leads. Provide terminals in motor terminal box, suited to control method.
- B. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
- C. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
- D. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.

- E. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
- F. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.
- G. Shaft Grounding: Provide bearing protection grounding rings to bleed current from the motor shaft to the motor casing.

2.4 POLYPHASE INDUCTION MOTORS

- A. Description: NEMA MG 1, Design B, medium induction motor.
- B. Efficiency: Energy efficient, as defined in NEMA MG 1.
- C. Service Factor: 1.15.
- D. Multispeed Motors: Variable torque.
 - 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 - 2. For motors with other than 2:1 speed ratio, separate winding for each speed.
- E. Multispeed Motors: Separate winding for each speed.
- F. Rotor: Random-wound, squirrel cage.
- G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.
- H. Temperature Rise: Match insulation rating.
- I. Insulation: Class F.
- J. Code Letter Designation:
 - 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 - 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.

2.5 SINGLE-PHASE INDUCTION MOTORS

- A. Motors larger than 1/20 HP shall be one of the following, to suit starting torque and requirements of specific motor application:
 - 1. Permanent-split capacitor.
 - 2. Split phase.
 - 3. Capacitor start, inductor run.
 - 4. Capacitor start, capacitor run.
- B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.
- C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.

- D. Motors 1/20 HP and Smaller: Shaded-pole type.
- E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

2.6 ELECTRONICALLY COMMUTATED MOTOR (ECM)

- A. Description: Electrically commutated, adjustable speed, brushless direct current (BLDC) motor.
- B. Constant CFM, constant torque
- C. Multi-Speed: Shall be speed controllable down to 20% of full speed using a 0-10 VDC signal.
- D. Efficiency: Energy efficient, as defined in NEMA MG 1.
- E. Service Factor: 1.00

PART 3 - EXECUTION (Not Used)

END OF SECTION 23 05 13

This page intentionally left blank.

SECTION 23 05 14 VARIABLE FREQUENCY DRIVES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 COORDINATION

- A. Coordinate features of variable frequency drives, installed units, and accessory devices to be compatible with the following:
 - 1. Torque, speed, and horsepower requirements of the load.
 - 2. Ratings and characteristics of supply circuit and required control sequence.
 - 3. Ambient and environmental conditions of installation location.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type and rating of VFD indicated.
 - 1. Include dimensions and finishes for VFDs.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For VFDs to include in emergency, operation, and maintenance manuals.

1.5 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace VFDs that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

- 2.1 MANUFACTURERS
- A. Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
- B. Basis-of-Design Product: Subject to compliance with requirements, provide the following as City of Madison's preferred variable frequency drive equipment supplier and is to be a part of the Section 23 09 00 Contractor's scope of work for this project.

1. Danfoss, VLT Series.

2.2 DESIGN AND CONSTRUCTION

- A. The unit shall be variable torque, modular design for control of the motors as specified in Division 23 and rated at the motor full load nameplate amps.
- B. The unit shall be U.L. listed, solid state, microprocessor-based with a pulse width modulated (PWM) output wave form (none others are acceptable).
- C. The VFD shall employ a full wave bridge rectifier and capacitors to minimize the ripple of the rectified voltage to maintain near constant DC voltage. Insulated gate bipolar transistors (IGBT's) shall be employed as the output switching device.
- D. The VFD package shall contain the equivalent of 5% impedance to reduce harmonic distortion. The 5% equivalent impedance shall be provided in the form of a DC bus choke, an input AC line reactor in each phase, or a combination of the two methods.
- E. Control circuitry shall be plug-in, plug-out modular basis with a corrosion resistant coating on printed circuit boards.
- F. Units to be suitable for an operating environment from 0°C to 40°C temperature and humidity up to 90% non-condensing.
- G. Electrically and physically isolate control circuitry and conductors from power circuitry and power conductors. Control conductors and power conductors shall not be run in the same pathway.
- H. The unit enclosure shall be NEMA 1 as required for the application minimum and all components shall be fully factory assembled and tested prior to leaving the manufacturing facility.
 - 1. Provide NEMA 12 for indoor area when not located in cabinetry.
 - 2. Provide NEMA 3R for exterior area when not located in cabinetry.
- I. Include the following operating and monitoring devices mounted on the front cover:
 - 1. A disconnect switch or circuit breaker to de-energize the drive circuit with door interlocked handle and lock-open padlocking provisions.
 - 2. Operating mode selector switch marked "hand-off-auto".
 - 3. Manual speed adjustment via keypad, mounted on the door.

2.3 PERFORMANCE REQUIREMENTS

- A. Units shall be suitable for input power of electrical system as scheduled on the drawings $\pm 10\%$, 3 phase, 60 Hertz nominal.
- B. Use a current limiting control device to limit output current to 110% continuous for one minute; also refer to Protection Features in this section. Full load output current available from drive shall not be less than motor nameplate amperage. The full load amp rating of the VFD shall not be less than the values indicated in the NEC Table 430-150.

- C. Output power shall be suitable for driving standard NEMA B design, three phase alternating current induction motors at full rated speed with capability of 6:1 turndown.
- D. Additional performance capabilities to include the following:
 - 1. Ride through a momentary power outage of 15 cycles,
 - 2. Start into a rotating load without damage to drive components or motor,
 - 3. Capable of automatic restart into a rotating load after a preset, adjustable time delay following a power outage
 - 4. Input power factor: Min 0.95 throughout the speed range
 - 5. Minimum efficiency: 95% at 100% speed, 85% at 50% speed

2.4 CONTROL FEATURES

- A. Use control circuits compatible with input signal from temperature control system in the automatic mode and from manual speed control in the manual mode. Vary motor speed in response to the input control signal. Include components necessary to accept the signal from the temperature control system in the form that it is sent.
- B. Include the following additional control features:
 - 1. Hand-Off-Automatic (HOA) selector switch to select local or remote start/stop and speed control.
 - 2. Analog input, selectable 0-10v or 4-20 mA, for automatic control from the temperature control system.
 - 3. Local speed control at the VFD.
 - 4. Adjustable acceleration and deceleration rate so that the time period from start to full speed and from full speed to stop can be field adjusted.
 - 5. Adjustable minimum and maximum speed settings for both automatic and manual modes of operation.
 - 6. Field adjustment of minimum and maximum output frequency.
 - 7. Two (2) sets of programmable form "C" contacts for remote indication of variable frequency drive condition. Note: default programming to be set for "Drive Run & Fault".
 - 8. Illuminated display keypad.
 - 9. External Fault indicator.
 - 10. One (1) input for a N.O. dry contact type input for a 2-wire remote start/stop.
 - 11. One (1) input for a N.C. dry contact type input for external faults: (freezestats, fire alarm, smokes, etc.). This input shall be factory wired to prevent when external fault is present.
 - 12. One (1) N.O. dry contact output for proving motor status. This output shall be programmed to detect belt or coupling break that would remove the load from the motor. The dry contact will open on loss of load or VFD being off.
 - 13. PID control loop capable of VFD control from an external device connected to a VFD analog input.
- C. The VFD controller shall convert VFD information into the BACnet MSTP protocol that will be compatible with the building direct digital energy management system (EMS) supplied on the project. This output shall be through a serial interface port capable of two-way communication with the building EMS provided on this project. Final connection

shall not require any additional intermediate gateway devices to provide throughput of data. The following data shall be provided at a minimum:

- 1. Fault condition
- 2. Speed
- 3. Amperage
- 4. Frequency
- 5. Voltage

2.5 PROTECTION FEATURES

- A. Use electronic protection circuitry in the power circuits to provide an orderly shutdown of the drive without blowing fuses or tripping circuit breakers and prevent component loss under the following abnormal conditions:
 - 1. Activation of any safety device.
 - 2. Instantaneous overcurrent and/or over voltage of output.
 - 3. Power line overvoltage and undervoltage protection.
 - 4. Phase loss.
 - 5. Single and three phase short circuiting.
 - 6. Ground faults.
 - 7. Control circuit malfunction.
 - 8. Overtemperature.
 - 9. Output current over limit.
- B. Provide the following additional protective features:
 - 1. Input transient overvoltage protection up to 3000 volts per ANSI 37.90A.
 - 2. DC bus fusing or other electronic controls which limit the rate of rise of the DC bus current and de-energizes the drive at a predetermined current level.
 - 3. Fusing for the control circuit transformer.
 - 4. Grounded control chassis.
 - 5. Devices and/or control circuitry to ensure that the variable frequency drive energized and driving motor simultaneously.

2.6 DIAGNOSTICS

- A. Provide an English character display (no error codes) with indicators for the following:
 - 1. Phase loss
 - 2. Ground fault
 - 3. Overcurrent
 - 4. Overvoltage
 - 5. Undervoltage
 - 6. Over temperature
 - 7. Overload
 - 8. DC bus status
2.7 QUALITY ASSURANCE TESTS

- A. Use a factory heat stress test to verify proper operation of all functions and components under full load.
- B. Field performance test of variable frequency drives to determine compliance with this specification will be performed at the Owner's discretion and may include any specified feature, including operation of protective devices through a simulated fault. Contractor will pay for initial testing. Should drive be found deficient by this testing, drive manufacturer will be required to make any and all changes necessary to bring unit(s) into compliance with the specified performance and demonstrate this performance by retesting. Cost of changes and retest will be by this contractor.
- C. Variable frequency drive manufacturer or designated representative to perform a field test of each drive, in the presence of the Owner's representative, for the following items:
 - 1. Provide general inspection to verify proper installation.
 - 2. Demonstrate drive reaction to simulated power interruptions of two seconds and sixty seconds.

2.8 AC INPUT LINE REACTORS

- A. When needed to comply with the requirement for 5% equivalent impedance, furnish and factory install AC input line reactors.
- B. Line reactors shall be installed in each phase of the AC input side of the VFD and mounted within a common enclosure with the VFD.
- C. Line reactor shall be a three-phase inductor, iron core, 600V, Class H insulation, 239 deg F or 115 deg C rise, copper windings with screw type terminal blocks.

PART 3 - EXECUTION

3.1 VARIABLE FREQUENCY DRIVES

- A. Provide variable frequency drives with dual port Ethernet module as scheduled. Size drive to accommodate selected fans and sized for heavy duty application. Provide input AC line reactor as noted above. Coordinate with unit manufacturer listed in Sections 23 74 16.11 "Packaged, Small-capacity, Rooftop Air-conditioning Units" and Section and 23 74 23.13 "Packaged, Direct-fired, Outdoor, Heating-only Makeup-air Units."
- B. Install where indicated on drawings and in accordance with approved submittals and manufacturer's published recommendations. Installation to be by the Division 26 Electrical contractor.
- C. Input power wiring shall be installed in a separate conduit, output power wiring shall be installed in a separate conduit and control wiring shall be installed in a separate conduit. Do not mix input power, output power, or control wiring in a common conduit. Separate conduits for input and output power wiring shall be provided for each motor. Input and output power wiring for more than one motor shall not share a common conduit. Power

wiring shall be furnished and installed by the Div. 26 contractor. If provided, do not mount output line filter above the drive.

- D. Control signal for drive will be provided under Division 23.
- E. Temperature Control Contractor will furnish variable frequency drives and install the required temperature control wiring in metal conduit and in accordance with Division 26 of this specification.

3.2 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each VFD element, bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- C. Tests and Inspections:
 - 1. Inspect VFD, wiring, components, connections, and equipment installation.
 - 2. Test insulation resistance for each VFD element, component, connecting motor supply, feeder, and control circuits.
 - 3. Test continuity of each circuit.
 - 4. Verify that voltages at VFD locations are within 10 percent of motor nameplate rated voltages. If outside this range for any motor, notify Architect before starting the motor(s).
 - 5. Test each motor for proper phase rotation.
 - 6. Perform tests according to the Inspection and Test Procedures for Adjustable Speed Drives stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 7. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 - 8. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
- D. VFDs will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports, including a certified report that identifies the VFD and describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations made after remedial action.

3.3 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.

3.4 PROTECTION

- A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions until controllers are ready to be energized and placed into service.
- B. Replace VFDs whose interiors have been exposed to water or other liquids prior to Substantial Completion.

END OF SECTION 23 05 14

This page intentionally left blank.

SECTION 23 05 16 EXPANSION FITTINGS AND LOOPS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 PERFORMANCE REQUIREMENTS

- A. Compatibility: Products shall be suitable for piping service fluids, materials, working pressures, and temperatures.
- B. Capability: Products to absorb 200 percent of maximum axial movement between anchors.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Delegated-Design Submittal: For each anchor and alignment guide indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Design Calculations: Calculate requirements for thermal expansion of piping systems and for selecting and designing expansion joints, loops, and swing connections.
 - 2. Anchor Details: Detail fabrication of each anchor indicated. Show dimensions and methods of assembly and attachment to building structure.
 - 3. Alignment Guide Details: Detail field assembly and attachment to building structure.
 - 4. Schedule: Indicate type, manufacturer's number, size, material, pressure rating, end connections, and location for each flexible hose packless expansion joint.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance Data: For expansion joints to include in maintenance manuals.

1.5 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel."
 - 2. ASME Boiler and Pressure Vessel Code: Section IX.

PART 2 - PRODUCTS

2.1 PACKLESS EXPANSION JOINTS

- A. Flexible-Hose Packless Expansion Joints:
 - 1. Basis-of-Design Product: The design is based on the following:
 - a. Flex-Hose Co., Inc. (Tri-Flex Loop)
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Mason Industries, Inc.
 - b. Metraflex Company (The).
 - 3. Description: Manufactured assembly with inlet and outlet elbow fittings and two flexible-metal-hose legs joined by long-radius, 180-degree return bend or center section of flexible hose.
 - a. Product shall absorb and compensate multi-plane pipe movements.
 - b. Designed for pressure testing to 1.5 times their maximum rated working pressure and a minimum 4:1 (burst to working) safety factor.
 - c. Provide hanger assembly kit shall be used to support flexible hose.
 - d. Flexible pipe loop shall be capable for multi-plane movements (X, Y, and Z), plus rotation about those axes simultaneously as well as reduce piping stress.
 - 4. Flexible Hose: Corrugated-metal inner hoses and braided outer sheaths.
 - 5. Expansion Joints for Copper Tubing NPS 2 and Smaller: Copper-alloy fittings with solder-joint end connections.
 - a. Bronze hoses and single-braid bronze sheaths with 450 psig at 70 deg F and 340 psig at 450 deg F ratings.
 - 6. Expansion Joints for Steel Piping NPS 2-1/2 to NPS 6: Carbon-steel fittings with weld end connections.
 - a. Stainless-steel hoses and single-braid, stainless-steel sheaths with 200 psig at 70 deg F and 145 psig at 600 deg F ratings.

<u>2.2</u> <u>JOINTS</u>

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Anvil International, Inc.
 - 2. Victaulic Company.
- B. Description: Factory-assembled expansion joint made of several grooved-end pipe nipples, couplings, and grooved joints.
- C. Standard: AWWA C606, for grooved joints.
- D. Nipples: ASTM A 53/A 53M, Schedule 40, Type E or S, steel pipe with grooved ends.

E. Couplings: Seven, flexible type for steel-pipe dimensions. Include ferrous housing sections, EPDM gasket suitable for cold and hot water, and stainless steel bolts and nuts.

2.3 ALIGNMENT GUIDES AND ANCHORS

- A. Alignment Guides:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Adsco Manufacturing LLC.
 - b. Advanced Thermal Systems, Inc.
 - c. Hyspan Precision Products, Inc.
 - d. Mason Industries, Inc.
 - e. Metraflex Company (The).
 - 2. Description: Steel, factory-fabricated alignment guide, with bolted two-section outer cylinder and base for attaching to structure; with two-section guiding spider for bolting to pipe.
- B. Anchor Materials:
 - 1. Steel Shapes and Plates: ASTM A 36/A 36M.
 - 2. Bolts and Nuts: ASME B18.10 or ASTM A 183, steel hex head.
 - 3. Washers: ASTM F 844, steel, plain, flat washers.
 - 4. Mechanical Fasteners: Insert-wedge-type stud with expansion plug anchor for use in hardened portland cement concrete, with tension and shear capacities appropriate for application.
 - a. Stud: Threaded, zinc-coated carbon steel.
 - b. Expansion Plug: Zinc-coated steel.
 - c. Washer and Nut: Zinc-coated steel.
 - 5. Chemical Fasteners: Insert-type-stud, bonding-system anchor for use with hardened portland cement concrete, with tension and shear capacities appropriate for application.
 - a. Bonding Material: ASTM C 881/C 881M, Type IV, Grade 3, twocomponent epoxy resin suitable for surface temperature of hardened concrete where fastener is to be installed.
 - b. Stud: ASTM A 307, zinc-coated carbon steel with continuous thread on stud unless otherwise indicated.
 - c. Washer and Nut: Zinc-coated steel.

PART 3 - EXECUTION

3.1 EXPANSION-JOINT INSTALLATION

- A. Install expansion joints of sizes matching sizes of piping in which they are installed.
- B. Install flexible-hose packless pipe loop expansion joints per manufacturer's guidelines per delegated design submittal for anchors and guides installation requirements.
- C. Install grooved-joint expansion joints to grooved-end steel piping

3.2 PIPE LOOP AND SWING CONNECTION INSTALLATION

- A. Install pipe loops cold-sprung in tension or compression as required to partly absorb tension or compression produced during anticipated change in temperature.
- B. Connect risers and branch connections to mains with at least five pipe fittings including tee in main.
- C. Connect risers and branch connections to terminal units with at least four pipe fittings including tee in riser.
- D. Connect mains and branch connections to terminal units with at least four pipe fittings including tee in main.

3.3 ALIGNMENT-GUIDE AND ANCHOR INSTALLATION

- A. Install alignment guides to guide expansion and to avoid end-loading and torsional stress.
- B. Install one guide(s) on each side of pipe expansion fittings and loops. Install guides nearest to expansion joint not more than four pipe diameters from expansion joint.
- C. Attach guides to pipe and secure guides to building structure.
- D. Install anchors at locations to prevent stresses from exceeding those permitted by ASME B31.9 and to prevent transfer of loading and stresses to connected equipment.
- E. Anchor Attachments:
 - 1. Anchor Attachment to Steel Pipe: Attach by welding. Comply with ASME B31.9 and ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 - 2. Anchor Attachment to Copper Tubing: Attach with pipe hangers. Use MSS SP-69, Type 24, U-bolts bolted to anchor.
- F. Fabricate and install steel anchors by welding steel shapes, plates, and bars. Comply with ASME B31.9 and AWS D1.1/D1.1M.
 - 1. Anchor Attachment to Steel Structural Members: Attach by welding.
 - 2. Anchor Attachment to Concrete Structural Members: Attach by fasteners. Follow fastener manufacturer's written instructions.
- G. Use grout to form flat bearing surfaces for guides and anchors attached to concrete.

H. Number and spacing of guides shall be per pipe guide manufacturer's recommendations.

END OF SECTION 23 05 16

This page intentionally left blank.

SECTION 23 05 19 METERS AND GAGES FOR HVAC PIPING

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- 1.2 ACTION SUBMITTALS
- A. Product Data: For each type of product indicated.
- 1.3 CLOSEOUT SUBMITTALS
- A. Operation and Maintenance Data: For meters and gages to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 LIQUID-IN-GLASS THERMOMETERS

- A. Metal-Case, Industrial-Style, Liquid-in-Glass Thermometers:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Miljoco Corporation
 - b. Trerice, H. O. Co.
 - c. Weiss Instruments, Inc.
 - 2. Standard: ASME B40.200.
 - 3. Case: Cast aluminum; 9-inch nominal size unless otherwise indicated.
 - 4. Case Form: Adjustable angle unless otherwise indicated.
 - 5. Tube: Glass with magnifying lens and blue or red organic liquid.
 - 6. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F.
 - 7. Window: plastic.
 - 8. Stem: Aluminum and of length to suit installation.
 - a. Design for Air-Duct Installation: With ventilated shroud.
 - b. Design for Thermowell Installation: Bare stem.
 - 9. Connector: 1-1/4 inches, with ASME B1.1 screw threads.
 - 10. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

2.2 DUCT-THERMOMETER MOUNTING BRACKETS

- A. Description: Flanged bracket with screw holes, for attachment to air duct and made to hold thermometer stem.
- 2.3 THERMOWELLS
- A. Thermowells:
 - 1. Standard: ASME B40.200.
 - 2. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
 - 3. Material for Use with Copper Tubing: CNR or CUNI.
 - 4. Material for Use with Steel Piping: CRES.
 - 5. Type: Stepped shank unless straight or tapered shank is indicated.
 - 6. External Threads: NPS 1/2, NPS 3/4, or NPS 1, ASME B1.20.1 pipe threads.
 - 7. Internal Threads: 1/2, 3/4, and 1 inch, with ASME B1.1 screw threads.
 - 8. Bore: Diameter required to match thermometer bulb or stem.
 - 9. Insertion Length: Length required to match thermometer bulb or stem.
 - 10. Lagging Extension: Include on thermowells for insulated piping and tubing.
 - 11. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.
- B. Heat-Transfer Medium: Mixture of graphite and glycerin.
- 2.4 PRESSURE GAGES
- A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. AMETEK, Inc.; U.S. Gauge.
 - b. Ashcroft Inc.
 - c. Miljoco Corporation.
 - d. Trerice, H. O. Co.
 - e. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
 - f. Weiss Instruments, Inc.
 - 2. Standard: ASME B40.100.
 - 3. Case: Sealed type(s); cast aluminum or drawn steel; 4-1/2-inch nominal diameter.
 - 4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
 - 5. Pressure Connection: Brass, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
 - 6. Movement: Mechanical, with link to pressure element and connection to pointer.
 - 7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi.
 - 8. Pointer: Dark-colored metal.
 - 9. Window: Plastic.

- 10. Ring: Stainless steel.
- 11. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.

2.5 GAGE ATTACHMENTS

A. Valves: Brass or stainless-steel needle, with NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe threads.

2.6 TEST PLUGS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Flow Design, Inc.
 - 2. Miljoco Corporation.
 - 3. National Meter, Inc.
 - 4. Peterson Equipment Co., Inc.
 - 5. Sisco Manufacturing Company, Inc.
 - 6. Trerice, H. O. Co.
 - 7. Watts Regulator Co.; a div. of Watts Water Technologies, Inc.
 - 8. Weiss Instruments, Inc.
- B. Description: Test-station fitting made for insertion into piping tee fitting.
- C. Body: Brass or stainless steel with core inserts and gasketed and threaded cap. Include extended stem on units to be installed in insulated piping.
- D. Thread Size: NPS 1/4 or NPS 1/2, ASME B1.20.1 pipe thread.
- E. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F.
- F. Core Inserts: Chlorosulfonated polyethylene synthetic and EPDM self-sealing rubber.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install thermowells with socket extending to center of pipe and in vertical position in piping tees.
- B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.
- C. Install thermowells with extension on insulated piping.
- D. Fill thermowells with heat-transfer medium.
- E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.

- F. Install remote-mounted thermometer bulbs in thermowells and install cases on panels; connect cases with tubing and support tubing to prevent kinks. Use minimum tubing length.
- G. Install duct-thermometer mounting brackets in walls of ducts. Attach to duct with screws.
- H. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.
- I. Install test plugs in piping tees.
- J. Install thermometers in the following locations:
 - 1. Inlet and outlet of each hydronic zone.
 - 2. Inlet and outlet of each hydronic boiler.
 - 3. Inlet and outlet of each hydronic coil in air-handling units.
- K. Install pressure gages in the following locations:
 - 1. Discharge of each pressure-reducing valve.
 - 2. Suction and discharge of each pump.
 - 3. Before and after gas service regulators.
- 3.2 CONNECTIONS
- A. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.
- 3.3 ADJUSTING
- A. After installation, calibrate meters according to manufacturer's written instructions.
- B. Adjust faces of meters and gages to proper angle for best visibility.

3.4 THERMOMETER SCALE-RANGE SCHEDULE

- A. Scale Range for Heating, Hot-Water Piping: 30 to 240 deg F.
- 3.5 PRESSURE-GAGE SCALE-RANGE SCHEDULE
- A. Scale Range for Heating, Hot-Water Piping: 0 to 100 psi.
- B. Scale Range for Medium Pressure Natural Gas: 0-10 psi for upstream of GPRV.
- C. Scale Range for Low Pressure Natural Gas: 0-30" WC for downstream of GPRV.

END OF SECTION 23 05 19

SECTION 23 05 23 GENERAL-DUTY VALVES FOR HVAC PIPING

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- 1.2 DEFINITIONS
- A. CWP: Cold working pressure.
- B. EPDM: Ethylene propylene diene monomer (EPDM) is a copolymer of ethylene.
- C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.
- D. NRS: Nonrising stem.
- E. OS&Y: Outside screw and yoke.
- F. RS: Rising stem.
- G. SWP: Steam working pressure.
- 1.3 ACTION SUBMITTALS
- A. Product Data: For each type of valve indicated.
- 1.4 QUALITY ASSURANCE
- A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
- B. ASME Compliance:
 - 1. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
 - 2. ASME B31.1 for power piping valves.
 - 3. ASME B31.9 for building services piping valves.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Prepare valves for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set ball valves open to minimize exposure of functional surfaces.
 - 4. Set flanged ball valves closed or slightly open.
 - 5. Block check valves in either closed or open position.

- B. Use the following precautions during storage:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher than ambient dew point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

- A. Water System Valves
 - 1. All water system valves to be rated at not less than 125 psig. water working pressure at 240°F unless noted otherwise.
- B. Valve Pressure and Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- C. Valve Sizes: Same as upstream piping unless otherwise indicated.
- D. Valve Actuator Types:
 - 1. Handlever: For quarter-turn valves NPS 5 and smaller.
- E. Valves in Insulated Piping: With 2-inch stem extensions and the following features:
 - 1. Ball Valves: With extended operating handle of non-thermal-conductive material, and protective sleeve that allows operation of valve without breaking the vapor seal or disturbing insulation.
 - 2. Flanged Ball Valves: With extended neck.
- F. Valve-End Connections:
 - 1. Flanged: With flanges according to ASME B16.1 for iron valves.
 - 2. Grooved: With grooves according to AWWA C606.
 - 3. Threaded: With threads according to ASME B1.20.1.
- G. Valve Bypass and Drain Connections: MSS SP-45.
- H. The manufacturer's name and valve pressure rating shall appear on the outside of the valve body.
- 2.2 BRONZE BALL VALVES
- A. 2" and smaller: Two-piece bronze body; threaded or soldered ends, as appropriate to the pipe material; stainless steel or chrome plated brass/bronze ball; conventional port; glass filled Teflon seat; threaded packing gland follower; blowout-proof stem; 600 psig WOG.

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo 70-100/200 series
 - b. Hammond 8301/8311
 - c. Milwaukee BA100/150
 - d. Nibco T/S 585-70
 - e. Stockham S206/216.
- 2. Description:
 - a. Standard: MSS SP-110.
 - b. SWP Rating: 150 psig.
 - c. CWP Rating: 600 psig.
 - d. Body Design: Two piece.
 - e. Body Material: Bronze.
 - f. Ends: Threaded.
 - g. Seats: PTFE or TFE.
 - h. Stem: Bronze.
 - i. Ball: Chrome-plated brass.
 - j. Port: Full.
- 3. 2¹/₂" and over: Ball valves will not be accepted in sizes over 2 inch.

2.3 IRON, SINGLE-FLANGE BALL VALVES

- A. 2" and smaller: Use ball valves; butterfly or gate valves will not be accepted in sizes 2 inch and smaller.
- B. 2¹/₂" and larger: Use American Valve ball valves for flanged connections. Butterfly or gate valves will not be accepted in sizes 2¹/₂" inch and larger.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide the following as City of Madison's preferred ball valve manufacturer supplier for 2¹/₂" and larger.
 - a. American Valve: 4000 Flanged ball valve.
 - 2. Ductile cast iron body; stainless steel shaft; flanged ball valve with Cast Iron/PFA fused ball, blow-out proof stem, full port with lockable in full open or closed positions lockable in full open or closed positions. Rated for 150 WSP 300 WOG.
 - 3. Description:
 - a. Standard: MSS SP-72.
 - b. CWP Rating: 200 psig
 - c. Body Design: Split body.
 - d. Body Material: ASTM A 126, gray iron.
 - e. Ends: Flanged.
 - f. Seats: PTFE or TFE.
 - g. Stem: Stainless steel.

- h. Ball: Stainless steel.
- i. Port: Full.

2.4 BRONZE SWING CHECK VALVES

- A. Class 125, Bronze Swing Check Valves with Nonmetallic Disc:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Jenkins Valves.
 - c. Crane Co.; Crane Valve Group; Stockham Division.
 - d. Hammond Valve.
 - e. Milwaukee Valve Company.
 - f. NIBCO INC.
 - g. Red-White Valve Corporation.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 4.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Horizontal flow.
 - d. Body Material: ASTM B 62, bronze.
 - e. Ends: Threaded.
 - f. Disc: PTFE or TFE.

2.5 IRON SWING CHECK VALVES

- A. Class 125, Iron Swing Check Valves with Metal Seats:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Jenkins Valves.
 - c. Crane Co.; Crane Valve Group; Stockham Division.
 - d. Hammond Valve.
 - e. Milwaukee Valve Company.
 - f. NIBCO INC.
 - g. Red-White Valve Corporation.
 - 2. Description:
 - a. Standard: MSS SP-71, Type I.
 - b. NPS 2-1/2 to NPS 12, CWP Rating: 200 psig.
 - c. Body Design: Clear or full waterway.
 - d. Body Material: ASTM A 126, gray iron with bolted bonnet.
 - e. Ends: Flanged.
 - f. Trim: Bronze.
 - g. Gasket: Asbestos free.

2.6 IRON, CENTER-GUIDED CHECK VALVES

- A. Class 125, Iron, Compact-Wafer, Center-Guided Check Valves with Metal Seat:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Hammond Valve.
 - b. Metraflex, Inc.
 - c. Milwaukee Valve Company.
 - d. Mueller Steam Specialty; a division of SPX Corporation.
 - e. NIBCO INC.
 - f. Spence Strainers International; a division of CIRCOR International.
 - 2. Description:
 - a. Standard: MSS SP-125.
 - b. NPS 2-1/2 to NPS 12
 - c. CWP Rating: 200 psig.
 - d. Body Material: ASTM A 126, gray iron.
 - e. Style: Compact wafer.
 - f. Seat: Bronze.

2.7 GLOBE VALVE

A. Do not use globe valves for water service, except in temperature control applications.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- C. Examine threads on valve and mating pipe for form and cleanliness.
- D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

- B. Locate valves for easy access and provide separate support where necessary.
- C. Install valves in horizontal piping with stem at or above center of pipe.
- D. Install valves in position to allow full stem movement.
- E. Install check valves for proper direction of flow and as follows:
 - 1. Swing Check Valves: In horizontal position with hinge pin level.
 - 2. Center-Guided Check Valves: In horizontal or vertical position, between flanges.
- F. Install shutoff valves in all branch lines at or near header and at each automatic valve location.
- G. Vents and Drains: All required vents and drains may not be shown on the Contract Drawings. Install 3/4-inch nominal size vent and drain valves in piping systems 1-inch and larger. Install line size vent and drain valves in piping systems 3/4 inch and smaller. Locate vents at high points of each line and/or branch connection. Locate drains at low points. Use piping materials specified for each service. Cap all vents and drains.
 - 1. Use ball valve with threaded hose adapter and chained cap. Strainer blowdown valves shall be same size as strainer blowdown connection.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. If valve applications are not indicated, use the following:
 - 1. Shutoff Service: Ball, butterfly, or gate valves.
 - 2. Flanged Ball Valve Dead-End Service: Single-flange (lug) type.
 - 3. Pump-Discharge Check Valves:
 - a. NPS 2 and Smaller: Bronze swing check valves with nonmetallic disc.
 - b. NPS 2-1/2 and Larger: iron, center-guided, seat check valves.
- B. If valves with specified SWP classes or CWP ratings are not available, the same types of valves with higher SWP classes or CWP ratings may be substituted.
- C. See drawing valve schedule for valve application requirements.
- D. Select valves, except wafer types, with the following end connections:
 - 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solderjoint valve-end option is indicated.
 - 2. For Steel Piping, NPS 2 and Smaller: Threaded ends.
 - 3. For Steel Piping, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.

4. For Steel Piping, NPS 5 and Larger: Flanged ends.

END OF SECTION 23 05 23

This page intentionally left blank.

SECTION 23 05 29 HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

1.3 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
- B. Structural Performance: Hangers and supports for HVAC piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.
 - 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 - 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

1.4 ACTION SUBMITTALS

- A. Product Data: None.
- B. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Detail fabrication and assembly of trapeze hangers.
 - 2. Design Calculations: Calculate requirements for designing trapeze hangers.

1.5 QUALITY ASSURANCE

- A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 - 3. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 METAL FRAMING SYSTEMS

- A. MFMA Manufacturer Metal Framing Systems:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Allied Tube & Conduit.
 - b. Cooper B-Line, Inc.
 - c. Flex-Strut Inc.
 - d. GS Metals Corp.
 - e. Thomas & Betts Corporation.
 - f. Unistrut Corporation; Tyco International, Ltd.
 - g. Wesanco, Inc.
 - 2. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.
 - 3. Standard: MFMA-4.
 - 4. Channels: Continuous slotted steel channel with inturned lips.
 - 5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
 - 6. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.
 - 7. Metallic Coating: Hot-dipped galvanized.

2.4 THERMAL-HANGER SHIELD INSERTS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Carpenter & Paterson, Inc.
 - 2. Clement Support Services.
 - 3. ERICO International Corporation.
 - 4. National Pipe Hanger Corporation.

- 5. PHS Industries, Inc.
- 6. Pipe Shields, Inc.; a subsidiary of Piping Technology & Products, Inc.
- 7. Piping Technology & Products, Inc.
- 8. Rilco Manufacturing Co., Inc.
- 9. Value Engineered Products, Inc.
- B. Insulation-Insert Material for Hot Piping: Water-repellent treated, ASTM C 533, Type I calcium silicate with 100-psig ASTM C 552, Type II cellular glass with 100-psig or ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength.
- C. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- D. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- E. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.5 FASTENER SYSTEMS

- A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
- B. Mechanical-Expansion Anchors: Insert-wedge-type, stainless- steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.6 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.7 CORROSIVE ATMOSPHERE COATINGS

- A. Factory coat supports and anchors used in corrosive atmospheres with hot dip galvanizing after fabrication, ASTM A123, 1.5 ounces/square foot of surface, each side. Mechanical galvanize threaded products, ASTM B695 Class 150, 2.0 mil coating. Field cuts and damaged finishes to be field covered with zinc rich paint of comparable thickness to factory coating.
- B. Corrosive atmospheres include the following locations:
 - 1. Exterior Locations.
 - 2. Mechanical Shop/Work Areas.
 - 3. Vehicle Service Bays.
 - 4. Maintenance Repair Areas.

2.8 ROOF CURBS

- A. Galvanized steel; mitered and welded corners; 1½-inch- thick, rigid, fiberglass insulation adhered to inside walls; and 1½-inch wood nailer. Size as required to suit roof opening and fan base.
 - 1. Overall Height: 18 inches.
 - 2. Sound Curb: Curb with sound-absorbing insulation.
 - 3. Pitch Mounting: Manufacture curb for roof slope.
 - 4. Metal Liner: Galvanized steel.

2.9 MISCELLANEOUS MATERIALS

- A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

- A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 - 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
- C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.
- D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
- E. Fastener System Installation:
 - 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer.

Install fasteners according to powder-actuated tool manufacturer's operating manual.

- 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- F. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- G. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- H. Install hangers and supports to allow controlled thermal movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- I. Install lateral bracing with pipe hangers and supports to prevent swaying.
- J. Install building attachments within existing concrete slabs or attach to existing structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- K. Install building attachments within existing precast concrete planks or attach to existing structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Coordinate with existing precast structure for existing steel plate inserts in existing precast (hollowcore) planks construction.
- L. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- M. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
- N. Insulated Piping:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 - 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weightdistribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

- 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - a. Option: Thermal-hanger shield inserts may be used. Include steel weightdistribution plate for pipe NPS 4 and larger if pipe is installed on rollers.
- 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 - b. NPS 4: 12 inches long and 0.06 inch thick.
 - c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
- 5. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 PIPE PENETRATIONS THROUGH ROOF

- A. Multiple Pipe Penetrations: Refer to acceptable Equipment Curb types listed above for curb specifications. An 18" high (minimum) curb height is required. The coping cap shall be constructed from laminated acrylic clad thermoplastic (ABS) with graduated step boots to accommodate various size pipes, stainless steel fastening screws for cover, stainless steel band clamps for securing boots around the pipe, and stainless-steel band clamp or mechanical locking seal for securing boots around the ABS coping cap flanges.
- B. Single Pipe Penetrations: A stack flashing penetration may be utilized for single pipe penetrations through built up roofs and single ply membrane roofs.
- C. A single pre-manufactured boot may be utilized for single pipe penetrations through single ply membrane roofs only.

3.4 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:

- 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
- 2. Obtain fusion without undercut or overlap.
- 3. Remove welding flux immediately.
- 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.5 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.6 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
- B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 09.
- C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.7 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use carbon-steel pipe hangers and supports metal trapeze pipe hangers and metal framing systems and attachments for general service applications.
- F. Use thermal-hanger shield inserts for insulated piping and tubing.
- G. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.

- 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
- 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
- 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
- 5. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
- 6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8.
- 7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
- 8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
- 9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
- 10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.
- 11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
- 12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
- 13. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
- 14. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.
- H. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
 - 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
 - 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
- I. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with barjoist construction, to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.

- 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
- 6. C-Clamps (MSS Type 23): For structural shapes.
- 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
- 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
- 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
- 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
- 11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
- 12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb.
 - b. Medium (MSS Type 32): 1500 lb.
 - c. Heavy (MSS Type 33): 3000 lb.
- 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
- 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
- 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.
- J. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- K. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.
- L. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.
- M. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

END OF SECTION 23 05 29

This page intentionally left blank.

SECTION 23 05 48.13 VIBRATION CONTROLS FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- 1.2 ACTION SUBMITTALS
- A. Product Data: For each type of product.
 - 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.
 - 2. Illustrate and indicate style, material, strength, fastening provision, and finish for each type and size of vibration isolation device type required.
- B. Shop Drawings:
 - 1. Detail fabrication and assembly of equipment bases. Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
 - 2. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
- C. Delegated-Design Submittal: For each vibration isolation device.
 - 1. Include design calculations for selecting vibration isolators and for designing vibration isolation bases.

1.3 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

1.4 VIBRATION CONTROL DESIGN CRITERIA

- A. Isolate all motor driven and reciprocating mechanical equipment unless otherwise noted, from building structure, and from systems which they serve, to prevent equipment vibrations from being transmitted to structure. Unless specifically indicated, follow ASHRAE Application Handbook - Sound and Vibration Control, latest edition or manufacturer's recommendations for isolation selection.
- B. Select and locate isolators to produce uniform loading and deflection. Use minimum of four isolators to support each piece of equipment.
- C. Select vibration isolation devices based on lowest operating speed.

- D. Vibration Criteria:
 - 1. All rotating equipment shall operate at speeds less than 80% of their true critical speed. Unless otherwise required, equipment shall be balanced according to the recommendations given in the following schedules.
 - 2. Vertical vibration of rotating equipment shall not be greater than levels indicated. Vibration shall be measured on equipment or steel-frame equipment base when equipment is mounted on its vibration isolation mounts. If equipment has inertia base, allowable vibration level is reduced by ratio of equipment weight alone to equipment weight plus inertia base weight.

	Maximum Allowable
Equipment Speed	Vibration Displacement
RPM	Peak-to-Peak (mil)
Under 600	4
600 to 1000	3
1000 or 2000	2
over 2000	1

- 3. Following field installation, each fan over 5 HP shall be balanced in accordance with the following schedule:
 - a. Centrifugal fans 25 mil/sec, rms
- 4. Final in-field balance shall be measured with each fan over 5 HP installed on springs specified for unit. Fans shall be loaded with design static pressure. Measurement shall be carried out in vertical axis at each corner of frame supporting fan/motor assembly.

PART 2 - PRODUCTS

2.1 ELASTOMERIC ISOLATION PADS

- A. Elastomeric Isolation Pads:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Kinetics Noise Control, Inc.
 - b. Mason Industries, Inc.
 - c. Vibration Eliminator Co., Inc.
 - d. Vibration Isolation.
 - e. Vibration Mountings & Controls, Inc.
 - 2. Fabrication: Single or multiple layers of sufficient durometer stiffness for uniform loading over pad area.
 - 3. Size: Factory or field cut to match requirements of supported equipment.
 - 4. Pad Material: Oil and water resistant with elastomeric properties.
 - 5. Surface Pattern: Ribbed or Waffle pattern.
 - 6. Infused nonwoven cotton or synthetic fibers.

7. Load-bearing metal plates adhered to pads.

2.2 ELASTOMERIC ISOLATION MOUNTS

- A. Double-Deflection, Elastomeric Isolation Mounts:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Kinetics Noise Control, Inc.
 - b. Mason Industries, Inc.
 - c. Vibration Eliminator Co., Inc.
 - d. Vibration Isolation.
 - e. Vibration Mountings & Controls, Inc.
 - 2. Mounting Plates:
 - a. Top Plate: Encapsulated steel load transfer top plates, factory drilled and threaded with threaded studs or bolts.
 - b. Baseplate: Encapsulated steel bottom plates with holes provided for anchoring to support structure.
 - 3. Elastomeric Material: Molded, oil-resistant rubber, neoprene, or other elastomeric material.

2.3 OPEN-SPRING ISOLATORS

- A. Freestanding, Laterally Stable, Open-Spring Isolators:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Kinetics Noise Control, Inc.
 - b. Mason Industries, Inc.
 - c. Vibration Eliminator Co., Inc.
 - d. Vibration Isolation.
 - e. Vibration Mountings & Controls, Inc.
 - 2. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 6. Baseplates: Factory-drilled steel plate for bolting to structure with an elastomeric isolator pad attached to the underside. Baseplates shall limit floor load to 500 psig.
 - 7. Top Plate and Adjustment Bolt: Threaded top plate with adjustment bolt and cap screw to fasten and level equipment.

2.4 ELASTOMERIC HANGERS

- A. Elastomeric Mount in a Steel Frame with Upper and Lower Steel Hanger Rods: Retain "Manufacturers" Subparagraph and list of manufacturers below to require products from manufacturers listed or a comparable product from other manufacturers.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Kinetics Noise Control, Inc.
 - b. Mason Industries, Inc.
 - c. Vibration Eliminator Co., Inc.
 - d. Vibration Isolation.
 - e. Vibration Mountings & Controls, Inc.
 - 2. Frame: Steel, fabricated with a connection for an upper threaded hanger rod and an opening on the underside to allow for a maximum of 30 degrees of angular lower hanger-rod misalignment without binding or reducing isolation efficiency.
 - 3. Dampening Element: Molded, oil-resistant rubber, neoprene, or other elastomeric material with a projecting bushing for the underside opening preventing steel to steel contact.

2.5 SPRING HANGERS

- A. Combination Coil-Spring and Elastomeric-Insert Hanger with Spring and Insert in Compression:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Kinetics Noise Control, Inc.
 - b. Mason Industries, Inc.
 - c. Vibration Eliminator Co., Inc.
 - d. Vibration Isolation.
 - e. Vibration Mountings & Controls, Inc.
 - 2. Frame: Steel, fabricated for connection to threaded hanger rods and to allow for a maximum of 30 degrees of angular hanger-rod misalignment without binding or reducing isolation efficiency.
 - 3. Outside Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 4. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 5. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 6. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 7. Elastomeric Element: Molded, oil-resistant rubber or neoprene. Steel-washerreinforced cup to support spring and bushing projecting through bottom of frame.
 - 8. Adjustable Vertical Stop: Steel washer with neoprene washer "up-stop" on lower threaded rod.
9. Self-centering hanger rod cap to ensure concentricity between hanger rod and support spring coil.

2.6 VIBRATION ISOLATION EQUIPMENT BASES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. California Dynamics Corporation.
 - 2. Kinetics Noise Control.
 - 3. Mason Industries, Inc.
 - 4. Vibration Eliminator Co., Inc.
 - 5. Vibration Isolation.
 - 6. Vibration Mountings & Controls, Inc.
- B. Steel Rails: Factory-fabricated, welded, structural-steel rails.
 - 1. Design Requirements: Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide rails.
 - a. Include supports for suction and discharge elbows for pumps.
 - 2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A 36/A 36M. Rails shall have shape to accommodate supported equipment.
 - 3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.
- C. Steel Bases: Factory-fabricated, welded, structural-steel bases and rails.
 - 1. Design Requirements: Lowest possible mounting height with not less than 1-inch clearance above the floor. Include equipment anchor bolts and auxiliary motor slide bases or rails.
 - a. Include supports for suction and discharge elbows for pumps.
 - 2. Structural Steel: Steel shapes, plates, and bars complying with ASTM A 36/A 36M. Bases shall have shape to accommodate supported equipment.
 - 3. Support Brackets: Factory-welded steel brackets on frame for outrigger isolation mountings and to provide for anchor bolts and equipment support.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and equipment to receive vibration isolation control devices for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 VIBRATION CONTROL DEVICE INSTALLATION

- A. Installation of vibration isolators must not cause any change of position of equipment, piping, or ductwork resulting in stresses or misalignment.
- B. Install vibration isolation devices for motor driven equipment in accordance with the manufacturer's installation instructions.
- C. Do not allow installation practices to short circuit any isolation device.

3.3 CORROSIVE ATMOSPHERE AREAS

- A. Factory coat supports and anchors used in corrosive atmospheres with hot dip galvanizing after fabrication, ASTM A123, 1.5 ounces/square foot of surface, each side. Mechanical galvanize threaded products, ASTM B695 Class 150, 2.0 mil coating. Field cuts and damaged finishes to be field covered with zinc rich paint of comparable thickness to factory coating.
- B. Corrosive atmospheres include the following locations:
 - 1. Exterior Locations
 - 2. Mechanical Shop/Work Areas
 - 3. Vehicle Service Bays
 - 4. Maintenance Repair Areas

END OF SECTION 23 05 48.13

SECTION 23 05 53 IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- 1.2 ACTION SUBMITTALS
- A. Product Data: None.
- 1.3 COORDINATION
- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

- A. Plastic Labels for Equipment:
 - 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16-inch thick, and having predrilled holes for attachment hardware.
 - 2. Letter Color: White.
 - 3. Background Color: Black.
 - 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
 - 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 - 6. Minimum Letter Size: 1/4-inch for name of units if viewing distance is less than 24-inches, 1/2-inch for viewing distances up to 72-inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 7. Fasteners: Stainless-steel rivets or self-tapping screws.
 - 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.

2.2 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
- C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
- D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings, pipe size, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions, or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 inches high.

2.3 DUCT LABELS

- A. Self-adhesive duct labels.
- B. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- C. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- D. Minimum Letter Size: 2-inch for name of units if viewing distance is less than 24-inches, 4-inch for viewing distances up to 72- inches, and proportionately larger lettering for greater viewing distances.
- E. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- F. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings; also include duct size and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions or as separate unit on each duct label to indicate flow direction.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.

3.3 PIPE LABEL INSTALLATION

- A. Piping Color-Coding: Painting of piping is specified in Division 09.
- B. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.
- C. Pipe Label Color Schedule:
 - 1. Natural Gas: Yellow background color with black letters.
 - 2. Hot Water Piping: Red background color with white letters.
 - 3. Refrigeration Piping: White background color with black letters.

3.4 DUCT LABEL INSTALLATION

- A. Install self-adhesive duct labels with permanent adhesive on air ducts in the following color codes:
 - 1. Blue: For cold-air for supply ducts.
 - 2. RED: For hot-air for exhaust and relief ducts.
 - 3. Green: For outside air ducts.
- B. Locate labels near points where ducts enter into and exit from concealed spaces and at maximum intervals of 25 feet in each space where ducts are exposed or concealed by removable ceiling system.

END OF SECTION 23 05 53

This page intentionally left blank.

SECTION 23 05 66 AIRBORNE DISINFECTION SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- 1.2 ACTION SUBMITTALS
- A. Product Data: For each type of product indicated, include the following:
 - 1. Data Sheet: Indicate materials of construction, finish, unit frames, dimensions, and mounting details; and performance data.

PART 2 - PRODUCTS

2.1 NEEDLE POINT BIPOLOAR IONIZATION SYSTEMS (BPI)

- A. Manufacturers:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. GPS.
 - 2. Devices shall be specifically designed for variable-air-volume flows.
 - 3. BPI shall be self-cleaning.
 - 4. Voltage: 120v.

2.2 ACCESSORIES

- 1. Provide manufacturer's accessories products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Fan mounting adaptors.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas where sensors are to be installed for compliance with manufacturer's requirements for installation tolerances and other conditions affecting performance of equipment.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install sensors at fan inlet and plumb.
- B. Provide a minimum 10'0" long electrical wip (plenum rated cable with armor-flex shroud for BPI.
- C. Division 26 shall provide a electrical junction box within 6'-0" of each BPI.

3.3 ADJUSTING

A. After installation, adjust sensors per manufacturer's requirements or as directed, before startup of equipment.

END OF SECTION 23 05 66

SECTION 23 05 93 TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 DEFINITIONS

- A. AABC: Associated Air Balance Council.
- B. NEBB: National Environmental Balancing Bureau.
- C. TAB: Testing, adjusting, and balancing.
- D. TABB: Testing, Adjusting, and Balancing Bureau.
- E. TAB Specialist: An entity engaged to perform TAB Work.

1.3 INFORMATIONAL SUBMITTALS

- A. Qualification Data: Within 30 days of Contractor's Notice to Proceed, submit documentation that the TAB contractor and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article.
- B. Certified TAB reports.
- 1.4 QUALITY ASSURANCE
- A. TAB Contractor Qualifications: Engage a TAB entity certified by AABC NEBB or TABB.
 - 1. TAB Field Supervisor: Employee of the TAB contractor and certified by AABC NEBB or TABB.
 - 2. TAB Technician: Employee of the TAB contractor and who is certified by AABC NEBB or TABB as a TAB technician.
- B. Certify TAB field data reports and perform the following:
 - 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports.
 - 2. Certify that the TAB team complied with the approved TAB plan and the procedures specified and referenced in this Specification.
- C. TAB Report Forms: Use standard TAB contractor's forms approved by Architect.
- D. Instrumentation Type, Quantity, Accuracy, and Calibration: As described in ASHRAE 111, Section 5, "Instrumentation."

1.5 PROJECT CONDITIONS

A. Partial Owner Occupancy: Owner may occupy completed areas of building before Substantial Completion. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations.

1.6 COORDINATION

- A. Notice: Provide seven days' advance notice for each test. Include scheduled test dates and times.
- B. Perform TAB after leakage and pressure tests on air and water distribution systems have been satisfactorily completed.

1.7 PRE-INSTALLATION MEETING AND SCHEDULING

A. The test and balance agency is required to attend a pre-installation meeting with all other project contractors before the construction process is started. The test and balance agency shall give the Mechanical Contractor a detailed schedule of testing and balancing tasks for incorporation into the project schedule.

1.8 PRE-BALANCE CONFERENCE

A. 90 days prior to beginning testing, adjusting, and balancing, schedule and conduct a conference with the Architect/Engineer, Owner's Project Representative and the mechanical system and temperature control system installing Contractors. Provide AE and Commissioning Provider (CxP) with a complete copy of the TAB plan for the project. The objective is final coordination and verification of system operation and readiness for testing, adjusting and balancing procedures and scheduling procedures with the above-mentioned parties. Indicate work required to be completed prior to testing, adjusting, and balancing and identify the party responsible for completion of that work.

1.9 EXISTING EQUIPMENT

- A. For Metro's existing rooftop units shall be tested, adjusted, and balanced for this project. Refer to the procedures below for testing equipment. Contractor to conduct readings for unit's components static profiles and air balancing for existing rooftop units.
- B. Previous air balancing occurred in December 2020 for rooftop mechanical equipment replacement project. Previous TAB report can be made available by Owner's Project Representative. Below is TAB certified contractor.
 - 1. Environmental System Analysis, Inc. (ESA)
 - a. 4262 Argosy Ct, Madison, WI 53714 608-221-8817
 - b. www.esa-wi.com/
- C. List of existing rooftop units as follows:
 - 1. MAU-4(E) (ETR).
 - 2. MAU-5(E) (ETR).

- 3. MAU-8(E) (ETR).
- D. Contractor to rebalance all space diffusers/registers/exhaust grilles and balance new air terminals to the drawing/schedules for new HVAC equipment and existing make-up air units listed above.
 - 1. Air terminals to the drawings/schedules.
 - 2. Refer item 3.4 below for procedures.
- E. List of existing hydronic secondary pumps as follows:
 - 1. P-7(E) (ETR).
 - 2. P-8(E) (ETR).
- F. Contractor to rebalance all flowrates for new and existing heating terminal units to the drawing/schedules associated with hydronic pumps listed above.
 - 1. Heating terminals to the drawings/schedules.
 - 2. Refer item 3.7 below for procedures.
- G. Any known deficiencies found by the test and balance agency shall be report to Architect/Engineer. Once corrective work is completed, TAB contractor shall retest mechanical systems, equipment, and devices.

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

- 3.1 EXAMINATION
- A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment.
- B. Examine systems for installed balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are accessible.
- C. Examine the approved submittals for HVAC systems and equipment.
- D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls.
- E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they meet the leakage class of connected ducts as specified in Section 23 31 13 "Metal Ducts" and are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.

- F. Examine equipment performance data including fan and pump curves.
 - 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
 - 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems Duct Design." Compare results with the design data and installed conditions.
- G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.
- H. Examine test reports specified in individual system and equipment Sections.
- I. Examine HVAC equipment and filters and verify that bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation.
- J. Examine terminal units, such as variable-air-volume boxes, and verify that they are accessible, and their controls are connected and functioning.
- K. Examine strainers. Verify that startup screens are replaced by permanent screens with indicated perforations.
- L. Examine three-way valves for proper installation for their intended function of diverting or mixing fluid flows.
- M. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
- N. Examine system pumps to ensure absence of entrained air in the suction piping.
- O. Examine operating safety interlocks and controls on HVAC equipment.
- P. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.
- 3.2 PREPARATION
- A. Prepare a TAB plan that includes strategies and step-by-step procedures.
- B. Complete system-readiness checks and prepare reports. Verify the following:
 - 1. Permanent electrical-power wiring is complete.
 - 2. Hydronic systems are filled, clean, and free of air.
 - 3. Automatic temperature-control systems are operational.
 - 4. Equipment and duct access doors are securely closed.
 - 5. Balance and fire dampers are open.
 - 6. Isolating and balancing valves are open and control valves are operational.

- 7. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided.
- 8. Windows and doors can be closed so indicated conditions for system operations can be met.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Total System Balance" NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems" and in this Section.
 - 1. Comply with requirements in ASHRAE 62.1, Section 7.2.2 "Air Balancing."
- B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
 - 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
 - 2. After testing and balancing, install test ports and duct access doors that comply with requirements in Section 23 33 00 "Air Duct Accessories."
 - Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 23 07 13 "Duct Insulation," Section 23 07 16 "HVAC Equipment Insulation," and Section 23 07 19 "HVAC Piping Insulation."
- C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.
- D. Take and report testing and balancing measurements in inch-pound (IP) units.

<u>3.4</u> <u>GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS</u>

- A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes.
- B. For variable-air-volume systems, develop a plan to simulate diversity.
- C. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.
- D. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.
- E. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- F. Verify that motor starters are equipped with properly sized thermal protection.
- G. Check dampers for proper position to achieve desired airflow path.

- H. Check for airflow blockages.
- I. Check condensate drains for proper connections and functioning.
- J. Check for proper sealing of air-handling-unit components.
- K. Verify that air duct system is sealed as specified in Section 23 31 13 "Metal Ducts."

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS

- A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 - 1. Measure total airflow.
 - a. Where sufficient space in ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow.
 - 2. Measure fan static pressures as follows to determine actual static pressure:
 - a. Measure outlet static pressure as far downstream from the fan as practical and upstream from restrictions in ducts such as elbows and transitions.
 - b. Measure static pressure directly at the fan outlet or through the flexible connection.
 - c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from the flexible connection, and downstream from duct restrictions.
 - d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan.
 - 3. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment.
 - a. Report the cleanliness status of filters and the time static pressures are measured.
 - 4. Measure static pressures entering and leaving other devices, such as sound traps, heat-recovery equipment, and air washers, under final balanced conditions.
 - 5. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.
 - 6. Obtain approval from Owner for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in HVAC Sections for air-handling units for adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.
 - 7. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure

amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.

- B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances.
 - 1. Measure airflow of submain and branch ducts.
 - a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone.
 - 2. Measure static pressure at a point downstream from the balancing damper, and adjust volume dampers until the proper static pressure is achieved.
 - 3. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances.
- C. Measure air outlets and inlets without making adjustments.
 - 1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors.
- D. Adjust air outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using branch volume dampers rather than extractors and the dampers at air terminals.
 - 1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents.
 - 2. Adjust patterns of adjustable outlets for proper distribution without drafts.

3.6 PROCEDURES FOR VARIABLE-AIR-VOLUME SYSTEMS

- A. Compensating for Diversity: When the total airflow of all terminal units is more than the indicated airflow of the fan, place a selected number of terminal units at a minimum setpoint airflow with the remainder at maximum-airflow condition until the total airflow of the terminal units equals the indicated airflow of the fan. Select the reduced-airflow terminal units so they are distributed evenly among the branch ducts.
- B. Pressure-Independent, Variable-Air-Volume Systems: After the fan systems have been adjusted, adjust the variable-air-volume systems as follows:
 - 1. Set outdoor-air dampers at minimum, and set return- and exhaust-air dampers at a position that simulates full-cooling load.
 - 2. Select the terminal unit that is most critical to the supply-fan airflow and static pressure. Measure static pressure. Adjust system static pressure so the entering static pressure for the critical terminal unit is not less than the sum of the terminal-unit manufacturer's recommended minimum inlet static pressure plus the static pressure needed to overcome terminal-unit discharge system losses.
 - 3. Measure total system airflow. Adjust to within indicated airflow.

- 4. Set terminal units at maximum airflow and adjust controller or regulator to deliver the designed maximum airflow. Use terminal-unit manufacturer's written instructions to make this adjustment. When total airflow is correct, balance the air outlets downstream from terminal units the same as described for constantvolume air systems.
- 5. Set terminal units at minimum airflow and adjust controller or regulator to deliver the designed minimum airflow. Check air outlets for a proportional reduction in airflow the same as described for constant-volume air systems.
 - a. If air outlets are out of balance at minimum airflow, report the condition but leave outlets balanced for maximum airflow.
- 6. Remeasure the return airflow to the fan while operating at maximum return airflow and minimum outdoor airflow.
 - a. Adjust the fan and balance the return-air ducts and inlets the same as described for constant-volume air systems.
- 7. Measure static pressure at the most critical terminal unit and adjust the staticpressure controller at the main supply-air sensing station to ensure that adequate static pressure is maintained at the most critical unit.
- 8. Record final fan-performance data.

<u>3.7</u> <u>GENERAL PROCEDURES FOR HYDRONIC SYSTEMS</u>

- A. Prepare test reports with pertinent design data, and number in sequence starting at pump to end of system. Check the sum of branch-circuit flows against the approved pump flow rate. Correct variations that exceed plus or minus 5 percent.
- B. Prepare schematic diagrams of systems' "as-built" piping layouts.
- C. Prepare hydronic systems for testing and balancing according to the following, in addition to the general preparation procedures specified above:
 - 1. Open all manual valves for maximum flow.
 - 2. Check liquid level in expansion tank.
 - 3. Check makeup water-station pressure gage for adequate pressure for highest vent.
 - 4. Check flow-control valves for specified sequence of operation and set at indicated flow.
 - 5. Set differential-pressure control valves at the specified differential pressure. Do not set at fully closed position when pump is positive-displacement type unless several terminal valves are kept open.
 - 6. Set system controls so automatic valves are wide open to heat exchangers.
 - 7. Check pump-motor load. If motor is overloaded, throttle main flow-balancing device so motor nameplate rating is not exceeded.
 - 8. Check air vents for a forceful liquid flow exiting from vents when manually operated.

3.8 PROCEDURES FOR CONSTANT-FLOW HYDRONIC SYSTEMS

- A. Measure water flow at pumps. Use the following procedures except for positivedisplacement pumps:
 - 1. Verify impeller size by operating the pump with the discharge valve closed. Read pressure differential across the pump. Convert pressure to head and correct for differences in gage heights. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size.
 - a. If impeller sizes must be adjusted to achieve pump performance, obtain approval from Owner, and comply with requirements in Section 23 21 23 "Hydronic Pumps."
 - 2. Check system resistance. With all valves open, read pressure differential across the pump and mark pump manufacturer's head-capacity curve. Adjust pump discharge valve until indicated water flow is achieved.
 - a. Monitor motor performance during procedures and do not operate motors in overload conditions.
 - 3. Verify pump-motor brake horsepower. Calculate the intended brake horsepower for the system based on pump manufacturer's performance data. Compare calculated brake horsepower with nameplate data on the pump motor. Report conditions where actual amperage exceeds motor nameplate amperage.
 - 4. Report flow rates that are not within plus or minus 10 percent of design.
- B. Measure flow at all automatic flow control valves to verify that valves are functioning as designed.
- C. Measure flow at all pressure-independent characterized control valves, with valves in fully open position, to verify that valves are functioning as designed.
- D. Set calibrated balancing valves, if installed, at calculated presettings.
- E. Measure flow at all stations and adjust, where necessary, to obtain first balance.
 - 1. System components that have Cv rating or an accurately cataloged flowpressure-drop relationship may be used as a flow-indicating device.
- F. Measure flow at main balancing station and set main balancing device to achieve flow that is 5 percent greater than indicated flow.
- G. Adjust balancing stations to within specified tolerances of indicated flow rate as follows:
 - 1. Determine the balancing station with the highest percentage over indicated flow.
 - 2. Adjust each station in turn, beginning with the station with the highest percentage over indicated flow and proceeding to the station with the lowest percentage over indicated flow.
 - 3. Record settings and mark balancing devices.

- H. Measure pump flow rate and make final measurements of pump amperage, voltage, rpm, pump heads, and systems' pressures and temperatures including outdoor-air temperature.
- I. Measure the differential-pressure-control-valve settings existing at the conclusion of balancing.
- J. Check settings and operation of each safety valve. Record settings.

3.9 PROCEDURES FOR VARIABLE-FLOW HYDRONIC SYSTEMS

A. Balance systems with automatic two- and three-way control valves by setting systems at maximum flow through heat-exchange terminals and proceed as specified above for hydronic systems.

3.10 PROCEDURES FOR MOTORS

- A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 - 1. Manufacturer's name, model number, and serial number.
 - 2. Motor horsepower rating.
 - 3. Motor rpm.
 - 4. Efficiency rating.
 - 5. Nameplate and measured voltage, each phase.
 - 6. Nameplate and measured amperage, each phase.
 - 7. Starter thermal-protection-element rating.
- B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass of the controller to prove proper operation. Record observations including name of controller manufacturer, model number, serial number, and nameplate data.

3.11 PROCEDURES FOR CONDENSING UNITS

- A. Verify proper rotation of fans.
- B. Measure entering- and leaving-air temperatures.
- C. Record compressor data.

3.12 PROCEDURES FOR BOILERS

A. Hydronic Boilers: Measure and record entering- and leaving-water temperatures and water flow.

3.13 PROCEDURES FOR HEAT-TRANSFER COILS

- A. Measure, adjust, and record the following data for each water coil:
 - 1. Entering- and leaving-water temperature.
 - 2. Water flow rate.

- 3. Water pressure drop.
- 4. Dry-bulb temperature of entering and leaving air.
- 5. Wet-bulb temperature of entering and leaving air for cooling coils.
- 6. Airflow.
- 7. Air pressure drop.
- B. Measure, adjust, and record the following data for each refrigerant coil:
 - 1. Dry-bulb temperature of entering and leaving air.
 - 2. Wet-bulb temperature of entering and leaving air.
 - 3. Airflow.
 - 4. Air pressure drop.
 - 5. Refrigerant suction pressure and temperature.

3.14 TOLERANCES

- A. Set HVAC system's air flow rates and water flow rates within the following tolerances:
 - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
 - 2. Air Outlets and Inlets: Plus or minus 10 percent.
 - 3. Heating-Water Flow Rate: Plus or minus 10 percent.

3.15 FINAL REPORT

- A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 - 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 - 2. Include a list of instruments used for procedures, along with proof of calibration.
- B. Final Report Contents: In addition to certified field-report data, include the following:
 - 1. Pump curves.
 - 2. Fan curves.
 - 3. Manufacturers' test data.
 - 4. Field test reports prepared by system and equipment installers.
 - 5. Other information relative to equipment performance; do not include Shop Drawings and product data.
- C. General Report Data: In addition to form titles and entries, include the following data:
 - 1. Title page.
 - 2. Name and address of the TAB contractor.
 - 3. Project name.
 - 4. Project location.
 - 5. Architect's name and address.
 - 6. Engineer's name and address.
 - 7. Contractor's name and address.
 - 8. Report date.

- 9. Signature of TAB supervisor who certifies the report.
- 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
- 11. Summary of contents including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.
- 12. Nomenclature sheets for each item of equipment.
- 13. Data for terminal units, including manufacturer's name, type, size, and fittings.
- 14. Notes to explain why certain final data in the body of reports vary from indicated values.
- 15. Test conditions for fans and pump performance forms including the following:
 - a. Settings for outdoor-, return-, and exhaust-air dampers.
 - b. Conditions of filters.
 - c. Cooling coil, wet- and dry-bulb conditions.
 - d. Fan drive settings including settings and percentage of maximum pitch diameter.
 - e. Settings for supply-air, static-pressure controller.
 - f. Other system operating conditions that affect performance.
- D. Make-Up and Rooftop Unit Test Reports: For units with coils, include the following:
 - 1. Unit Data:
 - a. Unit identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and unit size.
 - e. Manufacturer's serial number.
 - f. Unit arrangement and class.
 - g. Discharge arrangement.
 - h. Sheave make, size in inches, and bore.
 - i. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 - j. Number, make, and size of belts.
 - k. Number, type, and size of filters.
 - 2. Motor Data:
 - a. Motor make, and frame type and size.
 - b. Horsepower and rpm.
 - c. Volts, phase, and hertz.
 - d. Full-load amperage and service factor.
 - 3. Test Data (Indicated and Actual Values):
 - a. Total air flow rate in cfm.

- b. Total system static pressure in inches wg.
- c. Fan rpm.
- d. Discharge static pressure in inches wg.
- e. Filter static-pressure differential in inches wg.
- f. Preheat-coil static-pressure differential in inches wg.
- g. Cooling-coil static-pressure differential in inches wg.
- h. Heating-coil static-pressure differential in inches wg.
- i. Outdoor airflow in cfm.
- j. Return airflow in cfm.
- k. Outdoor-air damper position.
- I. Return-air damper position.
- E. Apparatus-Coil Test Reports:
 - 1. Coil Data:
 - a. System identification.
 - b. Location.
 - c. Coil type.
 - d. Number of rows.
 - e. Fin spacing in fins per inch o.c.
 - f. Make and model number.
 - g. Face area in sq. ft.
 - h. Tube size in NPS.
 - i. Tube and fin materials.
 - j. Circuiting arrangement.
 - 2. Test Data (Indicated and Actual Values):
 - a. Air flow rate in cfm.
 - b. Average face velocity in fpm.
 - c. Air pressure drop in inches wg.
 - d. Outdoor-air, wet- and dry-bulb temperatures in deg F.
 - e. Return-air, wet- and dry-bulb temperatures in deg F.
 - f. Entering-air, wet- and dry-bulb temperatures in deg F.
 - g. Leaving-air, wet- and dry-bulb temperatures in deg F.
 - h. Water flow rate in gpm.
 - i. Water pressure differential in feet of head or psig.
 - j. Entering-water temperature in deg F.
 - k. Leaving-water temperature in deg F.
 - I. Refrigerant expansion valve and refrigerant types.
 - m. Refrigerant suction pressure in psig.
 - n. Refrigerant suction temperature in deg F.
- F. Gas-Heat Apparatus Test Reports: In addition to manufacturer's factory startup equipment reports, include the following:
 - 1. Unit Data:
 - a. System identification.
 - b. Location.

- c. Make and type.
- d. Model number and unit size.
- e. Manufacturer's serial number.
- f. Fuel type in input data.
- g. Output capacity in Btu/h.
- h. Ignition type.
- i. Burner-control types.
- j. Motor horsepower and rpm.
- k. Motor volts, phase, and hertz.
- I. Motor full-load amperage and service factor.
- 2. Test Data (Indicated and Actual Values):
 - a. Total air flow rate in cfm.
 - b. Entering-air temperature in deg F.
 - c. Leaving-air temperature in deg F.
 - d. Air temperature differential in deg F.
 - e. Entering-air static pressure in inches wg.
 - f. Leaving-air static pressure in inches wg.
 - g. Air static-pressure differential in inches wg.
 - h. Low-fire fuel input in Btu/h.
 - i. High-fire fuel input in Btu/h.
 - j. Manifold pressure in psig.
 - k. High-temperature-limit setting in deg F.
 - I. Operating set point in Btu/h.
 - m. Motor voltage at each connection.
 - n. Motor amperage for each phase.
 - o. Heating value of fuel in Btu/h.
- G. Fan Test Reports: For supply, return, and exhaust fans, include the following:
 - 1. Fan Data:
 - a. System identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and size.
 - e. Manufacturer's serial number.
 - f. Arrangement and class.
 - 2. Motor Data:
 - a. Motor make, and frame type and size.
 - b. Horsepower and rpm.
 - c. Volts, phase, and hertz.
 - d. Full-load amperage and service factor.
 - 3. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm.
 - b. Total system static pressure in inches wg.

- c. Fan rpm.
- d. Discharge static pressure in inches wg.
- e. Suction static pressure in inches wg.
- H. Fan Test Reports: For Vehicle Extraction Exhaust fans, include the following:
 - 1. Fan Data:
 - a. System identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and size.
 - e. Manufacturer's serial number.
 - f. Arrangement and class.
 - 2. Motor Data:
 - a. Motor make, and frame type and size.
 - b. Horsepower and rpm.
 - c. Volts, phase, and hertz.
 - d. Full-load amperage and service factor.
 - 3. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm.
 - b. Total system static pressure in inches wg.
 - c. Fan rpm.
 - d. Discharge static pressure in inches wg.
 - e. Suction static pressure in inches wg.
- I. Round and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:
 - 1. Report Data:
 - a. System and air-handling-unit number.
 - b. Location and zone.
 - c. Traverse air temperature in deg F.
 - d. Duct static pressure in inches wg.
 - e. Duct size in inches.
 - f. Duct area in sq. ft.
 - g. Indicated air flow rate in cfm.
 - h. Indicated velocity in fpm.
 - i. Actual air flow rate in cfm.
 - j. Actual average velocity in fpm.
 - k. Barometric pressure in psig.
- J. Air-Terminal-Device Reports:
 - 1. Unit Data:

- a. System and air-handling unit identification.
- b. Location and zone.
- c. Apparatus used for test.
- d. Area served.
- e. Make.
- f. Number from system diagram.
- g. Type and model number.
- h. Size.
- i. Effective area in sq. ft.
- 2. Test Data (Indicated and Actual Values):
 - a. Air flow rate in cfm.
 - b. Air velocity in fpm.
 - c. Preliminary air flow rate as needed in cfm.
 - d. Preliminary velocity as needed in fpm.
 - e. Final air flow rate in cfm.
 - f. Final velocity in fpm.
 - g. Space temperature in deg F.
- K. System-Coil Reports: For reheat coils and water coils of terminal units, include the following:
 - 1. Unit Data:
 - a. System and air-handling-unit identification.
 - b. Location and zone.
 - c. Room or riser served.
 - d. Coil make and size.
 - e. Flowmeter type.
 - 2. Test Data (Indicated and Actual Values):
 - a. Air flow rate in cfm.
 - b. Entering-water temperature in deg F.
 - c. Leaving-water temperature in deg F.
 - d. Water pressure drop in feet of head or psig.
 - e. Entering-air temperature in deg F.
 - f. Leaving-air temperature in deg F.
- L. Pump Test Reports: Calculate impeller size by plotting the shutoff head on pump curves and include the following:
 - 1. Unit Data:
 - a. Unit identification.
 - b. Location.
 - c. Service.
 - d. Make and size.
 - e. Model number and serial number.
 - f. Water flow rate in gpm.

- g. Water pressure differential in feet of head or psig.
- h. Required net positive suction head in feet of head or psig.
- i. Pump rpm.
- j. Impeller diameter in inches.
- k. Motor make and frame size.
- I. Motor horsepower and rpm.
- m. Voltage at each connection.
- n. Amperage for each phase.
- o. Full-load amperage and service factor.
- p. Seal type.
- 2. Test Data (Indicated and Actual Values):
 - a. Static head in feet of head or psig.
 - b. Pump shutoff pressure in feet of head or psig.
 - c. Actual impeller size in inches.
 - d. Full-open flow rate in gpm.
 - e. Full-open pressure in feet of head or psig.
 - f. Final discharge pressure in feet of head or psig.
 - g. Final suction pressure in feet of head or psig.
 - h. Final total pressure in feet of head or psig.
 - i. Final water flow rate in gpm.
 - j. Voltage at each connection.
 - k. Amperage for each phase.

3.16 INSPECTIONS

- A. Initial Inspection:
 - 1. After testing and balancing are complete, operate each system and randomly check measurements to verify that the system is operating according to the final test and balance readings documented in the final report.
 - 2. Check the following for each system:
 - a. Measure airflow of at least 10 percent of air outlets.
 - b. Measure water flow of at least 5 percent of terminals.
 - c. Measure room temperature at each thermostat/temperature sensor. Compare the reading to the set point.
 - d. Verify that balancing devices are marked with final balance position.
 - e. Note deviations from the Contract Documents in the final report.
- B. Final Inspection:
 - 1. After initial inspection is complete and documentation by random checks verifies that testing and balancing are complete and accurately documented in the final report, request that a final inspection be made by Owner.
 - 2. The TAB contractor's test and balance engineer shall conduct the inspection in the presence of Owner.
 - 3. Owner shall randomly select measurements, documented in the final report, to be rechecked. Rechecking shall be limited to either 10 percent of the total

measurements recorded or the extent of measurements that can be accomplished in a normal 8-hour business day.

- 4. If rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED."
- 5. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected.
- C. TAB Work will be considered defective if it does not pass final inspections. If TAB Work fails, proceed as follows:
 - 1. Recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes; resubmit the final report and request a second final inspection.
 - 2. If the second final inspection also fails, Owner may contract the services of another TAB contractor to complete TAB Work according to the Contract Documents and deduct the cost of the services from the original TAB contractor's final payment.
- D. Prepare test and inspection reports.

END OF SECTION 23 05 93

SECTION 23 07 13 DUCT INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include thermal conductivity, watervapor permeance thickness, and jackets (both factory- and field-applied if any).
- B. Submit a schedule of all insulating materials to be used on the project, including adhesives, fastening methods, fitting materials along with material safety data sheets and intended use of each material. Include manufacturer's technical data sheets indicating density, thermal characteristics, jacket type, and manufacturer's installation instructions. Include copies of the MICA plates that are applicable to this project.

1.3 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smokedeveloped index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smokedeveloped index of 150 or less.
- C. Install insulation in accordance with MICA National Commercial & Industrial Insulation Standards.

1.4 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.5 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 23 05 29 "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with duct Installer for duct insulation application. Before preparing ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.6 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Duct Insulation Schedule, General," "Indoor Duct and Plenum Insulation Schedule," and "Aboveground, Outdoor Duct and Plenum Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Mineral-Fiber Blanket Insulation (**Type D1**): Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. CertainTeed Corp.; SoftTouch Duct Wrap.
 - b. Johns Manville; Microlite.
 - c. Knauf Insulation; Friendly Feel Duct Wrap.
 - d. Manson Insulation Inc.; Alley Wrap.
 - e. Owens Corning; SOFTR All-Service Duct Wrap.
- G. Mineral-Fiber Board Insulation **(Type D2)**: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied FSK jacket. Factory-applied jacket

requirements are specified in "Factory-Applied Jackets" Article. Minimum nominal density of 3 lbs. per cu. ft., and thermal conductivity of not more than 0.23 at 75 degrees F.

- 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. CertainTeed Corp.; Commercial Board.
 - b. Fibrex Insulations Inc.; FBX.
 - c. Johns Manville; 800 Series Spin-Glas.
 - d. Knauf Insulation; Insulation Board.
 - e. Manson Insulation Inc.; AK Board.
 - f. Owens Corning; Fiberglas 700 Series.

2.2 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Adhesives, sealants, and protective finishes shall be as recommended by insulation manufacturer for applications specified.
- C. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- D. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.3 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. Adhesives, sealants, mastics and protective finishes shall be as recommended by insulation manufacturer for applications specified.

2.4 LAGGING ADHESIVES

- A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.
 - 1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. Adhesives, sealants, and protective finishes shall be as recommended by insulation manufacturer for applications specified.

2.5 SEALANTS

- A. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Adhesives, joint sealants and flashing sealants and protective finishes shall be as recommended by insulation and jacketing manufacturer for applications specified.
- C. Sealants shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."

2.6 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 - 2. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

<u>2.7</u> <u>TAPES</u>

- A. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ABI, Ideal Tape Division; 491 AWF FSK.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 - c. Compac Corporation; 110 and 111.
 - d. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ.
 - 2. Width: 3 inches.
 - 3. Thickness: 6.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

2.8 SECUREMENTS

- A. Bands:
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ITW Insulation Systems; Gerrard Strapping and Seals.
 - b. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs.

- 2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015- inch thick, 3/4-inch wide with wing seal
- 3. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020inch thick, 3/4-inch wide with wing seal.
- 4. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.
- B. Insulation Pins and Hangers:
 - 1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch-diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
 - a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) AGM Industries, Inc.; CHP-1.
 - 2) GEMCO; Cupped Head Weld Pin.
 - 3) Midwest Fasteners, Inc.; Cupped Head.
 - 4) Nelson Stud Welding; CHP.
 - 2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inchthick, galvanized-steel, aluminum, or stainless-steel sheet to match duct construction, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
 - a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) AGM Industries, Inc.; RC-150.
 - 2) GEMCO; R-150.
 - 3) Midwest Fasteners, Inc.; WA-150.
 - 4) Nelson Stud Welding; Speed Clips.
 - b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.
- C. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.

- 1. Verify that systems to be insulated have been tested and are free of defects.
- 2. Verify that surfaces to be insulated are clean and dry.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.
- B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Keep insulation materials dry during application and finishing.
- G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- H. Install insulation with least number of joints practical.
- I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
- J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- K. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.

- 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
- 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
- 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
- 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.
- L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- O. Exposed Ductwork: Locate insulation and cover seams in least visible locations.
- 3.4 PENETRATIONS
- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
 - 1. Comply with requirements in Division 07 and fire-resistive joint sealers.

3.5 INSTALLATION OF MINERAL-FIBER INSULATION

A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

- 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for duct and plenum surfaces.
- 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
- 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not over compress insulation during installation.
 - e. Impale insulation over pins and attach speed washers.
 - f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
- 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1-inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.
- 5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.
- 6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.
- B. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.

- 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for duct and plenum surfaces.
- 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
- 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not over compress insulation during installation.
 - e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
- 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1-inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.
- 5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

3.6 FINISHES

A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Division 09.

- 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.
- B. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- C. Do not field paint aluminum or stainless-steel jackets.

3.7 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article.
- C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.
- D. All reinstallation of insulation removed for inspection shall be performed at no additional cost to the Contract.
- E. Any discovered deviation from the specified materials and methods shall be considered cause for spot-check dismantling of Work to be performed during the preceding day's work. If further deviations are so discovered, the day's Work proceeding that day may be requested to be checked. All dismantling and reinstallation shall be performed at no additional cost to the Contract.

3.8 DUCT INSULATION SCHEDULE, GENERAL

- A. Items Not Insulated:
 - 1. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1.
 - 2. Factory-insulated flexible ducts.
 - 3. Factory-insulated plenums and casings.
 - 4. Flexible connectors.
 - 5. Vibration-control devices.
 - 6. Factory-insulated access panels and doors.

3.9 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

A. Insulation materials and thicknesses are identified below. If more than one material is listed for a duct system, selection from materials listed is Contractor's option.
				Field Applied
Service	Exposure	Insulation Type	Insulation Thickness	Jacket Type
Outside Air	Concealed	D1 or D2	3"	-
Outside Air	Exposed	D2	3"	-
Mixed Air (OA + RA)	Concealed	D1 or D2	1-1/2"	-
Mixed Air (OA + RA)	Exposed	D2	1-1/2"	-
Supply Air	Concealed	D1 or D2	1-1/2"	-
Supply Air**	Exposed	D1 or D2	1-1/2"	-
Exhaust or Relief from				
Damper to Outside Wall or				
Roof*	Concealed	D1 or D2	2"	-
Exhaust or Relief from				
Damper to Outside Wall or				
Roof*	Exposed	D2	2"	-
Heat Recovery Unit Exhaust	Concealed	D2 or D3	2"	-
Heat Recovery Unit Exhaust	Exposed	D2	2"	-
Reheat coil casing in ex-	-			
posed supply ducts	Exposed	D1 or D2	1-1/2"	
Reheat coil casing in con-				
cealed supply ducts	Concealed	D1 or D2	1-1/2"	

* Exhaust duct only needs to be insulated from the damper to the outside wall or roof.

** Exposed supply branch ducts located in the space they are serving do not require insulation. Exposed supply main ducts running through spaces they serve shall be insulated as exposed supply ducts scheduled above.

END OF SECTION 23 07 13

This page intentionally left blank.

SECTION 23 07 16 HVAC EQUIPMENT INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include thermal conductivity, watervapor permeance thickness, and jackets (both factory- and field-applied if any).
- B. Submit a schedule of all insulating materials to be used on the project, including adhesives, fastening methods, fitting materials along with material safety data sheets and intended use of each material. Include manufacturer's technical data sheets indicating density, thermal characteristics, jacket type, and manufacturer's installation instructions. Include copies of the MICA plates that are applicable to this project.

1.3 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smokedeveloped index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smokedeveloped index of 150 or less.
- C. Install insulation in accordance with MICA National Commercial & Industrial Insulation Standards.

1.4 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.5 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 23 05 29 "Hangers and Supports for HVAC Piping and Equipment."

B. Coordinate clearance requirements with equipment Installer for equipment insulation application.

1.6 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Equipment Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Flexible Elastomeric Insulation (Type E1): Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials and Type II for sheet materials.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Aeroflex USA, Inc.; Aerocel.
 - b. Armacell LLC; AP Armaflex.
 - c. K-Flex USA; Insul-Sheet and K-FLEX LS.
 - 2. Flexible closed cell, minimum nominal density of 5.5 lbs. per cu. ft., thermal conductivity of not more than 0.28 at 75 degrees F, maximum water vapor permeability of 0.08 perm-in, maximum water absorption of 1% by weight, rated for service range of -20 degrees F to 220 degrees F.
- G. Mineral-Fiber, Pipe and Tank Insulation **(Type E2)**: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory applied ASJ complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 2.5 lb/cu. ft. or more. Thermal conductivity (k-

value) at 100 deg F is 0.29 Btu x in./h x sq. ft. x deg F or less. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

- 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. CertainTeed Corp.; CrimpWrap.
 - b. Johns Manville; MicroFlex.
 - c. Knauf Insulation; Pipe and Tank Insulation.
 - d. Manson Insulation Inc.; AK Flex.
 - e. Owens Corning; Fiberglas Pipe and Tank Insulation.

2.2 INSULATING CEMENTS

- A. Mineral-Fiber Insulating Cement: Comply with ASTM C 195.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Ramco Insulation, Inc.; Super-Stik.
- B. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Ramco Insulation, Inc.; Ramcote 1200 and Quik-Cote.

2.3 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Adhesives, sealants, and protective finishes shall be as recommended by insulation manufacturer for applications specified.
- C. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.4 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. Adhesives, sealants, mastics, and protective finishes shall be as recommended by insulation manufacturer for applications specified.

2.5 LAGGING ADHESIVES

- A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.
 - 1. For indoor applications, use lagging adhesives that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. Adhesives, sealants, and protective finishes shall be as recommended by insulation manufacturer for applications specified.

2.6 SEALANTS

- A. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Adhesives, joint sealants and flashing sealants and protective finishes shall be as recommended by insulation manufacturer for applications specified.
- C. For Elastomeric use Armaflex 520 or equal.

2.7 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.

<u>2.8</u> <u>TAPES</u>

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ABI, Ideal Tape Division; 428 AWF ASJ.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
 - c. Compac Corporation; 104 and 105.
 - d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
 - 2. Width: 3 inches.
 - 3. Thickness: 11.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

2.9 SECUREMENTS

A. Bands:

- 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ITW Insulation Systems; Gerrard Strapping and Seals.
 - b. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs.
- 2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015-inch thick, 3/4-inch wide with wing seal.
- 3. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020inch thick, 3/4-inch wide with wing seal.
- B. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems and equipment to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.

- F. Keep insulation materials dry during application and finishing.
- G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- H. Install insulation with least number of joints practical.
- I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- K. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints.
- L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

- O. For above ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Manholes.
 - 5. Handholes.
 - 6. Cleanouts.
 - 7. Unions
 - 8. Flanges
- P. In systems with rigid insulation, slip joints shall be installed every 25-30 feet for thermal expansion. They shall overlap and be caulked according to the jacket manufacturer's installation recommendation.

3.4 INSTALLATION OF EQUIPMENT, TANK, AND VESSEL INSULATION

- A. Mineral-Fiber, Pipe and Tank Insulation Installation for Tanks and Vessels: Secure insulation with adhesive and anchor pins and speed washers.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 50 percent coverage of tank and vessel surfaces.
 - 2. Groove and score insulation materials to fit as closely as possible to equipment, including contours. Bevel insulation edges for cylindrical surfaces for tight joints. Stagger end joints.
 - 3. Protect exposed corners with secured corner angles.
 - 4. Install adhesively attached or self-sticking insulation hangers and speed washers on sides of tanks and vessels as follows:
 - a. Do not weld anchor pins to ASME-labeled pressure vessels.
 - b. Select insulation hangers and adhesive that are compatible with service temperature and with substrate.
 - c. On tanks and vessels, maximum anchor-pin spacing is 3 inches from insulation end joints, and 16 inches o.c. in both directions.
 - d. Do not over compress insulation during installation.
 - e. Cut and miter insulation segments to fit curved sides and domed heads of tanks and vessels.
 - f. Impale insulation over anchor pins and attach speed washers.
 - g. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 5. Secure each layer of insulation with stainless-steel or aluminum bands. Select band material compatible with insulation materials.
 - 6. Where insulation hangers on equipment and vessels are not permitted or practical and where insulation support rings are not provided, install a girdle network for securing insulation. Stretch prestressed aircraft cable around the diameter of vessel and make taut with clamps, turnbuckles, or breather springs. Place one circumferential girdle around equipment approximately 6 inches from each end. Install wire or cable between two circumferential girdles 12 inches o.c. Install a wire ring around each end and around outer periphery of center

openings and stretch prestressed aircraft cable radially from the wire ring to nearest circumferential girdle. Install additional circumferential girdles along the body of equipment or tank at a minimum spacing of 48 inches o.c. Use this network for securing insulation with tie wire or bands.

- 7. Stagger joints between insulation layers at least 3 inches.
- 8. Install insulation in removable segments on equipment access doors, manholes, handholes, and other elements that require frequent removal for service and inspection.
- 9. Bevel and seal insulation ends around manholes, handholes, ASME stamps, and nameplates.
- 10. For equipment with surface temperatures below ambient, apply mastic to open ends, joints, seams, breaks, and punctures in insulation.

3.5 ELASTOMERIC:

- A. Where practical, slip insulation on piping during pipe installation when pipe ends are open. Miter cut fittings allowing sufficient length to prevent stretching. Completely seal seams and joints for vapor tight installation.
- B. For elastomeric insulation, apply full bed of adhesive to both surfaces. For polyolefin, seal factory pre-glued seams with roller and field seams and joints with full bed of hot melt polyolefin glue to both surfaces. Cover elastomeric insulation on systems operating below 40 degrees F with vapor retarding mastic.

3.6 FIELD-APPLIED JACKET INSTALLATION

- A. Where ASJ jackets are indicated, install as follows:
 - 1. Draw jacket material smooth and tight.
 - 2. Install lap or joint strips with same material as jacket.
 - 3. Secure jacket to insulation with manufacturer's recommended adhesive.
 - 4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch-wide joint strips at end joints.
 - 5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.

3.7 FINISHES

- A. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- B. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- C. Do not field paint aluminum or stainless-steel jackets.
- 3.8 FIELD QUALITY CONTROL
- A. Perform tests and inspections.

- B. Tests and Inspections: Inspect field-insulated equipment, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three location(s) for each type of equipment defined in the "Equipment Insulation Schedule" Article. For large equipment, remove only a portion adequate to determine compliance.
- C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.
- D. All reinstallation of insulation removed for inspection shall be performed at no additional cost to the Contract.
- E. Any discovered deviation from the specified materials and methods shall be considered cause for spot-check dismantling of Work to be performed during the preceding day's work. If further deviations are so discovered, the day's Work proceeding that day may be requested to be checked. All dismantling and reinstallation shall be performed at no additional cost to the Contract.

3.9 EQUIPMENT INSULATION SCHEDULE

- A. Insulation materials and thicknesses are identified below. If more than one material is listed for a type of equipment, selection from materials listed is Contractor's option.
- B. Insulate indoor and outdoor equipment that is not factory insulated.

	Insulation	Insulation	Field Applied
Service	Туре	Thickness	Jacket Type
Hot Water Expansion Tank	E1 or E2	1.5"	-
Hot Water Air Separator	E1 or E2	1.5"	-
Hot Water Storage Tank	E1 or E2	1.5"	-

END OF SECTION 23 07 16

This page intentionally left blank.

SECTION 23 07 19 HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include thermal conductivity, watervapor permeance thickness, and jackets (both factory and field applied if any).
- B. Submit a schedule of all insulating materials to be used on the project, including adhesives, fastening methods, fitting materials along with material safety data sheets and intended use of each material. Include manufacturer's technical data sheets indicating density, thermal characteristics, jacket type, and manufacturer's installation instructions. Include copies of the MICA plates that are applicable to this project.

1.3 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smokedeveloped index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smokedeveloped index of 150 or less.
- C. Install insulation in accordance with MICA National Commercial & Industrial Insulation Standards.

1.4 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.5 COORDINATION

A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in "Hangers and Supports for HVAC Piping and Equipment." B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.6 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Piping Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Flexible Elastomeric Insulation **(Type I1)**: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Aeroflex USA, Inc.; Aerocel.
 - b. Armacell LLC; AP Armaflex.
 - c. K-Flex USA; Insul-Lock, Insul-Tube, and K-FLEX LS.
 - 2. Flexible closed cell, minimum nominal density of 5.5 lbs. per cu. ft., thermal conductivity of not more than 0.28 at 75 degrees F, maximum water vapor permeability of 0.08 perm-in, maximum water absorption of 1% by weight, rated for service range of -20 degrees F to 220 degrees F.
- G. Mineral-Fiber, Preformed Pipe Insulation (Type I2):
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:

- a. Fibrex Insulations Inc.; Coreplus 1200.
- b. Johns Manville; Micro-Lok.
- c. Knauf Insulation; 1000-Degree Pipe Insulation.
- d. Manson Insulation Inc.; Alley-K.
- e. Owens Corning; Fiberglas Pipe Insulation.
- Type I, 850 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article. Thermal conductivity of not more than 0.23 at 75 degrees F.
- H. Mineral-Fiber, Pipe and Tank Insulation **(Type I3)**: Mineral or glass fibers bonded with a thermosetting resin. Semirigid board material with factory-applied ASJ complying with ASTM C 1393, Type II or Type IIIA Category 2, or with properties similar to ASTM C 612, Type IB. Nominal density is 2.5 lb/cu. ft. or more. Thermal conductivity (k-value) at 100 deg F is 0.29 Btu x in./h x sq. ft. x deg F or less. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. CertainTeed Corp.; CrimpWrap.
 - b. Johns Manville; MicroFlex.
 - c. Knauf Insulation; Pipe and Tank Insulation.
 - d. Manson Insulation Inc.; AK Flex.
 - e. Owens Corning; Fiberglas Pipe and Tank Insulation.

2.2 INSULATING CEMENTS

- A. Mineral-Fiber Insulating Cement: Comply with ASTM C 195.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Ramco Insulation, Inc.; Super-Stik.
- B. Mineral-Fiber, Hydraulic-Setting Insulating and Finishing Cement: Comply with ASTM C 449.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Ramco Insulation, Inc.; Ramcote 1200 and Quik-Cote.

2.3 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Adhesives, sealants, and protective finishes shall be as recommended by insulation and jacket manufacturer for applications specified.

C. For indoor applications, adhesive shall have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.4 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
 - 1. For indoor applications, use mastics that have a VOC content of 50 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
 - 2. Adhesives, sealants, mastics and protective finishes shall be as recommended by insulation and jacket manufacturer for applications specified.

2.5 SEALANTS

- A. For indoor applications, sealants shall have a VOC content of 420 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Adhesives, joint sealants and flashing sealants and protective finishes shall be as recommended by insulation and jacket manufacturer for applications specified.

2.6 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 - 2. PVDC-SSL Jacket: PVDC jacket with a self-sealing, pressure-sensitive, acrylicbased adhesive covered by a removable protective strip.
 - a. Products: Subject to compliance with requirements, provide the following:
 - 1) Dow Chemical Company (The); Saran 540 Vapor Retarder Film and Saran 560 Vapor Retarder Film.

2.7 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. PVC Jacket (J1): High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Johns Manville; Zeston.
 - b. P.I.C. Plastics, Inc.; FG Series.
 - c. Proto Corporation; LoSmoke.
 - d. Speedline Corporation; SmokeSafe.

- 2. Adhesive: As recommended by jacket material manufacturer.
- 3. Color: White.
- 4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 - a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.
- C. Metal Jacket:
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Childers Brand, Specialty Construction Brands, Inc., a business of H. B. Fuller Company; Metal Jacketing Systems.
 - b. ITW Insulation Systems; Aluminum and Stainless Steel Jacketing.
 - c. RPR Products, Inc.; Insul-Mate.
 - 2. Aluminum Jacket (J2): Comply with ASTM B 209, Alloy 3003, 3005, 3105, or 5005, Temper H-14.
 - a. Factory cut and rolled to size.
 - b. Moisture Barrier for Indoor Applications: 2.5-mil-thick polysurlyn.
 - c. Moisture Barrier for Outdoor Applications: 2.5-mil-thick polysurlyn.
 - d. Factory-Fabricated Fitting Covers:
 - 1) Same material, finish, and thickness as jacket.
 - 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 - 3) Tee covers.
 - 4) Flange and union covers.
 - 5) End caps.
 - 6) Beveled collars.
 - 7) Valve covers.
 - 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.
- D. Self-Adhesive Outdoor Jacket **(J3)**: 60-mil-thick, laminated vapor barrier and waterproofing membrane for installation over insulation located aboveground outdoors; consisting of a rubberized bituminous resin on a cross laminated polyethylene film covered with stucco-embossed aluminum-foil facing.
 - 1. Products: Subject to compliance with requirements, provide one of the following:
 - a. Polyguard Products, Inc.; Alumaguard 60.
 - b. Venturetape

<u>2.8</u> <u>TAPES</u>

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ABI, Ideal Tape Division; 428 AWF ASJ.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0836.
 - c. Compac Corporation; 104 and 105.
 - d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ.
 - 2. Width: 3 inches.
 - 3. Thickness: 11.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ABI, Ideal Tape Division; 491 AWF FSK.
 - b. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827.
 - c. Compac Corporation; 110 and 111.
 - d. Venture Tape; 1525 CW NT, 1528 CW, and 1528 CW/SQ.
 - 2. Width: 3 inches.
 - 3. Thickness: 6.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.
- C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ABI, Ideal Tape Division; 370 White PVC tape.
 - b. Compac Corporation; 130.
 - c. Venture Tape; 1506 CW NS.
 - 2. Width: 2 inches.
 - 3. Thickness: 6 mils.
 - 4. Adhesion: 64 ounces force/inch in width.

- 5. Elongation: 500 percent.
- 6. Tensile Strength: 18 lbf/inch in width.

2.9 INSULATION INSERTS AND PIPE SHIELDS

- A. Construct inserts with calcium silicate (service temperatures below 300 degrees F only), minimum 140 psi compressive strength. Provide galvanized steel shield. Insert and shield to be minimum 180-degree coverage on bottom supported piping and full 360degree coverage on clamped piping. On roller mounted piping and piping designed to slide on support, provide additional load distribution steel plate.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. B-Line
 - b. Pipe Shields
 - c. Value Engineered Products
- B. Where contractor proposes shop/site fabricated inserts and shields, submit schedule of materials, thicknesses, gauges and lengths for each pipe size to demonstrate equivalency to pre-engineered/premanufactured product described above.
- C. Pre-compressed 20# density molded fiberglass blocks, Hamfab or equal, of the same thickness as adjacent insulation may be substituted for calcium silicate inserts with one 1"x6" block for piping through 2-1/2" and three 1"x6" blocks for piping through 4". Submit shield schedule to demonstrate equivalency to pre-engineered/premanufactured product described above.
 - 1. Wood blocks will not be accepted.
- 2.10 SECUREMENTS
- A. Bands:
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ITW Insulation Systems; Gerrard Strapping and Seals.
 - b. RPR Products, Inc.; Insul-Mate Strapping, Seals, and Springs.
 - 2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015- inch thick, 3/4-inch wide with wing seal.
 - 3. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020inch thick, 3/4-inch wide with wing seal.
- B. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel, or Monel.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
 - 3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to

structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.

- 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
- 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches on center.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches on center.
 - a. For below-ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above-ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Manholes.
 - 5. Handholes.
 - 6. Cleanouts.
 - 7. Unions
 - 8. Strainers

Q. In systems with rigid insulation, slip joints shall be installed every 25-30 feet for thermal expansion. They shall overlap and be caulked according to the jacket manufacturer's installation recommendation.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 - 4. Seal jacket to wall flashing with flashing sealant.
- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Comply with requirements in Division 07 for firestopping and fire-resistive joint sealers.
- F. Insulation Installation at Floor Penetrations:
 - 1. Pipe: Install insulation continuously through floor penetrations.
 - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 07.

3.5 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
 - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
 - 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
 - 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
 - 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
 - 8. For services not specified to receive a field-applied jacket except for flexible elastomeric, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
 - 9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the

connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.

- D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 - 3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
 - 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
 - 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.
- E. When insulating control valves, strainers, and any other devices requiring frequent access, the insulation shall be fit in such a way that there is an access section which can be readily removed and replaced without damaging adjacent insulation. If a different insulating material is used for boxing in control valve assemblies, etc., the thickness of the insulation shall be adjusted to provide the specified thermal resistance.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:

- 1. Install mitered sections of pipe insulation.
- 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 - 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.
 - 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 INSTALLATION OF MINERAL-FIBER INSULATION

- A. Insulation Installation on Straight Pipes and Tubes:
 - 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
 - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
 - 3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward-clinched staples at 6 inches on center.
 - 4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install preformed pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber insulation.
 - 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install preformed sections of same material as straight segments of pipe insulation when available.
 - 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.
- D. Insulation Installation on Valves and Pipe Specialties:

- 1. Install preformed sections of same material as straight segments of pipe insulation when available.
- 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
- 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 4. Install insulation to flanges as specified for flange insulation application.

3.8 FIELD-APPLIED JACKET INSTALLATION

- A. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- B. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches on center and at end joints.
- C. In addition to the jackets specified in the pipe insulation schedule below the following protective jackets are required:
 - 1. Provide a protective PVC jacket for the following insulated piping:
 - a. All piping within mechanical rooms and mezzanine levels.
 - 2. Provide a protective metal jacket for the following insulated piping:
 - a. Exterior installed refrigeration piping.
 - b. Maintenance Vehicle Bays

3.9 FINISHES

- A. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- B. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- C. Do not field paint aluminum or stainless-steel jackets.

3.10 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe,

six locations of fittings, and three locations of valves for each pipe service defined in the "Piping Insulation Schedule, General" Article.

- C. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.
- D. All reinstallation of insulation removed for inspection shall be performed at no additional cost to the Contract.
- E. Any discovered deviation from the specified materials and methods shall be considered cause for spot-check dismantling of Work to be performed during the preceding day's work. If further deviations are so discovered, the day's Work proceeding that day may be requested to be checked. All dismantling and reinstallation shall be performed at no additional cost to the Contract.

3.11 PIPING INSULATION SCHEDULE, GENERAL

- A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
- B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - 1. Hot water piping inside radiation, convector, or cabinet heater enclosures.
 - 2. Piping unions for systems not requiring a vapor barrier.

3.12 PIPING INSULATION SCHEDULE

Service	Pipe Size	Insulation Type	Insulation Thickness	Field Applied Jacket Type	Field Applied Jacket (Out- door Loca- tions)
Heating Hot Water (Indoors)	1-1/2" and smaller	12	1.5"	J1	J2
	2" to 3"	12	2"	J1	J2
	4" and larger	12	2"	J1	J2
Refrigerant Suction >40F	1-1/4" and smaller	l1	1"	J2	J2
	1-1/2" and larger	l1	1.5"	J2	J2
Cold Water	1-1/2" and smaller	12	1"	J1	J2
Cooling Coil Condensate Drain	1-1/2" and smaller	12	0.5"	-	J2

END OF SECTION 23 07 19

This page intentionally left blank.

SECTION 23 08 00 COMMISSIONING OF HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes commissioning process requirements for HVAC&R systems, assemblies, and equipment.
- B. Related Sections:
 - 1. Division 01 for general commissioning process requirements.
 - a. Section 01 91 00 Commissioning
- C. Commissioning Plan: A document that outlines the organization, schedule, allocation of resources, and documentation requirements of the commissioning process.
- D. CxA: Commissioning Authority.
- E. HVAC&R: Heating, Ventilating, Air Conditioning, and Refrigeration.
- F. Systems, Subsystems, Equipment, and Components: Where these terms are used together or separately, they shall mean "as-built" systems, subsystems, equipment, and components.

1.3 INFORMATIONAL SUBMITTALS

- A. Certificates of readiness.
- B. Certificates of completion of installation, prestart, and startup activities.

<u>1.4</u> <u>DEFINITIONS</u>

- A. Commissioning Plan: A document that outlines the organization, schedule, allocation of resources, and documentation requirements of the commissioning process.
- B. CxA: Commissioning Authority.
- C. HVAC&R: Heating, Ventilating, Air Conditioning, and Refrigeration.
- D. Systems, Subsystems, Equipment, and Components: Where these terms are used together or separately, they shall mean "as-built" systems, subsystems, equipment, and components.

1.5 INFORMATIONAL SUBMITTALS

- A. Certificates of readiness.
- B. Certificates of completion of installation, prestart, and startup activities.

1.6 CONTRACTOR'S RESPONSIBILITIES

- A. Perform commissioning tests at the direction of the CxA.
- B. Perform retro commissioning tasks as outlined in this section.
- C. Attend construction phase controls coordination meeting.
- D. Attend testing, adjusting, and balancing review and coordination meeting.
- E. Participate in HVAC&R systems, assemblies, equipment, and component maintenance orientation and inspection as directed by the CxA.
- F. Provide information requested by the CxA for final commissioning documentation.
- G. Provide measuring instruments and logging devices to record test data and provide data acquisition equipment to record data for the complete range of testing for the required test period.

1.7 CxA'S RESPONSIBILITIES

- A. Provide Project-specific construction checklists and commissioning process test procedures for actual HVAC&R systems, assemblies, equipment, and components to be furnished and installed as part of the construction contract.
- B. Direct commissioning testing.
- C. Verify testing, adjusting, and balancing of Work are complete.
- D. Provide test data, inspection reports, and certificates in Systems Manual.

1.8 COMMISSIONING DOCUMENTATION

- A. Provide the following information to the CxA for inclusion in the commissioning plan:
 - 1. Plan for delivery and review of submittals, systems manuals, and other documents and reports.
 - 2. Identification of installed systems, assemblies, equipment, and components including design changes that occurred during the construction phase.
 - Process and schedule for completing construction checklists and manufacturer's prestart and startup checklists for HVAC&R systems, assemblies, equipment, and components to be verified and tested.
 - 4. Certificate of completion certifying that installation, prestart checks, and startup procedures have been completed.
 - 5. Certificate of readiness certifying that HVAC&R systems, subsystems, equipment, and associated controls are ready for testing.

- 6. Test and inspection reports and certificates.
- 7. Corrective action documents.
- 8. Verification of testing, adjusting, and balancing reports.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 CONTRACTOR COMMISSIONING ASSIST

- A. There are three (3) existing make-up air systems that are remaining in place for this phase of the project (Phase 3A). These existing MAU-4(E), MAU-5(E) and MAU-8(E) units were installed in 2020 as a part of earlier Metro Phase 2 project. The Contractor is to take the lead retro-commissioning of these existing make-up air units and associated exhaust fans, with support and direction from the Commissioning Agent. The secondary hydronic system pumps P-7(E) and P-8(E) are to be also included in retro-commissioning of systems. Other aspects of the Phase 3A project are directed by the Commissioning Agent.
- B. The Commissioning Agent will witness the Contractor's verification for these existing make-up air units and associated exhaust fans are complete and operational for system verification. Commissioning Agent will provide and direct all testing of these existing and new HVAC systems.
- C. The following summarizes the major components of the existing MAU systems and associated exhaust fans.
 - 1. Maintenance Service Bays are served by existing MAU-4(E) and MAU-5(E) units. (18,900 cfm for each Make Up Air Unit) and associated exhaust fans.
 - 2. Maintenance B area is served by existing MAU-8(E) unit. (12,185 cfm Make Up Air Unit) and associated exhaust fans.
 - 3. Refer to Mechanical drawings M-800 Series for Sequence of Operations for HVAC Controls for these existing systems.
- D. Contractor to remove ceiling tiles, access panels and other building elements to inspect the piping, electrical, and ductwork. The Contractor is to complete the following work:
 - 1. Flush until clear and purge the existing hot water piping. Remove or bypass hydronic control valves during of entire hydronic system by flushing and cleaning main distribution piping.
 - 2. Clean fins on coils in existing MAU-4(E), MAU-5(E) and MAU-8(E) units mechanically removing accumulated debris.
 - 3. Check existing filters and replace with new filters in MAU-4(E), 5(E) and 8(E) units in retro-commissioning existing systems.
 - 4. Check and calibrate existing space sensors including the space gas detection systems.
 - 5. Check and calibrate all sensors for existing MAU-4(E), 5(E) and 8(E) units.
 - 6. Check operation of thermostats and associated VAV or 2-position terminal units served by MAU-8(E).

- a. Command MAU-8(E) to heating mode check response (minimum OA)
- b. Command MAU-8(E) to ventilation and purge modes check response (maximum OA).
- c. Command space heating terminal devices to heating mode by overriding thermostat signal check response (valves open and design flow).
- d. Command VAVs or 2-position terminal units to maximum airflows by overriding thermostat signal check response (dampers open and design flow).
- e. Command VAVs or 2-position terminal units to minimum airflows by overriding thermostat signal check response (dampers to minimum design).
- 7. For existing MAU-4(E), MAU-5(E), MAU-8(E) and associated exhaust fans, provide the following checks and system operation.
 - a. Fan condition and rotation.
 - b. Motor amp draw.
 - c. Complete a startup checklist.
 - d. Field adjustment of system setpoints in building automation system.
 - e. Verify the system's fan tracking of supply airflows with the associated exhaust fan airflows. Contractor to stage the number of exhaust fans to ensure proper air balancing and pressure relationships. TCC and TAB contractor to verify the system balancing from minimum to maximum airflows.
 - f. Occupied/unoccupied schedules adjustments with Owner.
 - g. Complete a Preventative Maintenance checklist.
- 8. For existing hydronic secondary pumps P-7(E) and P-8(E), provide the following checks and system operation.
 - a. Pump condition and rotation.
 - b. Motor amp draw.
 - c. Complete a startup checklist.
 - d. Two differential pressure switches calibration and setup.
 - e. TCC and TAB contractor to verify the system balancing from minimum to maximum flowrates.
- 9. Restore ceiling tiles, access panels and other building elements that are disturbed by the associated work.
- E. Complete Test and Balance on the following existing systems:
 - 1. Existing MAU-4(E), MAU-5(E), and MAU-8(E) with their associated exhaust fans.
 - 2. Existing hydronic secondary pumps P-7(E) and P-8(E) with their associated heating terminal devices.
 - 3. Refer to Section 23 05 93 Testing, Adjusting, and Balancing for HVAC. Provide report upon completion.

3.2 TESTING PREPARATION

- A. Certify that HVAC&R systems, subsystems, and equipment have been installed, calibrated, and started and are operating according to the Contract Documents.
- B. Certify that HVAC&R instrumentation and control systems have been completed and calibrated, that they are operating according to the Contract Documents, and that pretest set points have been recorded.
- C. Certify that testing, adjusting, and balancing procedures have been completed and that testing, adjusting, and balancing reports have been submitted, discrepancies corrected, and corrective work approved.
- D. Set systems, subsystems, and equipment into operating mode to be tested (e.g., normal shutdown, normal auto position, normal manual position, unoccupied cycle, emergency power, and alarm conditions).
- E. Inspect and verify the position of each device and interlock identified on checklists.
- F. Check safety cutouts, alarms, and interlocks with smoke detection and life-safety systems during each mode of operation.
- G. Testing Instrumentation: Install measuring instruments and logging devices to record test data as directed by the CxA.

3.3 TESTING AND BALANCING VERIFICATION

- A. Prior to performance of testing and balancing Work, provide copies of reports, sample forms, checklists, and certificates to the CxA.
- B. Notify the CxA at least 10 days in advance of testing and balancing Work and provide access for the CxA to witness testing and balancing Work.
- C. Provide technicians, instrumentation, and tools to verify testing and balancing of HVAC&R systems at the direction of the CxA.
 - 1. The CxA will notify testing and balancing Contractor 10 days in advance of the date of field verification. Notice will not include data points to be verified.
 - 2. The testing and balancing Contractor shall use the same instruments (by model and serial number) that were used when original data were collected.
 - 3. Failure of an item includes, other than sound, a deviation of more than 10 percent. Failure of more than 10 percent of selected items shall result in rejection of final testing, adjusting, and balancing report. For sound pressure readings, a deviation of 3 dB shall result in rejection of final testing. Variations in background noise must be considered.
 - 4. Remedy the deficiency and notify the CxA so verification of failed portions can be performed.

3.4 GENERAL TESTING REQUIREMENTS

- A. Provide technicians, instrumentation, and tools to perform commissioning test at the direction of the CxA.
- B. Scope of HVAC&R testing shall include entire HVAC&R installation, from central equipment for heat generation and refrigeration through distribution systems to each conditioned space. Testing shall include measuring capacities and effectiveness of operational and control functions.
- C. Test all operating modes, interlocks, control responses, and responses to abnormal or emergency conditions, and verify proper response of building automation system controllers and sensors.
- D. The CxA along with the HVAC&R Contractor, testing and balancing Contractor, and HVAC&R Instrumentation and Control Contractor shall prepare detailed testing plans, procedures, and checklists for HVAC&R systems, subsystems, and equipment.
- E. Tests will be performed using design conditions whenever possible.
- F. Simulated conditions may need to be imposed using an artificial load when it is not practical to test under design conditions. Before simulating conditions, calibrate testing instruments. Provide equipment to simulate loads. Set simulated conditions as directed by the CxA and document simulated conditions and methods of simulation. After tests, return settings to normal operating conditions.
- G. The CxA may direct that set points be altered when simulating conditions is not practical.
- H. The CxA may direct that sensor values be altered with a signal generator when design or simulating conditions and altering set points are not practical.
- I. If tests cannot be completed because of a deficiency outside the scope of the HVAC&R system, document the deficiency and report it to the Owner. After deficiencies are resolved, reschedule tests.
- J. If the testing plan indicates specific seasonal testing, complete appropriate initial performance tests and documentation and schedule seasonal tests.

3.5 HVAC&R systems, subsystems, and equipment Testing Procedures

- A. Boiler Testing and Acceptance Procedures: Testing requirements are specified in HVAC boiler Sections. Provide submittals, test data, inspector record, and boiler certification to the CxA.
- B. HVAC&R Instrumentation and Control System Testing: Field testing plans and testing requirements are specified in Section 23 09 00 "Instrumentation and Control for HVAC" and Section 23 09 93 "Sequence and Operations for HVAC Controls." Assist the CxA with preparation of testing plans.
 - 1. Refer to Mechanical drawings M-800 Series for Sequence of Operations for HVAC Controls.

- C. Pipe system cleaning, flushing, hydrostatic tests, and chemical treatment requirements are specified in HVAC piping Sections. HVAC&R Contractor shall prepare a pipe system cleaning, flushing, and hydrostatic testing plan. Provide cleaning, flushing, testing, and treating plan and final reports to the CxA. Plan shall include the following:
 - 1. Sequence of testing and testing procedures for each section of pipe to be tested, identified by pipe zone or sector identification marker. Markers shall be keyed to Drawings for each pipe sector, showing the physical location of each designated pipe test section. Drawings keyed to pipe zones or sectors shall be formatted to allow each section of piping to be physically located and identified when referred to in pipe system cleaning, flushing, hydrostatic testing, and chemical treatment plan.
 - 2. Description of equipment for flushing operations.
 - 3. Minimum flushing water velocity.
 - 4. Tracking checklist for managing and ensuring that all pipe sections have been cleaned, flushed, hydrostatically tested, and chemically treated.
- D. Energy Supply System Testing: Provide technicians, instrumentation, tools, and equipment to test performance of gas and hot-water systems and boilers/pumps equipment at the direction of the CxA. The CxA shall determine the sequence of testing and testing procedures for each equipment item and pipe section to be tested.
- E. Refrigeration System Testing: Provide technicians, instrumentation, tools, and equipment to test performance of refrigerant compressors and condensers, and other refrigeration systems. The CxA shall determine the sequence of testing and testing procedures for each equipment item and pipe section to be tested.
- F. HVAC&R Distribution System Testing: Provide technicians, instrumentation, tools, and equipment to test performance of air, and hydronic distribution systems; special exhaust; fume exhaust system and other distribution systems, including HVAC&R terminal equipment and unitary equipment.
- G. Vibration and Sound Tests: Provide technicians, instrumentation, tools, and equipment to test performance of vibration isolation controls.

END OF SECTION 23 08 00

This page intentionally left blank.
SECTION 23 09 00 INSTRUMENTATION AND CONTROL FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes control equipment for HVAC systems and components, including control components for terminal heating and cooling units not supplied with factory-wired controls.
- B. Related Sections include the following:
 - 1. Section 23 05 19 "Meters and Gages for HVAC Piping" for measuring equipment that relates to this Section.
 - 2. Section 23 09 00 "Instrumentation and Control for HVAC" for control equipment and devices and for submittal requirements.
 - 3. Section 23 09 93 "Sequence of Operations for HVAC Controls" for requirements that relate to this Section.
 - 4. Refer to Mechanical drawings M-800 Series for Sequence of Operations for HVAC Controls.
- C. Furnish and install all labor, materials, equipment, pneumatic/electronic interfaces and actuation devices, apparatus, software, services, permits and supervision, and all permanent and temporary facilities necessary to provide complete and proper working Direct Digital Control system as indicated on the drawings, called for in the specifications or required by job conditions. Drawings are diagrammatic only. Provide any equipment and labor not specifically referred to herein or on the drawings that are required to meet the functional intent, such as repeaters, routers, bridges, and gateways.

1.3 SYSTEM DESCRIPTION

- A. System is to use direct digital control with electric actuation for air handling units; direct digital control with electric actuation for room temperature and terminal airflow control.
- 1.4 DEFINITIONS
- A. BAS: Building Automation System.
- B. DDC: Direct digital control.
- C. I/O: Input/output.
- D. LAN: Local Area Network.
- E. MS/TP: Master slave/token passing.

F. RTD: Resistance temperature detector.

1.5 SYSTEM PERFORMANCE

- 1. Comply with the following performance requirements:
- 2. Performance: Programmable controllers shall execute DDC PID control loops, and scan and update process values and outputs at least once per second. Scan and update process values and adjust setpoints as follows:
 - a. Every 15 seconds for:
 - 1) Static pressure.
 - 2) Airflow at VAV box.
 - 3) Other variables with floating point control.
 - b. Every 30 seconds for:
 - 1) Supply air temperature.
 - 2) Mixed air temperature.
 - 3) Water temperatures.
 - 4) Other variables with proportional only control.
 - c. Every 60 seconds for:
 - 1) Room temperature.
 - 2) Room humidity.
 - 3) Other variables with PI control.
 - d. Every 10 minutes for:
 - 1) Outside air temperature.
- 3. Reporting Accuracy and Stability of Control: Report values and maintain measured variables within tolerances as follows:
 - a. Water Temperature: Plus or minus 1 deg F.
 - b. Water Flow: Plus or minus 5 percent of full scale.
 - c. Water Pressure: Plus or minus 2 percent of full scale.
 - d. Space Temperature: Plus or minus 1 deg F.
 - e. Ducted Air Temperature: Plus or minus 1 deg F.
 - f. Outside Air Temperature: Plus or minus 2 deg F.
 - g. Temperature Differential: Plus or minus 0.25 deg F.
 - h. Relative Humidity: Plus or minus 5 percent.
 - i. Airflow (Pressurized Spaces): Plus or minus 3 percent of full scale.
 - j. Airflow (Measuring Stations): Plus or minus 5 percent of full scale.
 - k. Airflow (Terminal): Plus or minus 10 percent of full scale.
 - I. Air Pressure (Space): Plus or minus 0.01-inch wg.
 - m. Air Pressure (Ducts): Plus or minus 0.1-inch wg.
 - n. Carbon Monoxide: Plus or minus 5 percent of reading.
 - o. Carbon Dioxide: Plus or minus 50 ppm.
 - p. Electrical: Plus or minus 5 percent of reading.
- B. Communications protocol: BACnet protocol per the latest version of ASHRAE Standard 135 and communicate using ISO 8802-3 (Ethernet) datalink/physical layer protocol.

- C. Engineering units: English.
- D. Provide at least 10% spare I/O connections on each controller.
- E. Components shall operate within 32 deg F to 122 deg F and 5-85% relative humidity, non-condensing.

1.6 SEQUENCE OF OPERATION

A. Refer to Section 23 09 93 "Sequence of Operations for HVAC Controls and for requirements that relate to this Section. Refer to Mechanical drawings M-800 Series for the "Sequence of Operations for HVAC Controls".

1.7 ACTION SUBMITTALS

- A. Product Data: Include manufacturer's technical literature for each control device. Indicate dimensions, capacities, performance characteristics, electrical characteristics, finishes for materials, and installation and startup instructions for each type of product indicated.
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 1. Bill of materials of equipment indicating quantity, manufacturer, and model number.
 - 2. Schematic flow diagrams for each system showing fans, pumps, coils, dampers, valves, and control devices.
 - 3. Wiring Diagrams: Power, signal, and control wiring. Differentiate between factory and field installed wiring.
 - 4. Wire Tabulation List: wire ID, "to" and "from", and wire color.
 - 5. Details of control panel faces, including controls, instruments, and labeling.
 - 6. Written description of sequence of operation.
 - 7. Schedule of dampers including size, leakage, and flow characteristics.
 - 8. Schedule of valves including flow characteristics.

1.8 INFORMATIONAL SUBMITTALS

- A. Data Communications Protocol Certificates: Certify that each proposed DDC system component complies with ASHRAE 135.
- B. Qualification Data: For Installer and manufacturer.
- C. Field quality-control test reports.
- D. Warranty Certificates
- 1.9 CLOSEOUT SUBMITTALS
- A. Operation and Maintenance Data: For HVAC instrumentation and control system to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 01 include the following:

- 1. Maintenance instructions and lists of spare parts for each type of control device and compressed-air station.
- 2. Interconnection wiring diagrams with identified and numbered system components and devices.
- 3. Inspection period, cleaning methods, cleaning materials recommended, and calibration tolerances.
- 4. Calibration records and list of set points.
- 5. Programming manuals.
- 6. Maintenance instructions.
- 7. Record documents ("as-builts"), including updated schematic diagrams, wiring diagrams, and control sequences.
- 8. Training documentation.
- 9. Contact information of service contractor and parts suppliers.

1.10 QUALITY ASSURANCE

- A. Installing contractor must be a manufacturer's branch office or an authorized representative of a Direct Digital Control (DDC) equipment manufacturer that provides engineering and commissioning of the DDC equipment. Submit written confirmation of such authorization from the manufacturer. Indicate in letter of authorization that installing contractor has successfully completed all necessary training required for engineering, installation, and commissioning of equipment and systems and that such authorization has been in effect for a period of not less than three years. DDC equipment may or may not be required to be installed by this contractor as part of the project, but the intent of this quality assurance specification is to ensure that the installing contractor has the capabilities to engineer, install, and commission the field devices supplied under this section for temperature control.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- C. Comply with ASHRAE 135 for DDC system components.
- D. Comply with the following:
 - 1. UL-916; Energy Management Systems.
 - 2. UL-873; Temperature Indication and Regulating Equipment.
 - 3. UL-864, Subcategories UUKL, UOXX, UDTZ; Fire Signaling and Smoke Control Systems.
 - 4. FCC, Part 15, Subpart J, Class A Computing Devices.

1.11 DELIVERY, STORAGE, AND HANDLING

A. Factory-Mounted Components: Where control devices specified in this Section are indicated to be factory mounted on equipment, arrange for shipping of control devices to equipment manufacturer.

1.12 COORDINATION

- A. Coordinate location of thermostats, gas sensors and other exposed control sensors with plans and room details before installation.
- B. Coordinate supply of conditioned electrical branch circuits for control units and operator workstation.
- C. Coordinate equipment with Division 26 to achieve compatibility with motor starters and annunciation devices.
- D. Coordinate interface of DDC controllers with Section 28 46 21.11 "Addressable Fire-Alarm System". Interface of mechanical equipment shutdown shall be interfaced with the fire alarm system upon detection.

1.13 WARRANTY

A. Provide warranty on all parts and labor for one year starting at the date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.

2.2 CONTROL SYSTEM

A. Refer to Section 23 09 24 "Direct Digital Control System for HVAC" for requirements that relate to this Section.

2.3 INTERFACE WITH DDC EQUIPMENT

- A. I/O Interface: Hardwired inputs and outputs may tie into system through controllers. Protect points so that shorting will cause no damage to controllers. Systems which command multiple outputs over a single pair of wires, such as power line carrier systems, are not acceptable.
 - 1. Binary Inputs: Allow monitoring of on-off signals without external power.
 - 2. Pulse Accumulation Inputs: Accept up to 10 pulses per second.
 - 3. Analog Inputs: Allow monitoring of low-voltage (0- to 10-V dc), current (4 to 20 mA), or resistance signals.
 - 4. Binary Outputs: Provide on-off or pulsed low-voltage signal, selectable for normally open or normally closed operation with three-position (on-off-auto) override switches and status lights.

- 5. Analog Outputs: Provide modulating signal, either low voltage (0- to 10-V dc) or current (4 to 20 mA) with status lights, two-position (auto-manual) switch, and manually adjustable potentiometer.
- 6. Tri-State Outputs: Provide two coordinated binary outputs for control of threepoint, floating-type electronic actuators.
- 7. Universal I/Os: Provide software selectable binary or analog outputs.
- 8. SPDT Output Relays: Indicate status with an LED.
- B. Power Supplies: Transformers with Class 2 current-limiting type or overcurrent protection; limit connected loads to 80 percent of rated capacity. DC power supply shall match output current and voltage requirements and be full-wave rectifier type with the following:
 - 1. Output ripple of 5.0 mV maximum peak to peak.
 - 2. Combined 1 percent line and load regulation with 100-mic.sec. response time for 50 percent load changes.
 - 3. Built-in overvoltage and overcurrent protection and be able to withstand 150 percent overload for at least 3 seconds without failure.
- C. Power Line Filtering: Internal or external transient voltage and surge suppression for workstations or controllers with the following:
 - 1. Minimum dielectric strength of 1000 V.
 - 2. Maximum response time of 10 nanoseconds.
 - 3. Minimum transverse-mode noise attenuation of 65 dB.
 - 4. Minimum common-mode noise attenuation of 150 dB at 40 to 100 Hz.
- D. Control Panels:
 - 1. Provide panel enclosures for all DDC controllers and associated function modules. All controls to be in enclosures without exception. Panels will be approved provided all conduit is bonded and grounded.
 - 2. Provide UL listed cabinets for use with line voltage devices.
 - 3. NEMA Rating:
 - a. Inside: NEMA-1.
 - b. Outside: NEMA-3R or NEMA-4.
 - 4. Constructed of steel or extruded aluminum, with hinged door, keyed lock, and baked enamel finish. Install controls, relays, transducers, and automatic switches inside panels. Label devices with permanent printed labels and provide as-built wiring/piping diagram within enclosure. Provide raceways for wiring and poly within panel for neat appearance. Provide termination blocks for all wiring terminations. Label outside of panel with panel number corresponding to plan tags and as-built control drawings as well as building system(s) served.
 - 5. Control panels that have devices or terminations that are fed or switch 50V or higher shall enclose the devices, terminations, and wiring so that Personal Protective Equipment (PPE) is not required to service the under 50V devices and terminations within the control panel. As an alternative, a separate panel for only the 50V and higher devices may be provided and mounted adjacent to the under 50V control panel.

- 6. For panels that have 120VAC power feeds provide a resettable circuit breaker. Provide label within the panel indicating circuit number of 120VAC serving panel
- 7. Provide a service shutdown toggle switch for each air handling unit system located inside the temperature control panel that will initiate a logical shutdown of the air handling unit system. Label the switch so it is clear which position is shut down and which is auto.
- E. Interface with Other Systems: All hardware and software required to provide the specified interactions with other systems, such as fire alarm, security, and lighting systems.

2.4 ELECTRONIC SENSORS AND TRANSMITTERS

- A. General Requirements:
 - 1. Vibration and corrosion resistant; for wall, immersion, or duct mounting as required.
 - 2. For wall, immersion, or duct mounting as required.
 - a. Architectural housing for office space mounting.
 - b. Weatherproof/sunshield housing for outdoors.
 - c. Thermowell housing for water applications.
 - 1) Non-corrosive fluids below 250 deg F: brass or stainless steel.
 - 2) Other applications: 300 series stainless steel.
 - d. Protective housing for duct mounting.
 - 3. The sensor/transducer shall be selected to withstand ambient conditions, including moisture or condensation and transient conditions for temperatures, pressures, humidities, etc.
 - 4. Transducers may be supplied as an integral unit with the field sensor, or as part of the controller.
 - 5. The sensor/transducer shall be appropriately selected to most closely match the expected sensing range.
 - 6. Use a transmitter where the sensor is more than 100 feet from its associated controller, there is excessive electrical noise present, or the controller cannot accept direct sensor input, a 4-20mA type.
 - 7. All temperature and humidity sensors shall be of the same manufacturer.
 - 8. All pressure transmitters and transducers shall be of the same manufacturer.
- B. RTDs and Transmitters:
 - 1. Manufacturers:
 - a. BEC Controls Corporation.
 - b. MAMAC Systems, Inc.
 - c. RDF Corporation.
 - 2. Accuracy: Plus or minus 0.2 percent at calibration point.
 - 3. Wire: Twisted, shielded-pair cable.

- 4. Insertion Elements in Ducts: Single point, 18 inches long; use where not affected by temperature stratification or where ducts are smaller than 9 sq. ft.
- 5. Averaging Elements in Ducts: 18 inches long, rigid; use where prone to temperature stratification or where ducts are larger than 9 sq. ft.; length as required.
- 6. Insertion Elements for Liquids: Brass socket with minimum insertion length of 2-1/2 inches.
- 7. Room Sensor Cover Construction: Manufacturer's standard locking covers.
 - a. Set-Point Adjustment: Concealed.
 - b. Set-Point Indication: Concealed.
 - c. Thermometer: Concealed.
 - d. Color: White
 - e. Orientation: Vertical.
- 8. For Maintenance Areas: Terminal unit sensors shall be provided with blank covers and no adjustments.
- 9. Outside-Air Sensors: Watertight inlet fitting, shielded from direct sunlight.
- C. Humidity Sensors: Dew point temperature, chilled mirror type using platinum RTD, 4 wire, 100-ohm temperature sensing element with a 4-20mA transmitter.
 - 1. Manufacturers:
 - a. General Eastern Instruments.
 - b. Hy-Cal.
 - 2. Accuracy: 1 deg F.
 - 3. Room Sensor Dewpoint Range: -10 to 140 deg F.
 - 4. Room Sensor Ambient Range: 32 to 140 deg F.
 - 5. Repeatability: 0.1 deg F.
 - 6. Hysteresis: None
 - 7. Long-term Stability: 1 percent relative humidity drift per year.
- D. Pressure Transmitters/Transducers:
 - 1. Manufacturers:
 - a. BEC Controls Corporation.
 - b. General Eastern Instruments.
 - c. MAMAC Systems, Inc.
 - d. ROTRONIC Instrument Corp.
 - e. TCS/Basys Controls.
 - f. Vaisala.
 - 2. Static-Pressure Transmitter: Nondirectional sensor with suitable range for expected input, and temperature compensated.
 - a. Accuracy: 2 percent of full scale with repeatability of 0.5 percent.
 - b. Output: 4 to 20 mA.
 - c. Building Static-Pressure Range: 0- to 0.25-inch wg.

- d. Duct Static-Pressure Range: 0- to 5-inch wg.
- 3. Water Pressure Transducers: Stainless-steel diaphragm construction, suitable for service; minimum 150-psig operating pressure; linear output 4 to 20 mA.
- 4. Water Differential-Pressure Transducers: Stainless-steel diaphragm construction, suitable for service; minimum 150-psig operating pressure and tested to 300-psig; linear output 4 to 20 mA.
- 5. Differential-Pressure Switch (Air or Water): Snap acting, with pilot-duty rating and with suitable scale range and differential.
- 6. Pressure Transmitters: Direct acting for gas, or liquid service; range suitable for system; linear output 4 to 20 mA.
- 7. Air Filters: Provide filters on all pressure probes in return air systems.
- E. Room Sensor Cover Construction: Manufacturer's standard locking covers.
 - 1. Set-Point Adjustment: Concealed.
 - 2. Set-Point Indication: Concealed.
 - 3. Thermometer: Concealed.
 - 4. Color: White
 - 5. Orientation: Vertical.
- F. Room sensor accessories include the following:
 - 1. Insulating Bases: For sensors located on exterior walls.
 - 2. Guards: Locking; heavy-duty, transparent plastic; mounted on separate base.
 - 3. Adjusting Key: As required for calibration and cover screws.

2.5 STATUS SENSORS

- A. Status Inputs for Fans: Differential-pressure switch with pilot-duty rating and with adjustable range of 0- to 5-inch wg.
- B. Status Inputs for Electric Motors: Comply with ISA 50.00.01, current-sensing fixed- or split-core transformers with self-powered transmitter, adjustable and suitable for 175 percent of rated motor current.
- C. Voltage Transmitter (100- to 600-V ac): Comply with ISA 50.00.01, single-loop, self-powered transmitter, adjustable, with suitable range and 1 percent full-scale accuracy.
- D. Power Monitor: 3-phase type with disconnect/shorting switch assembly, listed voltage, and current transformers, with pulse kilowatt hour output and 4- to 20-mA kW output, with maximum 2 percent error at 1.0 power factor and 2.5 percent error at 0.5 power factor.
- E. Current Status Switches:
 - 1. Self-powered, solid-state with adjustable trip current, selected to match current and system output requirements
 - 2. Provide for each fan or pump specified or shown on point list. Set threshold adjustment to indicate belt or coupling loss. Readjust threshold for proper operation after final balancing is completed. Use the variable frequency drive

(VFD) integrated relay output for motor status, if provided on the VFD, in lieu of a discrete current switch.

- 3. Current Sensor: Provide Automation Components, Inc (ACI) or equivalent.
- F. Current Sensors: Series
 - 1. Provide current sensors produce a digital logic level output for monitoring. Series-connect current sensors produce a digital logic level output as signal feedback to monitor the current flowing of the HVAC equipment. Operating temperature range -25 to 85 degrees C. Provide solid core or split core Vdc output current transmitters. Current sensor to have a five-year limited warranty.
 - 2. Current Sensor: Provide Honeywell CS Series or equivalent.
- G. Water-Flow Switches:
 - 1. Bellows-actuated mercury or snap-acting type with pilot-duty rating, stainlesssteel or bronze paddle, with appropriate range and differential adjustment, in NEMA 250, Type 1 enclosure NTP fitting, rated for 300 psig. for chilled water applications or 150 psig. other applications.
 - 2. Manufacturers:
 - a. BEC Controls Corporation.
 - b. I.T.M. Instruments Inc.
- H. Position Sensors:
 - 1. Rotary Switches: cam action, lever, or proximity type, accuracy plus or minus 1 percent of full span, repeatability plus or minus 0.5 percent of full span, maximum temperature 125 deg F.
 - 2. Door Position Switches: magnetic proximity type
- I. Electronic Valve/Damper Position Indicator: Visual scale indicating percent of travel and 2- to 10-V dc, feedback signal.
- J. Position Sensors:
 - 1. Rotary Switches: cam action, lever, or proximity type, accuracy plus or minus 1 percent of full span, repeatability plus or minus 0.5 percent of full span, maximum temperature 125 deg F.
 - 2. Door Position Switches: magnetic proximity type.
- 2.6 GAS DETECTION EQUIPMENT
- A. Standalone Carbon Monoxide, Carbon Dioxide, and Nitrogen Dioxide Detectors and Controllers
 - 1. Available Manufacturers:
 - a. B. W. Technologies.
 - b. CEA Instruments, Inc.
 - c. Honeywell International Inc.; Home & Building Control.

- d. INTEC Controls, Inc.
- e. MSA Canada Inc.
- f. TSI Incorporated.
- g. Vaisala.
- h. Vulcain Inc.
- i. Brasch Manufacturing Company.
- j. General Analysis Corporation.
- k. Macurco Inc.
- I. MDA Scientific
- m. Toxalert.
- 2. Controller
 - a. General: Microprocessor controlled, capable of performing the specified sequence of operation.
 - b. Enclosure: Corrosion resistant.
 - c. Operating Temperature Range: 32 to 104 deg F.
 - d. Operating Relative Humidity Range: 15 to 90%, non-condensing.
 - e. Input Power: 120V connection. 24V with transformer is acceptable.
 - f. Outputs:
 - 1) Indicating Lights: For power and alarm.
 - 2) Audible Alarm: with manual silence switch.
 - 3) Ventilation Equipment Activation Relay: 120V, 5A at 240 VAC.
 - 4) Fault Alarm Relay: 24V, to signal building automation system.
 - 5) Activate ventilation equipment when power to controller fails.
 - g. Accessories:
 - 1) Calibration kit.
 - Splash Protection: Corrosion-resistant splash guard with transparent cover to see indicating lights, or NEMA rating 3R or higher.
- 3. Sensors
 - a. General: Electrochemical, factory calibrated.
 - b. Accuracy: <u>+</u>5%.
 - c. Minimum Life: 2 years
 - d. Repeatability: <u>+</u>10% at calibration point.
- 4. Alternates
 - a. A separate controller with remote transmitters is permitted.
 - b. Combination carbon dioxide / nitrogen dioxide sensors or transmitters are permitted.
- B. Carbon Monoxide Detectors: Single or multichannel, dual-level detectors using solidstate plug-in sensors with a 3-year minimum life; suitable over a temperature range of 32 to 104 deg F; with 2 factory-calibrated alarm levels at 50 and 100 ppm in a heavy-gauge aluminum NEMA 1 enclosure.

- C. Carbon Dioxide Sensor and Transmitter: Single detectors using solid-state infrared sensors; suitable over a temperature range of 23 to 130 deg F and calibrated for 0 to 2 percent, with continuous or averaged reading, 4- to 20-mA output; range 0 to 2000 ppm, self-calibrating, for wall or duct mounting.
- D. Nitrogen Dioxide Detection System: packaged system with microcontroller, sensor(s), control relays and contacts in a heavy-gauge aluminum NEMA 1 enclosure.
 - 1. Detection Resolution: Plus or minus 0.1 ppm.
 - 2. Ambient Temperature Range: Minus 4 to plus 113 deg F (minus 20 to 45 deg C).
 - 3. Ambient Humidity Range: 10 to 95 percent relative humidity.
 - 4. Low alert level adjustable in increments of 0.1 ppm.
 - 5. Indicator lights for power, relay status, and alarm condition.
 - 6. Protected against static discharge, excessive electrical noise, and tested in accordance with ANSI/UL 1244.
 - 7. Output relays providing a normally closed set of contacts for the alert states and the alarm states, which will automatically operate ventilation equipment on power loss to the sensor.
 - 8. If a large area must be monitored with multiple sensors, a controller system with remote sensors may be used.
 - 9. Electro-mechanical alarm horn.

2.7 CARBON DIOXIDE (CO2) SENSOR

A. Provide a Carbon Dioxide (CO2) sensor that shall utilize non-dispersive infrared (NDIR) technology. The sensor shall have a linear analog output over a range of 0-2000 ppm and have built in display of CO2 level. The sensor shall have an automatic calibration algorithm that will compensate for sensor drift over time due to sensor element degradation. Unit shall be provided with a 0-10VDC or 4-20mA analog output that is selectable and a field adjustable relay alarm output. Accuracy shall be better than $\pm 5\%$ of reading or ± 50 ppm whichever is higher. The sensor shall be user calibratable with a minimum calibration interval of five years.

2.8 FLOW MEASURING STATIONS

- A. Thermal dispersion air flow stations:
 - 1. Probe Sensor Density:

Area	(sq.	ft.)	Sensors
------	------	------	---------

a.	<= 1.5	2
b.	>1.5 to <4	4
C.	4 to <8	6
d.	8 to <12	8
e.	12 to <16	12
f.	>=16	15

- 2. Airflow Sensor Accuracy: ±2% of reading
- 3. Calibrated Range: 0-2500 FPM for duct applications and 5000 FPM for fan inlet applications
- 4. Temperature Sensor Accuracy: ±0.15°F

- 5. Temperature: -20°F to +140°F
- 6. Relative Humidity: 0 to 95% (non-condensing)
- B. Provide transmitter that will average up to sixteen sensors and provide two field selectable linear analog output signals (4-20mA and 0-10 VDC) proportional to airflow and temperature. Sensor electronic circuitry other than the temperature sensors shall not be exposed to the air stream and shall be protected from moisture to prevent failure.
- C. Fan inlet piezometers:
 - 1. Where fan inlet piezometers are provided by makeup air manufacturer, these shall be used by the control contractor for air flow measurement. The air velocity transducers shall be provided under this Section and sized as described below.
 - 2. Provide transmitter that will average up to sixteen sensors and provide two field selectable linear analog output signals (4-20mA and 0-10 VDC) proportional to airflow and temperature. Sensor electronic circuitry other than the temperature sensors shall not be exposed to the air stream and shall be protected from moisture to prevent failure.

2.9 WATER FLOW SENSORS

- 1. Manufacturers:
 - a. Onicon Inc.
 - b. Emerson Rosemount
 - c. Yokogawa.
- 2. Provide an Electromagnetic Flow Meter complete with integral electronics module. The flow meter shall be either a full-bore flanged meter or insertion style meter installed in the supply pipe of the system to be measured following the manufacturer's installation instructions. Full bore style flow meters shall be installed via flanges matching the ANSI class (150, 300) required for the application.
 - a. The installing contractor is responsible for providing suitable mating flanges. Insertion style flow meters shall be installed through a 1" full port ball valve to enable insertion and removal of the meter without system shutdown. Insertion flow meters shall be hand-insertable up to 400 psi.
- 3. The manufacturer shall provide a certificate of NIST traceable wet-calibration for each flow meter. Accuracy shall be as follows:
- 4. \pm 1% of reading over a 10:1 turndown (from 2 to 20 ft/s)
- 5. Overall rangeability shall be from 0.25 ft/s to 20 ft/s (80:1 turndown ratio).
- 6. The flow meter shall have a maximum operating pressure of 400 PSI, maximum operating temperature of 2000 F (optional 3000 F peak) and a pressure drop of less than 1 PSI at 17 feet per second flow velocity.
- 7. The flow meter shall have a minimum of one analog output, 0-10 VDC or 4-20 mA for connection to the BAS for liquid flow rate and a scalable dry contact output for totalization unless the flow meter is connected to a BTU measurement system that will provide this output or be directly integrated to the BAS. The flow

meter shall also include integral frequency output for diagnostic purposes and for connection to local display. All outputs shall be linear with flow rate.

- 8. Local display of flow rate to be provided in a steel NEMA 4 remote wall mounted enclosure with internal terminal strip connections and shall be powered by 24 VAC or VDC and provide necessary power to flow meter.
- 9. The BTU measurement system shall provide a BACnet MSTP RS-485 communication interface that will provide information corresponding to total thermal energy transfer, supply temperature, return temperature, and liquid flow rate.
 - a. For meters that do not have integral BACnet communications, provide a separate gateway device that will provide a BACnet MSTP communication interface. All programming of the gateway device shall be provided by this contractor. Temperature sensors shall be calibrated and matched for the specific temperature range for each application. The calculated differential temperature used in the energy calculation shall be accurate to within + 0.150F (including the error from individual temperature sensors, sensor matching, input offsets, signal conditioning, and calculations).
 - b. When DDC PI control loops are specified in 23 09 93 that use flow or temperatures from the flow meter and BTU measurement system, provide a compatible discrete hardwired output to the DDC controller that is doing the control loop in addition to the information provide through the communication interface.

2.10 THERMOSTATS

- A. Manufacturers:
 - 1. Erie Controls.
 - 2. Danfoss Inc.; Air-Conditioning and Refrigeration Div.
 - 3. Heat-Timer Corporation.
 - 4. Sauter Controls Corporation.
 - 5. tekmar Control Systems, Inc.
 - 6. Theben AG Lumilite Control Technology, Inc.
- B. Combination Thermostat and Fan Switches: Line-voltage thermostat with push-button or lever-operated fan switch.
 - 1. Label switches "FAN ON-OFF" or "FAN HIGH-LOW-OFF" or "FAN HIGH-MED-LOW-OFF".
 - 2. Mount on single electric switch box.
- C. Remote-Bulb Thermostats (Type T5): On-off or modulating type, liquid filled to compensate for changes in ambient temperature; with copper capillary and bulb, unless otherwise indicated.
 - 1. Bulbs in water lines with separate wells of same material as bulb.
 - 2. Bulbs in air ducts with flanges and shields.
 - 3. Averaging Elements: Copper tubing with either single- or multiple-unit elements, extended to cover full width of duct or unit; adequately supported.

- 4. Scale settings and differential settings are clearly visible and adjustable from front of instrument.
- 5. On-Off Thermostat: With precision snap switches and with electrical ratings required by application.
- 6. Modulating Thermostats: Construct so complete potentiometer coil and wiper assembly is removable for inspection or replacement without disturbing calibration of instrument.
- D. Electric, Low-Limit Duct Thermostat: Snap-acting, single-pole, single-throw, manual- or automatic- reset switch that trips if temperature sensed across any 12 inches of bulb length is equal to or below set point.
 - 1. Bulb Length: Minimum 1 foot (3 m) for every square foot of coil surface.
 - 2. Quantity: One thermostat for every 20 sq. ft. of coil surface.
- E. Thermostat Accessories:
 - 1. Cover: Manufacturer's standard locking covers.
 - 2. Guards: Locking; heavy-duty, transparent plastic; mounted on separate base.
 - 3. Insulating Bases: For sensors located on exterior walls.

2.11 HUMIDISTATS

- A. Manufacturers:
 - 1. MAMAC Systems, Inc.
 - 2. ROTRONIC Instrument Corp.
- B. Duct-Mounting Humidistats: Electric insertion, 2-position type with adjustable, 2 percent throttling range, 20 to 80 percent operating range, and single- or double-pole contacts.

2.12 ACTUATORS

- A. Electronic Actuators: Direct-coupled type designed for minimum 60,000 full-stroke cycles at rated torque. Stroke time for 90-degree rotation 90 seconds or less for major equipment and 6 minutes or less for terminal equipment. Provide position feedback potentiometers connected to controller for closed loop control on major equipment analog control loops. Provide pilot positioners.
 - 1. Manufacturers:
 - a. Belimo Aircontrols (USA), Inc.
 - 2. Valves: Size for torque required for valve close off at maximum pump differential pressure. Provide operators and pilot positioners with linkages and brackets for mounting on control valve. Design mounting and/or support to provide no more than 5% hysteresis in either direction.
 - 3. Dampers: Size for running torque calculated as follows:
 - a. Parallel-Blade Damper with Edge Seals: 7 inch-lb/sq. ft. of damper.
 - b. Opposed-Blade Damper with Edge Seals: 5 inch-lb/sq. ft. of damper.

- c. Dampers with 2- to 3-Inch wg of Pressure Drop or Face Velocities of 1000 to 2500 fpm: Increase running torque by 1.5.
- d. Dampers with 3- to 4-Inch wg of Pressure Drop or Face Velocities of 2500 to 3000 fpm: Increase running torque by 2.0.
- 4. Coupling: V-bolt and V-shaped, toothed cradle.
- 5. Overload Protection: Electronic overload or digital rotation-sensing circuitry.
- 6. Fail-Safe Operation: Mechanical, spring-return mechanism. Provide external, manual gear release on nonspring-return actuators.
- 7. Power Requirements (Two-Position Spring Return): 24 or 120-V ac.
- 8. Power Requirements (Modulating): Maximum 10 VA at 24-V ac or 8 W at 24-V dc.
- 9. Proportional Signal: 2- to 10-V dc or 4 to 20 mA, and 2- to 10-V dc position feedback signal.
- 10. Temperature Rating: 40 to 104 deg F.
- 11. Temperature Rating (Smoke Dampers): Minus 22 to plus 250 deg F.
- 12. Run Time: 12 seconds open, 5 seconds closed.
- 13. Provide external adjustable stops on damper actuators.
- 14. Actuator Housing: Molded or die-cast zinc or aluminum. Terminal unit actuators may be high-impact plastic with ambient temperature rating of 50 to 140 deg F unless located in return-air plenums.

2.13 CONTROL VALVES

- A. Manufacturer: Basis-of-Design Product: The design is based on the following:
 - 1. Belimo Air Controls (USA), Inc.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Honeywell
 - 2. Siemens
 - 3. Johnson Controls, Inc.
- C. Control Valves: Factory fabricated, of type, body material, and pressure class based on maximum pressure and temperature rating of piping system, unless otherwise indicated.
- D. Hydronic system globe valves shall have the following characteristics:
 - 1. NPS 2 and Smaller:
 - a. Class 125 bronze body, bronze trim, rising stem, renewable composition disc, and screwed ends with backseating capacity repackable under pressure.
 - 2. NPS 2-1/2 and Larger: Class 125 iron body, bronze trim, rising stem, plug-type disc, flanged ends, and renewable seat and disc.
 - 3. Internal Construction: Replaceable plugs and stainless-steel or brass seats.

- a. Single-Seated Valves: Cage trim provides seating and guiding surfaces for plug on top and bottom.
- b. Double-Seated Valves: Balanced plug; cage trim provides seating and guiding surfaces for plugs on top and bottom.
- 4. Sizing: 5-psig maximum pressure drop at design flow rate or the following:
 - a. Two Position: Line size.
 - b. Two-Way Modulating: Either the value specified above or twice the load pressure drop, whichever is more.
 - c. Three-Way Modulating: Twice the load pressure drop, but not more than value specified above.
- 5. Flow Characteristics: Two-way valves shall have equal percentage characteristics; three-way valves shall have linear characteristics.
- 6. Close-Off (Differential) Pressure Rating: Combination of actuator and trim shall provide minimum close-off pressure rating of 150 percent of total system (pump) head for two-way valves and 100 percent of pressure differential across valve or 100 percent of total system (pump) head.
- E. Characterized Ball Valves: The following manufacturers are acceptable: Belimo, Air Controls (USA), and Johnson Controls. Forged brass or bronze body, stainless steel shaft and ball, reinforced Teflon or PTFE ball seals, double O-ring stem seals, characterized disk, maximum of ANSI Class IV (0.01%) leakage, suitable for use on water systems at 150 psig. and 212° F. Minimum size for ball valves shall be 0.4 Cv.
 - 1. Pressure Rating for NPS 1 and Smaller: Nominal 600 psi.
 - 2. Pressure Rating for NPS 1-1/2 through NPS 2: Nominal 400 psi.
 - 3. Close-off Pressure: 200 psig.
 - 4. Process Temperature Range: Zero to 250 deg F.
 - 5. Control Port Leakage: 0%
 - 6. Body and Tail Piece: Cast bronze ASTM B61, ASTM B62, ASTM B584, or forged brass with nickel plating.
 - 7. End Connections: Threaded (NPT) ends.
 - 8. Ball: stainless steel.
 - 9. Stem and Stem Extension:
 - 10. Material to match ball.
 - 11. Blowout-proof design.
 - 12. Ball Seats: Reinforced PTFE.
 - 13. Stem Seal: Reinforced PTFE packing ring with a threaded packing ring follower to retain the packing ring under design pressure with the linkage removed. Alternative means, such as EPDM O-rings, are acceptable if an equivalent cycle endurance can be demonstrated by testing.
 - 14. Flow Characteristic: Equal percentage.
- F. Butterfly Valves: 200-psig, 150-psig maximum pressure differential, ASTM A 126 castiron or ASTM A 536 ductile-iron body and bonnet, extended neck, stainless-steel stem, field-replaceable EPDM or Buna N sleeve and stem seals.
 - 1. Body Style: Wafer or Lug.
 - 2. Disc Type: Nickel-plated ductile iron or Elastomer-coated ductile iron.

- 3. Sizing: 1-psig maximum pressure drop at design flow rate.
- 4. Close-Off (Differential) Pressure Rating: Combination of actuator and trim shall provide minimum close-off pressure rating of 150 percent of total system (pump) head for two-way valves and 100 percent of pressure differential across valve or 100 percent of total system (pump) head.
- G. Terminal Unit Control Valves: Pressure Independent Characterized Control valve (PICCV), bronze body, bronze trim, two or three ports ball valve as indicated, replaceable plugs and seats, and union and threaded ends.
 - 1. PICCV equal to Belimo Zone Tight ball valve (PIQCV)
 - 2. Combination of differential pressure regulator and 2-way valve.
 - 3. Rating: Class 125 for service at 125 psig. and 250 deg F operating conditions.
 - 4. Sizing: 3-psig maximum pressure drop at design flow rate, to close against pump shutoff head.
 - 5. Flow Characteristics: Two-way valves shall have equal percentage characteristics; three-way valves shall have linear characteristics.
 - 6. Performance:
 - a. Pressure Rating: 360 psig.
 - b. Close-off pressure of 200 psig.
 - c. Process Temperature Range: Between 36 deg F to 212 deg F.
 - d. Rangeability: 100 to 1.
 - 7. Integral Pressure Regulator: Located upstream of ball to regulate pressure, to maintain a constant pressure differential while operating within a pressure differential range of 5 to 50 psig.
 - 8. Body: Forged brass, nickel plated, and with threaded ends.
 - 9. Ball: Stainless steel.
 - 10. Stem and Stem Extension: Stainless steel, blowout-proof design.
 - 11. Ball Seats: Reinforced PTFE.
 - 12. Stem Seal: Reinforced PTFE packing ring stem seal with threaded packing ring follower to retain the packing ring under design pressure with the linkage removed. Alternative means, such as EPDM O-rings, are acceptable if equivalent cycle endurance can be achieved.
- H. All valves unless specifically noted on the plans or indicated below shall be globe style or Characterized Ball valves.

VALVE SERVING	TYPE Globe Butterfly (BF) Ball Press Inde- pendent Ball (PICCV Ball)	SIGNAL 0-10 VDC 2-Position Elect	SPRING RETURN REQUIRED Yes No	FAIL POSITION Open (thru Coil) Closed (by- pass Coil) Last Position
Booster Reheat Coil	PICCV Ball	0-10 VDC	No	Last Position
Radiation w/Reheat	PICCV Ball	0-10 VDC	No	Last Position
Standalone Radiation	PICCV Ball	0-10 VDC	No	Last Position
Cabinet Unit Heaters	PICCV Ball	2-Pos Elect	Yes	Open
Unit Heaters	PICCV Ball	2-Pos Elect	Yes	Open

2.14 CONTROL DAMPERS

- A. Manufacturer: Basis-of-Design Product: The design is based on the following:
 - 1. TAMCO 1500 Ultra-low Leakage (T. A. Morrison & Co. Inc.).
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Air Balance Inc.
 - 2. Don Park Inc.; Autodamp Div.
 - 3. United Enertech Corp.
 - 4. Vent Products Company, Inc.
- C. Dampers: AMCA-rated, parallel or opposed-blade design; 0.108-inch-minimum thick, galvanized-steel or 0.125-inch-minimum thick, extruded-aluminum frames with holes for duct mounting; damper blades shall not be less than 0.064-inch-thick galvanized steel with maximum blade width of 8 inches and length of 48 inches.
 - 1. Secure blades to 1/2-inch-diameter, zinc-plated axles using zinc-plated hardware, with oil-impregnated sintered bronze or nylon blade bearings, blade-linkage hardware of zinc-plated steel and brass, ends sealed against spring-stainless-steel blade bearings, and thrust bearings at each end of every blade.
 - 2. Operating Temperature Range: From minus 40 to plus 200 deg F.
 - 3. Edge Seals, Low-Leakage Applications: Use inflatable blade edging or replaceable rubber blade seals and spring-loaded stainless-steel side seals, rated for leakage at less than 10 cfm per sq. ft. of damper area, at differential pressure of 4-inch wg when damper is held by torque of 50 in. x lbf; when tested according to AMCA 500D.
- D. High-Performance Control Dampers: AMCA-rated.
 - 1. Frame: extruded-aluminum, 0.125-inch-minimum thick; frames with holes for duct mounting.

- 2. Blades: minimum 0.064-inch-thick aluminum with maximum blade width of 8 inches and length of 48 inches, with end caps.
- 3. Secure blades to 1/2-inch-diameter, zinc-plated axles using zinc-plated hardware, with Celcon inner bearing fixed to an aluminum hexagon blade pin rotating within a polycarbonate outer bearing inserted in the damper frame, blade-linkage hardware of zinc-plated steel and brass, ends sealed against spring-stainless-steel blade bearings, and thrust bearings at each end of every blade.
- 4. Operating Temperature Range: From minus 40 to plus 200 deg F
- 5. Edge Seals: Use inflatable blade edging or replaceable silicone rubber blade seals and spring-loaded stainless-steel side seals, rated for leakage at less than 1.7 cfm per sq. ft. of damper area, at differential pressure of 1-inch wg when damper is held by torque of 50 in. x lbf; when tested according to AMCA 500D.

2.15 ELECTRICAL POWER DEVICES

- A. Transformers:
 - 1. Transformer shall be sized for the total connected load, plus an additional 25 percent of connected load.
 - 2. Transformer shall be at least 100 VA.
 - 3. Transformer shall have both primary and secondary fuses.
 - 4. Transformer Construction:
 - a. Ferroresonant, dry type, convection cooled, 600V class. Transformer windings of Class H (220 deg C) insulated copper.
 - b. Use a Class H installation system throughout with operating temperatures not to exceed 150-deg Cover a 40-deg C ambient temperature.
 - c. Configure transformer primary for multi-input voltage. Include input terminals for source conductors and ground.
 - d. Manufacture transformer core using M-6 grade, grain-oriented, stress-relieved transformer steel.
 - e. Configure transformer secondary in a 240/120-V split with a 208-V tap or straight 120 V, depending on power output size.
 - f. Electrically isolate the transformer secondary windings from the primary windings. Bond neutral conductor to cabinet enclosure and output neutral terminal.
 - g. Include interface terminals for output power hot, neutral, and ground conductors.
 - h. Label leads, wires, and terminals to correspond with circuit wiring diagram.
 - i. Vacuum impregnate transformer with epoxy resin.
- B. DC Power Supply:
 - 1. Plug-in style suitable for mating with a standard eight-pin octal socket. Include the power supply with a mating mounting socket.
 - 2. Enclose circuitry in a housing.
 - 3. Include both line and load regulation to ensure a stable output. To protect both the power supply and the load, power supply shall have an automatic current limiting circuit.

- 4. Performance:
 - a. Output voltage nominally 25-V dc within 5 percent.
 - b. Output current up to 100 mA.
 - c. Input voltage nominally 120-V ac, 60 Hz.
 - d. Load regulation within 0.5 percent from zero- to 100-mA load.
 - e. Line regulation within 0.5 percent at a 100-mA load for a 10 percent line change.
 - f. Stability within 0.1 percent of rated volts for 24 hours after a 20-minute warmup.
- 2.16 CONTROL CABLE
- A. Paired Cable: NFPA 70, Type CMG.
 - 1. Multi-pair, twisted, No. 16 AWG, stranded (19x29) tinned-copper conductors.
 - 2. PVC insulation.
 - 3. Unshielded.
 - 4. PVC jacket.
 - 5. Flame Resistance: Comply with UL 1685.

2.17 ANALOG ELECTRONIC INSTRUMENT INDICATORS

- A. Panel mount type and at least 2" square.
- B. Output: analog needle type or digital with ½" high LED or backlit LCD displays.
- C. Marked in appropriate units (Degrees, PSI, %RH, GPM, CFM, etc.) and with appropriate range of values.
- D. Minimum accuracy of 1% of scale range.
- E. Digital units shall be scaled to show 3 digits plus 1 decimal point.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify that conditioned power supply is available to control units and operator workstation.
- B. Verify that pneumatic piping and duct-, pipe-, and equipment-mounted devices are installed before proceeding with installation.
- 3.2 SYSTEM DESIGN
- A. General Criteria:
 - 1. Size all control devices to properly supply and/or operate and control the apparatus served.
 - 2. Provide control devices suitable for the environment in which they will operate:

- a. All devices shall be constructed to withstand system temperatures and pressures.
- b. Devices used in outdoor ambient conditions shall be constructed to withstand those conditions or shall be suitably weather protected.
- c. Devices in corrosive environments shall be constructed of materials to withstand the effects of that environment.
- B. Control Dampers
 - 1. General:
 - a. Unless otherwise indicated, use opposed blade for modulating control dampers and use parallel blade dampers for two position (open/close) dampers and for mixing applications.
 - b. All blade linkage hardware shall have a corrosion resistant finish and be readily accessible for maintenance.
 - c. Damper construction material shall be the same as the connecting duct material. Exception: Aluminum damper may be used in a galvanized duct system.
 - d. Maximum single damper size shall be 48"x48". If total width or height exceeds maximum, use multiple dampers.
 - e. Locate actuators outside of the air stream, unless otherwise indicated.
 - 2. Sizing/selection criteria:
 - a. Two position dampers shall be sized as close as possible to duct size but in no case is the damper to be less than duct area.
 - b. When damper is part of an intake louver assembly, damper shall be same nominal size as louver unless specified otherwise on drawings.
 - c. All dampers used for mixing of airstreams shall be sized for 1800 to 2000 feet per minute velocity.
 - 3. All control dampers furnished by the control manufacturer are to be installed by the Mechanical Contractor under the coordinating control and supervision of the Control Contractor in locations shown on plans or where required to provide specified sequence of control
 - 4. Damper end switches, where required, shall be independently mounted to the damper drive shaft or auxiliary shaft attached to a damper drive blade. End switches shall be adjusted to prove the damper the position opposite the fail position of the damper actuator unless the control sequence requires a different position to be proven to accomplish the specified control sequence.
 - 5. Coordinate installation with the sheet metal installer to obtain smooth duct transitions where damper size is different than duct size. Blank off plates will not be accepted.
 - 6. Each operator shall serve a maximum damper area of 36 square feet. Where larger dampers are used, provide multiple operators.
- C. Control Valves
 - 1. Sizing/selection criteria:

- a. Valves with pressure drop greater than 50% of upstream pressure shall have sound reduction trim.
- b. Water Service:
 - 1) Characteristic: equal percentage for two-way valves; linear for three-way valves.
 - 2) Select control valves based on pressure drop calculations based on C_v values at 100% stroke.
 - 3) Heating: globe type, selected for a minimum of 25% of equipment subcircuit pressure drop but no more than maximum available pump head allowing 2 psi pressure drop for balancing valve.
- D. Air Temperature Sensors
 - 1. Ducts with cross-sectional area less than 3 square feet: single point type.
 - 2. Ducts with cross-sectional area more than 3 square feet: RTD type.
 - 3. Mixed air: averaging type.

3.3 INSTALLATION

- A. Install software in control units and operator workstation(s). Implement all features of programs to specified requirements and as appropriate to sequence of operation.
- B. Connect and configure equipment and software to achieve sequence of operation specified.
- C. Verify location of thermostats, humidistats, and other exposed control sensors with Drawings and room details before installation. Install devices 48 inches above the floor.
 - 1. Install averaging elements in ducts and plenums in crossing or zigzag pattern.
 - 2. Meet ADA requirements.
 - 3. Locate temperature sensors away from direct sunlight, diffuser air streams, and heat sources.
 - 4. Install thermostats and temperature sensors mounted on outside walls on insulated subbases.
 - 5. Install devices with visible readouts where the display can be easily read.
- D. Install guards on thermostats in the following locations:
 - 1. Entrances.
 - 2. Public areas.
 - 3. Where indicated.
- E. Install automatic dampers according to Section 23 33 00 "Air Duct Accessories."
- F. Install damper motors on outside of duct in warm areas, not in locations exposed to outdoor temperatures.
- G. Install labels and nameplates to identify control components according to Section 23 05 53 "Identification for HVAC Piping and Equipment."

- H. Install hydronic instrument wells, valves, and other accessories according to Section 23 21 16 Hydronic Piping Specialties."
- I. Install refrigerant instrument wells, valves, and other accessories according to Section 23 23 00 "Refrigerant Piping."
- J. Install duct volume-control dampers according to Section 23 31 13 "Metal Ducts".
- K. Install electronic and fiber-optic cables according to Division 27.
- L. Provide power wiring to each component requiring power, such as control panels. Use circuits dedicated for controls. For equipment on emergency power, use emergency power circuits for their controllers.
- M. Mount all control devices in accessible locations.
- N. Mount all control panels and switches that are in process areas on Stainless steel standoff plates with a minimum distance of 2" behind for cleaning.
- O. Interposing Relays:
 - 1. Provide interposing relays necessary for interfacing to low voltage outputs with 120 VAC or line voltage motor control.
 - a. Use Type C horsepower rated interposing relays for motors and electric heaters.
 - b. Use Type K interposing relays for other general-purpose use.
- P. Well-Mounted Sensors:
 - 1. Install thermal conducting compound.
 - 2. In pipe 2 ½ inches and smaller: install at elbow with tee fitting with well pointed upstream. Minimum 2" tee size.
 - 3. In pipe 3 inches and larger: install the element in the flow.
- Q. Low Limit Thermostats (Freezestats):
 - 1. Install low limit controls where indicated on the drawings or as specified. Unless otherwise indicated, install sensing element on the downstream side of heating coils.
 - 2. Mount units using flanges and element holders. Provide duct collars or bushings where sensing capillary passes through sheet metal housings or ductwork; seal this penetration to eliminate air leakage. Mount the units in an accessible location as to allow for resetting after low limit trips while still meeting manufacturer's installation requirements for proper function.
 - 3. Distribute (serpentine) sensing element horizontally across the coil to cover every square foot of coil; on larger coils this may require more than one instrument. Install controls at accessible location with mounting brackets and element duct collars where required.
- R. Air Flow Stations:

- 1. Install airflow stations in accordance with manufacturer's recommendations.
- S. Water Flow Sensors
 - 1. Install where indicated on the drawings and details for flow sensing in hydronic and/or steam piping systems. Do not install close to elbows, valves, or other piping specialties, which might affect the reading of the sensor; follow manufacturer's installation instructions.
 - 2. Where flow meters are located more than five feet above the floor or where they cannot be read due to equipment location, provide remote mounting of the flow meter display and programming controls. BTU Measurement System displays shall be located so that the display and programming controls are four to five feet above finished floor.
 - 3. All piping to and from sensors shall be by Section 23 21 13 contractor and shall comply with requirements of Section 23 21 13.
- T. Temperature Control Panels:
 - 1. Mount control panels adjacent to associated equipment on vibration-free walls or freestanding angle iron supports. All control panel openings shall be plugged. Conduits and other penetrations on the top of the cabinets shall be sealed on the exterior of the cabinet with silicone caulk to resist water penetration. One cabinet may accommodate more than one system in same equipment room. Provide permanent printed labeling for instruments and controls inside cabinet and engraved plastic nameplates on cabinet face.
 - 2. Provide as-built control drawings of all systems served by each local panel in a location adjacent to or inside of panel cover. Provide a protective cover or envelope for drawings.
 - 3. Provide NEMA 3R or 4 for all temperature control panels (TCP) inside the electrical enclosure serving:
 - a. AHU-1, MAU-11 and MAU-12 units.

3.4 ELECTRICAL WIRING AND CONNECTION INSTALLATION

- A. Install raceways, boxes, and cabinets according to Section 26 05 33 "Raceways and Boxes for Electrical Systems."
 - 1. Metal Conduit:
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. AFC Cable Systems; a part of Atkore International.
 - b. Allied Tube & Conduit; a part of Atkore International.
 - c. Electri-Flex Company.
 - d. Republic Conduit.
 - e. Southwire Company.
 - f. Thomas & Betts Corporation; A Member of the ABB Group.
 - g. Western Tube and Conduit Corporation.
 - h. Wheatland Tube Company

- 3. EMT: Comply with ANSI C80.3 and UL 797.
- B. Metal Fittings:
 - 1. Comply with NEMA FB 1 and UL 514B.
 - 2. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 3. Fittings, General: Listed and labeled for type of conduit, location, and use.
 - 4. Fittings for EMT:
 - a. Material: Steel.
 - b. Type: Setscrew.
 - 5. Expansion Fittings: Steel to match conduit type, complying with type XJ for steel, rated for environmental conditions where installed, and including flexible external bonding jumper.
 - 6. Joint Compound for FMC Approved, as defined in NFPA, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.
- C. Install building wire and cable according to Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."
- D. Minimum low voltage wiring gauge to be 18 AWG for outputs and 20 AWG for inputs. All low voltage wiring to be stranded
- E. Install signal and communication cable for communications horizontal cabling.
- F. Install signal and communication cable according to Division 27.
 - 1. All cabling to be installed in EMT raceway, unless otherwise noted.
 - 2. Bundle and harness multiconductor instrument cable in place of single cables where several cables follow a common path.
 - 3. Fasten flexible conductors, bridging cabinets and doors, along hinge side; protect against abrasion. Tie and support conductors.
 - 4. Number-code or color-code conductors for future identification and service of control system, except local individual room control cables.
 - 5. Install wire and cable with sufficient slack and flexible connections to allow for vibration of piping and equipment.
 - 6. Route wires parallel or perpendicular to the building structural elements.
 - 7. Do not route wires across telephone equipment areas.
 - 8. In enclosures, install wiring in plastic track.
 - 9. In controllers, wrap and secure all wiring.
 - 10. Install wires at least 3 inches away from hot surfaces, hot water pipes.
- G. Connect manual-reset limit controls independent of manual-control switch positions. Automatic duct heater resets may be connected in interlock circuit of power controllers.
- H. Connect hand-off-auto selector switches to override automatic interlock controls when switch is in hand position.

- I. Where the sensor voltage exceeds the controller's allowed input voltage, modify the circuit with resistor(s) so that the input voltage to the controller is as high as practical and below the controller's limit.
- J. For equipment powered by emergency power, provide power to the equipment's controller from an emergency power panel.

3.5 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust field-assembled components and equipment installation, including connections, and to assist in field testing. Report results in writing.

3.6 ADJUSTING

- A. Calibrating and Adjusting:
 - 1. Calibrate instruments.
 - 2. Make three-point calibration test for both linearity and accuracy for each analog instrument.
 - a. Use manufacturer's linearity curve to linearize the signal from each sensor.
 - 3. Calibrate equipment and procedures using manufacturer's written recommendations and instruction manuals. Use test equipment with accuracy at least double that of instrument being calibrated. Factory calibration does not replace field calibration.
 - 4. Control System Inputs and Outputs:
 - a. Check analog inputs at 0, 50, and 100 percent of span.
 - b. Check analog outputs using milliampere meter at 0, 50, and 100 percent output.
 - c. Check digital inputs using jumper wire.
 - d. Check digital outputs using ohmmeter to test for contact making or breaking.
 - e. Check resistance temperature inputs at 0, 50, and 100 percent of span using a precision-resistant source.
 - 5. Flow:
 - a. Set differential pressure flow transmitters for 0 and 100 percent values with 3-point calibration accomplished at 50, 90, and 100 percent of span.
 - b. Manually operate flow switches to verify that they make or break contact.
 - 6. Pressure:
 - a. Calibrate pressure transmitters at 0, 50, and 100 percent of span.
 - b. Calibrate pressure switches to make or break contacts, with adjustable differential set at minimum.

7. Temperature:

- a. Calibrate resistance temperature transmitters at 0, 50, and 100 percent of span using a precision-resistance source.
- b. Calibrate temperature switches to make or break contacts.
- 8. Stroke and adjust control valves and dampers without positioners, following the manufacturer's recommended procedure, so that valve or damper is 100 percent open and closed.
- 9. Stroke and adjust control valves and dampers, following manufacturer's recommended procedure, so that valve and damper is 0, 50, and 100 percent closed.
- 10. Provide diagnostic and test instruments for calibration and adjustment of system.
- 11. Provide written description of procedures and equipment for calibrating each type of instrument. Submit procedures review and approval before initiating startup procedures.
- B. Adjust initial temperature and humidity set points.
- C. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to three visits to Project during other than normal occupancy hours for this purpose.

3.7 DEMONSTRATION

- A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain HVAC instrumentation and controls. Refer to Division 01.
 - 1. The first training session, minimum 8 hours, shall take place just prior to Substantial Completion. Training shall include system operation, maintenance procedures, and operating the system software. Submit O&M manuals at least one week prior to training session.
 - 2. A follow-up training session, minimum 4 hours, shall take place approximately six months after Substantial Completion to assist troubleshooting answer questions.
 - 3. A second follow-up training session, minimum 4 hours, shall take place approximately twelve months after Substantial Completion (just before the end of the warrantee period) to assist troubleshooting answer questions.

END OF SECTION 23 09 00

SECTION 23 09 24 DIRECT DIGITAL CONTROL SYSTEM FOR HVAC

PART 1 - GENERAL

<u>1.1</u> <u>SCOPE</u>

- A. The work associated with this section will be bid as part of the Division 23 scope of work.
- B. Work in this section includes Direct Digital Control (DDC) panels, main communication trunk, software programming, and other equipment and accessories necessary to constitute a completely coordinated building Direct Digital Control (DDC) system. This system interfaced with Instrumentation and Controls for HVAC (Section 23 09 00) utilizing Direct Digital Control signals to operate actuated control devices will meet, in every respect, all operational and quality standards specified herein, a fully coordinated modification and extension via standard Web browser-IP address DDC of the City of Madison's Automation System.
- C. The system shall be modular in nature, and shall permit expansion of both capacity and functionality through the addition of sensors, actuators, ASCs, and operator devices.
- D. The failure of any single component or network connection shall not interrupt the execution of control strategies at other operational devices.

1.2 RELATED WORK

- A. Section 23 08 00 "Commissioning of HVAC."
- B. Section 23 05 93 "Testing, Adjusting, and Balancing for HVAC."
- C. Section 23 09 00 "Instrumentation and Controls for HVAC."
- D. Division 23 HVAC equipment provided to be controlled or monitored.

1.3 <u>REFERENCE</u>

A. Applicable provisions of Division 1 govern work under this section.

1.4 REFERENCE STANDARDS

- A. FCC Part 15, Subpart J, Class A Digital Electronic Equipment to Radio Communication Interference.
- 1.5 WORK NOT INCLUDED
- A. Section 23 09 00 work includes furnishing and installing all field devices, including electronic sensors for the DDC of this section, equipment, and all related field wiring, interlocking control wiring between equipment, pneumatic tubing, sensor mounting, etc., that is covered in that section.

B. Motorized control dampers and actuators, thermowells (temperature sensing wells), automatic control valves and their actuators are also covered in Section 23 09 00.

1.6 DESCRIPTION

- A. The DDC control work associated with this section shall be bid as part of the Temperature Control Contract scope of the Work.
- B. The Building Automation System (BAS) shall be an based on a hierarchical architecture incorporating the Niagara N4 Framework[™]. All Building Management Functions shall be operable from the existing Honeywell workstations.
- C. The BAS shall consist of the following:
 - 1. AX Supervisor Lon Web Connection.
 - 2. Building Operator's AX Supervisor Web Station.
 - 3. WEBs-N4[™] Direct Digital Control Panels.
 - 4. WEBs-N4[™] 600 Master Controls.
 - 5. Spyder Controllers Standalone Application Specific Controllers (ACSs).
 - 6. LonWorks Network Wiring.
 - 7. City of Madison Lan/Wan Integration.

1.7 OPEN COMMUNICATION

- A. Industry standard Open Communication Protocols shall be provided as specified in the applicable communication sections.
- B. LonWorks® compliance:
 - 1. The fully integrated Honeywell WEBs-N4[™] System shall be operable on the LonWorks[®] bus. General Purpose Controllers, Unitary Controllers, and PC-based centrals shall be able to operate and communicate on the 2-wire LonWorks[®] bus without the need of using gateways or drivers.
 - 2. The Systems Integrator shall after all hardware (devices/nodes and wiring) has been installed provide all necessary device installation, device configuration, device diagnostics, network variable binding and systems diagnostics.
 - 3. Access to the system, either locally in each building, or remotely from a central site or sites, shall be accomplished through standard Web browsers, via the Internet and/or local area network. Each network controller shall communicate to LonMark[™]/LonTalk[™] (IDC) and/or BACnet[™] (IBC) controllers.

1.8 QUALITY ASSURANCE

- A. Manufacturers:
 - 1. Control Works Inc.

E-mail marquis@charter.net P.O. 7066 Madison, WI 53706 608-347-6108

- B. Installer Qualifications:
 - 1. A firm specializing and experienced in DDC control system installation with a local service office within 60 miles of Madison and experience with similar installations for no less than five (5) years. All work to be done by qualified mechanics in the direct employ of this manufacturer.
 - 2. All engineering and commissioning work shall be done by qualified personnel in the direct employ of this manufacturer, or of an Authorized Representative of that manufacturer that provides engineering and commissioning of the manufacturers control equipment.
 - 3. Where installing contractor is an authorized representative of the control equipment manufacturer, submit written confirmation of such authorization. Indicate in letter of authorization that the installing contractor has successfully completed all necessary training required for the engineering, installation, and commissioning of equipment and systems to be provided for the project, and that such authorization has been in effect for a period of not less than three (3) years.
- C. Response Time:
 - 1. During warrantee period, four (4) hours or less, 24-hours/day, 7 days/week.
- D. Authorized Controls Integrator:
 - 1. The control contractor shall be a Honeywell ACI Authorized Integrator.
- E. Electrical Standards:
 - 1. Provide electrical products, which have been tested, listed and labeled by Underwriters' Laboratories (UL) and comply with NEMA standards.
 - 2. DDC Standards: DDC manufacturer shall provide written proof with shop drawings that the equipment being provided is in compliance with FCC rules governing the control of interference caused by Digital Electronic Equipment to Radio Communications (Part 15, Subpart J, Class A).

1.9 SUBMITTALS

- A. Include the following information:
 - 1. Details of construction, layout, and location of each temperature control panel within the building, including instruments location in panel and labeling. Indicate which piece of mechanical equipment is associated with each controller and what area within the building is being served by that equipment. For terminal unit control, provide a room schedule that lists mechanical equipment tag, room number of space served, address of DDC controller, and any other pertinent information required for service.

1.10 PRODUCT DATA

A. Submit manufacturer's specifications for each control device furnished, including installation instructions and startup instructions. General catalog sheets showing a series of the same device is not acceptable unless the specific model is clearly marked.

Annotated software program documentation shall be submitted for system sequences, along with descriptive narratives of the sequence of operation of the entire system involved. Shop drawings shall also contain complete software descriptions, calculations, and any other details required to demonstrate that the system has been coordinated and will properly function as a system. Submit wiring diagram for each electrical control device along with other details required to demonstrate that the system has been coordinated and will function as a system. Terminal identification for all control wiring shall be shown on the shop drawings.

- B. All control devices in public areas shall be selected by Architect from one of the manufacturer's standard colors.
- C. Submittal shall also include a copy of each of the graphics developed for the Graphic User Interface including a flowchart (site map) indicating how the graphics are to be linked to one another for system navigation. The graphics are intended to be 80% 90% complete at this stage with the only remaining changes to be based on review comments from the A/E design team and/or City's representative.

1.11 MAINTENANCE DATA

A. Submit maintenance data and spare parts lists for each control device. Include this data in maintenance manual.

1.12 RECORD DRAWINGS

- A. Prior to request for final payment provide complete composite record drawings to incorporate the DDC and Electric fieldwork. Provide application software on compact disk. Drawings shall be provided as AutoCAD[™] or Visio[™] compatible files. Copies of the record drawings shall be provided in addition to the documents on compact disk. All record drawings shall also be installed into the BAS server in a dedicated directory. Accurate Section 23 09 00 record drawings to be supplied by the Section 23 09 00 Contractor with the accuracy of these drawings being the responsibility of the Section 23 09 00 contractor. In the event that changes are required to the 23 09 00 supplied record drawings after they have been compiled by the 23 09 24 contractor, it shall be the 23 09 00 contractor's responsibility to provide updated composite record drawings incorporating the 23 09 24 record drawings.
- B. All software addressing for device communication shall be noted for all devices provided under this section and the communication addressing required for devices provided by others that are integrated into the direct digital control system provided under this section. Coordinate with the supplier of the equipment specified to be interfaced through digital communications for communication addressing. Provide circuit number of 120VAC panel power circuit(s) feeding each control panel on record drawings. Label circuit number(s) inside the panel served.
- C. Provide complete composite record drawings to incorporate the DDC and Electric fieldwork.

1.13 OPERATION AND MAINTENANCE DATA

A. All operations and maintenance data shall comply with the submission and content requirements specified under section GENERAL REQUIREMENTS.

1.14 MATERIAL DELIVERY AND STORAGE

A. Provide factory-shipping cartons for each piece of equipment and control device. This contractor is responsible for storage of equipment and materials inside and protected from the weather.

PART 2 - PRODUCTS

2.1 NETWORKING/COMMUNICATIONS

- A. The design of the BAS shall be networked as shown on the sheet M-806 for BAS-System Architecturre Network diagram. Inherent in the system's design shall be the ability to expand or modify the network either via a local network or a standard Web browser. A combination of the two networking schemes.
- B. City to provide network connections for the network Honeywell JACE 600 controllers.
- C. Local Network:
 - 1. Building DDC Panel Support:
 - a. The Digital Panel shall directly oversee a local network such that communications may be executed directly to and between ASCs. The Digital Panel version shall be referred to as the "Digital Panel(s)" throughout this document.
- D. Data Access:
 - 1. All operator devices either network resident or a standard Web browser, shall have the ability to access all point status and application data on the network.
 - 2. Access to system data shall not be restricted by the hardware configuration of the BAS.
 - 3. All operators shall have the ability to collect data for any property of any object and store this data for future use.
 - 4. The data collection shall be performed by log objects, resident in the controller that shall have, at a minimum, the following configurable properties:
 - a. Designating the log as interval or deviation.
 - b. For interval logs, the object shall be configured for time of day, day of week and the sample collection interval.
 - c. For deviation logs, the object shall be configured for the deviation of a variable to a fixed value. This value, when reached, will initiate logging of the object.

- d. For all logs, provide the ability to set the maximum number of data stores for the log and to set whether the log will stop collecting when full, or rollover the data on a first-in, first-out basis.
- e. Each log shall have the ability to have its data cleared on a time-based event or by a user-defined event or action.
- E. All log data shall be stored in a relational database in the controller and the data shall be accessed from a server (if the system is so configured) or a standard Web browser. All log data, when accessed from a server, shall be capable of being manipulated using standard SQL statements.
- F. All log data shall be available to the user in the following data formats:
 - 1. HTML (deal breaker).
 - 2. XML (deal breaker).
 - 3. Plain Text.
 - 4. Comma or tab separated values.
 - 5. PDF.
- G. All operators shall have the ability to archive its log data either locally (to itself), or remotely to a server or other controllers on the network. Provide the ability to configure the following archiving properties, at a minimum:
 - 1. Archive on time of day.
 - 2. Archive on user-defined number of data stores in the log (buffer size).
 - 3. Archive when log has reached its user-defined capacity of data stores.
 - 4. Provide ability to clear logs once archived.
- H. Measured and calculated analog and binary data shall be assignable to user definable trends for the purpose of collecting operator specified performance data over extended periods of time. Sample intervals of 1 minute to 24 hours, in one minute or one hour intervals, shall be provided. Each supervisory controller shall have a dedicated buffer for trend data and shall be capable of storing 16 trend logs. Each trend log shall have up to four points trended at 48 data samples each. Data shall be stored at the supervisory controller and up-loaded to the DDC system server when archiving is desired.
- I. Supervisory controllers shall automatically sample, calculate and store consumption totals on a daily, weekly, or monthly basis, user defined, for user-selected analog and binary pulse input type points.
 - 1. Totalization shall provide calculation and storage accumulations of up to 9,999,999 units (e.g., KWH, gallons KBTU, tons, etc.).
 - 2. The totalization routine shall have a sampling resolution of one minute.
 - 3. The user shall have the ability to define a warning limit. Unique, user specified messages shall be generated when the limit is reached.
 - 4. The information available from pulse totalization shall include, but not be limited to, the following:
 - a. Peak demand, with date and time stamp.
 - b. 24-hour demand log.
 - c. Accumulated KWH and therms for day.

- d. Sunday through Saturday KWH and therm usage.
- e. Demand KW annual history for past 12 periods.
- f. KWH and therm annual history for past periods.
- J. Supervisory controllers shall have the ability to count events, such as the number of times a pump or fan system is cycled on and off.
- K. The event totalization feature shall be able to store the records associated with a minimum of 9,999,999 events before reset.
- L. Global Data Sharing: global Data Sharing or Global point broadcasting shall allow point data to be shared between ASCs, when it would be inefficient or impractical to locate multiple sensors.
- M. General Network Design: Network design shall include the following provisions:
- N. Data transfer rates for alarm reporting and quick point status from multiple ASCs. The minimum baud rate shall be 9600 baud.
- O. Support of any combination of ASCs. A minimum of 100 ASCs shall be supported on a single local network. The bus shall be addressable for up to 255 ASCs.
- P. Detection of single or multiple failures of the ASCs or the network media.
- Q. Error detection, correction, and retransmission to guarantee data integrity.
- R. Commonly available, multiple sourced, networking components shall be used.
- S. Use of an industry standard protocol, such as Optomux, and IEEE RS-485 communications interface.
- T. The HVAC BAS provided under this section of the specifications shall consist of a distributed Client-Server, Local Area Network (LAN) based system, a dedicated local area network, routers, switchers, network nodes, direct digital control system and software to provide interoperability with the server software. The system is to be furnished and installed in its entirety by this supplier.
- U. The HVAC BAS shall be modular in design and scaleable in implementation from an initial installation of a single server with minimum of two concurrent operator workstations to a system with up to 40 concurrent operator workstations, unlimited web browser access (using Internet Explorer) to system information for monitoring and control functions, and field controller network interfaces to permit expansion to 60,000 physical hardware points.

2.2 WEB BROWSER CLIENTS

A. The system shall be capable of supporting an unlimited number of clients using a standard Web browser such as Internet Explorer[™] or Chrome or Firefox. Systems requiring additional software (to enable a standard Web browser) to be resident on the client machine, or manufacture-specific browsers shall not be acceptable.

- B. The Web browser software shall run on any operating system and system configuration that is supported by the Web browser. Systems that require specific machine requirements in terms of processor speed, memory, etc., in order to allow the Web browser to function with the BAS, shall not be acceptable.
- C. The Web browser shall provide the same view of the system, in terms of graphics, schedules, calendars, logs, etc., and provide the same interface methodology as is provided by the Graphical User Interface (if used). Systems that require different graphic views, different means of graphic generation, or that require different means of interacting with objects such as schedules, or logs, shall not be permitted.
- D. The Web browser client shall support at a minimum, the following functions:
 - 1. User log-on identification and password shall be required. If an unauthorized user attempts access, a blank web page shall be displayed. Security using Java authentication and encryption techniques to prevent unauthorized access shall be implemented.
 - a. Graphical screens developed for the GUI shall be the same screens used for the Web browser client. Any animated graphical objects supported by the GUI shall be supported by the Web browser interface.
 - b. HTML programming shall not be required to display system graphics or data on a Web page. HTML editing of the Web page shall be allowed if the user desires a specific look or format.
 - 2. Storage of the graphical screens shall be in the All operators/controllers, without requiring any graphics to be stored on the client machine. Systems that require graphics storage on each client are not acceptable.
 - 3. Real-time values displayed on a Web page shall update automatically without requiring a manual "refresh" of the Web page.
 - 4. Users shall have administrator-defined access privileges. Depending on the access privileges assigned, the user shall be able to perform the following:
 - a. Modify common application objects, such as schedules, calendars, and set points in a graphical manner.
 - b. Schedule times will be adjusted using a graphical slider, without requiring any keyboard entry from the operator.
 - c. Holidays shall be set by using a graphical calendar, without requiring any keyboard entry from the operator.
 - d. Commands to start and stop binary objects shall be done by right-clicking the selected object and selecting the appropriate command from the popup menu. No text entry shall be required.
 - e. View logs and charts.
 - f. View and acknowledge alarms.
 - g. Setup and execute SQL queries on log and archive information.
 - 5. The system shall provide the capability to specify a user's (as determined by the log-on user identification) home page. Provide the ability to set a specific home page for each user. From the home page, links to other views, or pages in the system shall be possible, if allowed by the system administrator.
6. Graphic screens on the Web Browser client shall support hypertext links to other locations on the Internet or on Intranet sites, by specifying the Uniform Resource Locator (URL) for the desired link.

2.3 DIGITAL PANELS

- A. General: Digital Panels shall be microprocessor-based, multi-tasking, multi-user, digital control processors.
- B. Memory: Each Digital Panel shall have sufficient memory to support its own operating system and databases including:
 - 1. Control Processes.
 - 2. Energy Management Applications.
 - 3. Alarm Management.
 - 4. Trend Data.
 - 5. Maintenance Support Applications.
 - 6. Operator I/O.
 - 7. Dial-Up Communications.
 - 8. Manual Override Monitoring.
- C. Expandability: The system shall be modular in nature, and shall permit easy expansion through the addition of field controllers, sensors, and actuators.
- D. Serial Communication Ports: Digital Panels shall provide at least two RS-232C serial data communication ports for simultaneous operation of multiple operator I/O devices such as laptop computers, Personal Computers, and Video Display terminals.
- E. Hardware Override Monitoring: Digital Panels shall monitor the status of al overrides, and include this information in logs and summaries to inform the operator that automatic control has been inhibited.
- F. Integrated On-Line Diagnostics: Each Digital Panel shall continuously perform selfdiagnostics, communication diagnosis and diagnosis of all subsidiary equipment. The Digital Panels shall provide both local and remote annunciation of any detected component failures, or repeated failure to establish communication. Indication of the diagnostic results shall be provided at each Digital Panel.
- G. Surge and Transient Protection: Isolation shall be provided at all network terminations, as well as all field point terminations to suppress induced voltage transients consistent with IEEE Standard 587-1980. Isolation levels shall be sufficiently high as to allow all signal wiring to be run in the same conduit as high voltage wiring where acceptable by electrical code.
- H. Powerfail Restart: In the event of the loss of normal power, there shall be an orderly shutdown of the Digital Panels to prevent the loss of database or operating system software. Non-volatile memory shall be incorporated for all critical controller configuration data, and battery back-up shall be provided to support the real-time clock and all volatile memory for a minimum of 72 hours.

I. Upon restoration of normal power, the Digital Panels shall automatically resume full operation without manual intervention.

2.4 SYSTEM SOFTWARE FEATURES

- A. General:
 - 1. All necessary software to form a complete operating system as described in this specification shall be provided.
 - 2. The software programs specified in this section shall be provided as an integral part of the Digital Panel and shall not be dependent upon any higher level computer for execution.
- B. Graphic Requirements: Provide color graphic backgrounds with operational information interface for the following systems:
 - 1. Hot water hydronic system with unit heaters.
 - 2. Rooftop Unit RTU-1.
 - 3. Make-up Air system with MAU-11.
 - 4. Make-up Air system with MAU-12.
 - 5. Exhaust Fans.
 - 6. Fume Extractors.
 - 7. Ductless Splits.
 - 8. Sump Pump.
 - 9. Domestic Water Heaters.
 - 10. Building Floor Plan graphic for temperature sensor information and terminal unit service designations.
- C. Control Software Description:
 - 1. Equipment Cycling Protection: Control software shall include a provision for limiting the number of times each piece of equipment may be cycled within any one-hour period.
 - 2. Heavy Equipment Delays: The system shall provide protection against excessive demand situations during start-up periods by automatically introducing time delays between successive start commands to heavy electrical loads.
 - 3. Powerfail Motor Restart: Upon the resumption of normal power, the DDC panel shall analyze the status of all controlled equipment, compare it with normal occupancy scheduling, and turn equipment on or off as necessary to resume normal operation.
- D. Energy Management Applications: Digital Panels shall have the ability to perform any or all of the following energy management routines:
 - 1. Time of Day Scheduling.
 - 2. Calendar Based Scheduling.
 - 3. Holiday Scheduling.
 - 4. Temporary Schedule Overrides.
 - 5. Optimal Start.
 - 6. Optimal Stop.
 - 7. Demand Limiting.

- 8. Load Rolling.
- 9. Heating/Cooling Interlock.
- 10. Average/High/Low Signal Select and Reset.
- E. All programs shall be executed automatically without the need for operator intervention, and shall be flexible enough to allow user customization. Programs shall be applied to building equipment as described in the "Execution" portion of this specification.
- F. Programming Capability: Digital Panels shall be able to execute configured processes defined by the user, to automatically perform calculations and control routines.
- G. Process Inputs and Variables: It shall be possible to use any of the following in a custom process:
 - 1. Any system-measured point data or status.
 - 2. Any calculated data.
 - 3. Any results from other processes.
 - 4. Boolean logic operators (and, or,).
- H. Process Triggers: Configured processes may be triggered based on any combination of the following:
 - 1. Time of Day.
 - 2. Calendar Date.
 - 3. Other Processes.
 - 4. Events (e.g., point alarms).
- I. Data Access: A single process shall be able to incorporate measured or calculated data from any and all other ASCs.
 - 1. In addition, a single process shall be able to issue commands to points in any and all other NCUs on ASCs local network.
- J. Alarm Management: Alarm management shall be provided to monitor, buffer, and direct alarm reports to operator devices and memory files. Each Digital Panel shall perform distributed, independent alarm analysis and filtering to minimize operator interruptions due to non-critical alarms, minimize network traffic, and prevent alarms from being lost. At no time shall the Digital Panel's ability to report alarms be affected by either operator activity at the local I/O device, or communications with other ASCs on the network.
- K. Alarm Messages: In addition to the point's descriptor and the time and date, the user shall be able to print, display or store a 60-character alarm message to more fully describe the alarm condition or direct operator response.
- L. Each Digital Panel shall be capable of storing a library of at least 100 Alarm Messages. Each message may be assignable to any number of points in the panel.
- M. Auto-Dial Alarm Management: In dial-up applications, only critical alarms shall initiate a call to a remote operator device. In all other cases, call activity shall be minimized by time-stamping and saving reports until an operator scheduled time, a manual request, or until the buffer space is full. The alarm buffer must store a minimum of 50 alarms.

- N. Trend Analysis: A data collection utility shall be provided to automatically sample, store and display system data.
- O. Measured and calculated analog and binary data shall be assignable to user-definable trends for the purpose of collecting operator-specified performance data over extended periods of time. Sample intervals of 1 minute to 24 hours, in one-minute or one-hour intervals, shall be provided. Each Digital Panel shall have a dedicated buffer for trend data, and shall be capable of storing 32 trend logs. Each trend log shall have up to 4 points trended at 268 data samples each. data shall be stored at the Digital Panel.
- P. Runtime Totalization: Digital Panels shall automatically accumulate and store runtime hours for binary input and output points as specified in the "Execution" portion of this specification.
 - 1. The Totalization routine shall have a sampling resolution of one minute.
 - 2. The user shall have the ability to define a warning limit for Runtime Totalization. Unique, user-specified messages shall be generated when the limit is reached.
- Q. Event Totalization: Digital Panels shall have the ability to count events such as the number of times a pump or fan system is cycled on and off. Event totalization shall be performed on a daily, weekly, or monthly basis.
 - 1. The Event Totalization feature shall be able to store the records associated with a minimum of 9,999,999 events before reset.
 - 2. The user shall have the ability to define a warning limit. Unique, user-specified messages shall be generated when the limit is reached.

2.5 APPLICATION SPECIFIC CONTROLLERS - HVAC APPLICATIONS

- A. Each Digital Panel shall be able to extend its performance and capacity through the use of standalone Application Specific Controllers (ASCs).
- B. Each ASC shall operate as a standalone controller capable of performing its specific control responsibilities independently of other controllers in the network. Each ASC shall be of microprocessor-based, multi-tasking, real-time digital control processor.
- C. Each ASC shall have sufficient memory to support its own operating system and data bases including:
 - 1. Control Processes.
 - 2. Energy Management Applications.
 - 3. Operator I/O (Portable Service Terminal).
- D. The operator interface to any ASC point data or programs shall be through the Digital Panel or portable operator's terminal connected to any ASC on the network.
- E. ASCs shall directly support the temporary use of a portable service terminal that can be connected to the ASC via zone temperature or directly at the controller. The capabilities of the portable service terminal shall include, but not be limited to, the following:
 - 1. Display temperatures.

- 2. Display status.
- 3. Display setpoints.
- 4. Display control parameters.
- 5. Override binary output control.
- 6. Override analog setpoints.
- 7. Modification of gain and offset constants.
- F. Powerfail Protection: All system setpoints, proportional bands, control algorithms, and any other programmable parameters shall be stored such that a power failure of any duration does not necessitate reprogramming the ASC.

2.6 APPLICATION DESCRIPTIONS

- A. Unitary Controllers:
- B. Unitary Controllers shall support, but not be limited to, the following types of systems to address specific applications described in the "Execution" portion of this specification, and for future expansion:
 - 1. Ductless Split Systems.
 - 2. Generic Point Multiplexing.
- C. Unitary Controllers shall support the following types of point inputs and outputs:
 - 1. Economizer Switchover Inputs:
 - a. Drybulb.
 - b. Outdoor Air Enthalpy.
 - c. Differential Temperature.
 - d. Binary Input from a separate controller.
 - 2. Economizer Outputs:
 - a. Integrated Analog with minimum position.
 - b. Binary Output to enable self-containe.
 - c. Economizer Actuator.
 - 3. Heating and Cooling Outputs:
 - a. 1 to 3 Stages.
 - b. Analog Output with two-pipe logic.
 - c. Reversing valve logic for Heat Pumps.
 - 4. Fan Output:
 - a. On/Off Logic Control.
- D. Unitary controllers shall support the following library of control strategies to address the requirements of the sequences described in the "Execution" portion of this specification, and for future expansion:
 - 1. Daily Schedules.

- 2. Comfort/Occupancy Mode.
- 3. Economy Mode:
 - a. Standby Mode/Economizer Available.
 - b. Unoccupied/Economizer Not Available.
 - c. Shutdown.
- 4. Lighting Logic Interlock to Economy Mode.
- 5. Temporary Override Mode:
 - a. Temporary Comfort Mode (Occupancy-Based Control)
 - b. Boost (Occupant Warmer/Cooler Control)
- E. MAU Controllers:
 - 1. MAU Controllers shall support, but not be limited to the following configurations of systems to address current requirements as described in the "Execution" portion of this specification, and for future expansion:
 - a. Make-up Air Units:
 - 1) 100% Single Path.
 - 2) Generic Point Multiplexing.
- F. MAU Controllers shall support all the necessary point inputs and outputs to perform the specified control sequences in a totally standalone fashion.
- G. MAU controllers shall have a library of control routines and program logic to perform the sequence of operation as specified in the "Execution" portion of this specification.
- H. Continuous Zone Temperature Histories: Each MAU Controller shall automatically and continuously, maintain a history of the associated zone temperature to allow users to quickly analyze space comfort and equipment performance for the past 24 hours. A minimum of two samples per hour shall be stored.
- I. Alarm Management: Each MAU Controller shall perform its own limit and status monitoring and analysis to maximize network performance by reducing unnecessary communications.
- J. Each MAU Controller shall come with a hand-held Zone Terminal permanently mounted at the controller to allow interface with the controller. This device will allow the user to monitor or adjust set points and time scheduling within a specific zone.

2.7 OPERATOR INTERFACE

- A. Basic Interface Description.
- B. Command Entry/Menu Selection Process: Operator interface software shall minimize operator training through the use of English language prompting, English language point identification.

- C. The operator interface shall have the option of using a mouse or similar pointing device for a "point and click" approach to facilities management. Users shall be able to start and stop equipment or change setpoints from graphical displays through the use of a mouse or similar pointing device.
- D. Password Protection: Multiple-level password access protection shall be provided to allow the user/manager to limit control, display and database manipulation capabilities as he deems appropriate for each user, based upon an assigned password. Provide secure password access to all features, functions and data contained in the overall BAS.
- E. Passwords shall be exactly the same for all operator devices.
- F. A minimum of four (4) levels of access shall be supported:
 - 1. Level 1 = Data Access and Display.
 - 2. Level 2 = Level 1 + Opera.tor Overrides and Commands.
 - 3. Level 3 = Level 2 + Operator Management.
 - 4. Level 4 = Level 3 + Database Generation and Modification.
- G. A minimum of eight (8) passwords shall be supported at each Digital Panel.
- H. Operators will be able to perform only those commands available for their respective passwords. Menu selections displayed at any operator device, shall be limited to only those items defined for the access level of the password used to log-on.
- I. User-definable, automatic log-off timers of from 1 to 60 minutes shall be provided to prevent operators from inadvertently leaving devices logged on.
- J. Operator Commands: The operator interface shall allow the operator to perform commands including, but not limited to, the following:
 - 1. Start-up or shutdown selected equipment.
 - 2. Adjust setpoints.
 - 3. Add/Modify/Delete time programming.
 - 4. Enable/Disable process execution.
 - 5. Lock/Unlock alarm reporting for each point.
 - 6. Enable/Disable Totalization for each point.
 - 7. Enable/Disable Trending.
 - 8. Enter temporary override schedules.
 - 9. Define Holiday Schedules.
 - 10. Change time/date.
 - 11. Enter/Modify analog alarm limits.
 - 12. Enable/Disable demand limiting.
 - 13. Enable/Disable duty cycle.
 - 14. Enable/Disable average/high/low signal select and reset.
- K. Logs and Summaries: Reports shall be generated manually, and directed to the displays. As a minimum, the system shall allow the user to easily obtain the following types of reports:

- L. A general listing of all points in the network shall include, but not be limited to, the following:
 - 1. Points currently in alarm.
 - 2. Off-line points.
 - 3. Points currently in override status.
 - 4. Points in Weekly Schedules.
 - 5. Holiday Programming.
- M. Summaries shall be provide for specific points, for a logical point group, for a userselected group of groups, or for the entire facility without restriction due to the hardware configuration of the facility management system. Under no conditions shall the operator need to specify the address of hardware controller to obtain system information.
- N. System Configuration and Definition: All temperature and equipment control strategies and energy management routines shall be definable by the operator. System definition and modification procedures shall not interfere with normal system operation and control.
- O. The system shall be provided complete with all equipment and documentation necessary to allow an operator to independently perform the following functions:
 - 1. Add/Delete/Modify Application Specific Controllers.
 - 2. Add/Delete/Modify points of any type, and all associated point parameters, and tuning constants.
 - 3. Add/Delete/Modify alarm reporting definition for each point.
 - 4. Add/Delete/Modify energy management applications.
 - 5. Add/Delete/Modify time- and calendar-based programming.
 - 6. Add/Delete/Modify Totalization for every point.
 - 7. Add/Delete/Modify Historical Data Trending for every point.
 - 8. Add/Delete/Modify configured control processes.
 - 9. Add/Delete/Modify dial-up telecommunication definition.
 - 10. Add/Delete/Modify all operator passwords.
 - 11. Add/Delete/Modify Alarm Messages.
- P. Programming Description: Definition of operator device characteristics, ASCs, individual points, applications and control sequences shall be performed through fill-in-the-blank templates.
- Q. System Definition/Control Sequence Documentation: All portions of system definition shall be self-documenting to provide hardcopy printouts of all configuration and application data.
- R. Database Save/Restore/Back-Up: Back-up copies of all ASC and Digital Panel databases shall be stored in at least one personal computer or laptop. Users shall also have the ability to manually execute downloads of an ASC or Digital Panel data base.
- S. Interface with City of Madison Central BAS System: Provide a standard Web browser with IP address for connection to existing City Central BAS System. Update graphics on City Central BAS System as required to allow central monitoring of this project control system.

- T. Graphical User Interface Computer Hardware (Desktop):
 - 1. Coordinate with Owner's Representative on interface with their computer hardware desktop. The exact location of the existing 2 network ports in or near mechanical room to be coordinated by Owner with this Contractor.

PART 3 - EXECUTION

3.1 <u>GENERAL</u>

- A. This contractor shall provide all labor, materials, engineering, software permits, tools, check-out and certificates required to install a complete DDC automation system as herein specified. This system expansion shall be compatible with and interfaced to the existing computer driven automation center on campus, and shall operate through all the existing I/O devices, central processing unit (CPU), and digital communication trunks. This connection to the digital communications trunk shall be true bi-directional analog and digital communications.
- B. Any and all points added with this project shall be properly interfaced into the existing City's existing central automation system via standard Web browser-IP address format and grouped for display purposes into the system such that all points associated with a new or existing DDC system can appear together on the CRT display or printed log. Assignment of points to a group shall not be restricted by hardware configuration of the points of direct digital control. It shall be possible to assign a point to appear in more than one system. An English descriptor and an alpha/numeric identifier shall identify each system.
- C. This City's central automation system expansion as herein specified shall be fully integrated and completely installed by this section. It shall include all required computer CPU software and hardware. Include the engineering, installation, supervision, calibration, software programming, and checkout necessary for a fully operational system.
- D. Mechancial drawings of the system and BAS network are diagrammatic only and any apparatus not shown, but required to make the system operative to the complete satisfaction of the Engineer shall be furnished and installed without additional cost.

3.2 INSTALLATION

- A. Install the control system in accordance with manufacturer's instructions.
- B. All work and materials are to conform in every detail to the rules and requirements of the National Electrical Code and any applicable local codes, and present manufacturing standards. All wiring and cable installation shall conform with the wiring installation as specified in the installation section of Section 23 09 00. All material shall be UL approved.
- C. The addition of this specified system expansion shall in no way impair the future capabilities of any existing functions of the computer driven existing City central campus automation system. A system expansion with lessor capabilities will not be accepted.

Further, this contractor will not put in jeopardy the normal, uniterruptable operation of the entire campus automation system the time it is interfaced through the completion of this project.

- D. Install system and materials in accordance with manufacturer's instructions, rough-in drawings and details on drawings.
- E. Line voltage wiring to power the DDC Controllers, not provided by the Division 26 contractor, to be by this contractor.
- F. Control panels shall not be installed in concealed areas. All panels shall be accessible and serviceable which will provide minimal disruption to the building occupant or function. Consult with maintenance operation staff for recommended locations. Final location shall be decided by the Owner's Project Representative.
- G. Mount control panels adjacent to associated equipment on vibration-free walls or freestanding angle iron supports. One cabinet may accommodate more than one system in same equipment room. Provide printed plastic tags for instruments and controls inside cabinet and on engraved plastic nameplates cabinet face.
- H. Provide as-built control drawings of all systems served by each local panel in a location adjacent to or inside of panel cover. Provide a protective cover or envelope for drawings.
- I. Provide an input for a service shutdown toggle switch for each make-up air unit system provided inside the (Section 23 09 00) temperature control panel that will initiate a logical shutdown of the make-up air unit system.
- J. All cables to the DDC panels in the DDC panel with sufficient spare cable (minimum of 5') to allow termination.

3.3 ACCEPTANCE TESTING

- A. Upon completion of the installation, this contractor shall load all system software and start-up the system. This contractor shall perform all necessary calibration, testing and de-bugging and perform all required operational checks to insure that the system is functioning in full accordance with these specifications.
- B. This contractor shall perform tests to verify proper performance of components, routines, and points. Repeat tests until proper performance results. This testing shall include a point-by-point log to validate 100% of the input and output points of the DDC system operation.
- C. Upon completion of the performance tests described above, repeat these tests, point by point as described in the validation log. Schedule with the Commissioning Agent, CxP, that allows in advance notice of 5 business days of the testing so that the CxP may witness as deemed necessary. Also notify the Owner's Representative, as required. Do not delay tests so as to prevent delay of occupancy permits or building occupancy.
- D. System Acceptance: Satisfactory completion is when all the required testing to show performance compliance with the requirements of the Contract Documents to the

satisfaction of the CxP, Engineer, and Owner's Representative. System acceptance shall be contingent upon completion and review of all corrected deficiencies.

3.4 DEMONSTRATION

- A. The system manufacturer or his representative shall provide start-up and adjustment service for the control system.
- B. The system manufacturer or his representative shall provide a minimum eight (24) hours of training for the Owner's personnel on the operation and maintenance of the packaged control system.

3.5 TRAINING

- A. All training provided for personnel shall comply with the format, general content requirements and submission guidelines specified under Division 01.
- B. Contractor to provide 24 hours of instruction training to the owner's designated personnel on the operation of the the system and describe its intended use with respect to the programmed functions specified. Operator orientation of the systems shall include, but not be limited to; the overall operation program, equipment functions (both individually and as part tof the total integrated system), commands, systems generation, advisories, and appropriate operator intervention required in responding to the System's operation.
- C. The instructional training shall be in two sessions as follows:
 - 1. Initial Instructional Training: One day session (8 hours) after system is started up and at least one week before first acceptance test. Manual shall have been submitted at least two weeks prior to training so that the owners' personnel can start to familiarize themselves with the system before classroom instruction begins.
 - 2. First Follow-Up Instructional Training: Two days (16 hours total) approximately two weeks after initial training, and before Formal Acceptance. These sessions will deal with more advanced topics such as data collection, event counting and answer questions.
- D. Provide two follow-up visits for troubleshooting and instruction, one six months after substantial completion and the other at the end of the warranty period. Length of each visit to be not less than 2 hours or the time necessary to provide required information and complete troubleshooting and inspection activity for all controls installed under this section. Coordinate the visit with the City and provide an inspection report to the Owner's representative of any deficiencies found.

END OF SECTION 23 09 24

This page intentionally left blank.

SECTION 23 09 93 SEQUENCE OF OPERATIONS FOR HVAC CONTROLS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes control sequences for HVAC systems, subsystems, and equipment.
- B. Related Sections include the following:
 - 1. Section 23 09 00 "Instrumentation and Control for HVAC" for control equipment and devices and for submittal requirements.

1.3 DEFINITIONS

- A. DDC: Direct digital control.
- B. BAS: Building Automation System.
- C. VAV: Variable air volume.
- D. Inches w.g.: Inches of water gauge, or inches of water column.

<u>1.4</u> <u>GENERAL</u>

- A. A value in this specification followed by the word "adjustable" means the value can be changed manually through the DDC system by the Owner.
- B. All duct mounted smoke detectors shall be provided and installed by this contractor. 120/1 electrical power to the detectors will be provided by the Electrical Contractor. ALL other required wiring to achieve a complete and fully functioning duct smoke detection system that is California code and NFPA standard compliant as well as acceptable to the local authority having jurisdiction. Wire all duct smoke detectors to a single remote alarm horn and trouble annunciator alarm wall mounted in a normally occupied area. Verify alarm horn and trouble annunciator location with Owner.
- C. The DDC control systems shall be connected to the main fire suppression control panel. When this fire suppression system is activated, the fire suppression system shall shut down ALL equipment fan motors via the DDC temperature system. This contractor shall provide all materials and labor required for this control feature. The fire suppression system panel and its programming shall be by others.
- D. All control points shall be exposed as BACnet objects and shall be viewable and editable over the internet from a remote location with a standard web browser.

- E. For pushbutton switches mentioned in the sections below, provide the Owner with a sample of each type used for approval prior to installation.
- F. When filter pressure monitoring and control is required for a unit, filter monitoring and control shall apply to all filter banks in the unit.
- G. Setpoints:
 - All setpoints indicated in the control specification are to be adjustable. The 1. setpoints shall be readily available to be modified in the mechanical system software system summary (either textual or graphic based) and under the same software level as hardware points. Some less used setpoints may be provided on a lower software level, if requested by the Owner for clarity. The setpoints indicated herein are only specified as a calculated starting point (or initial system operation). It is expected that setpoint adjustments and control loop tuning shall be required to provide optimum system operation based on requirements of the building. The control contractor shall work with the balancing contractor and the Owner to provide the final system setpoint adjustments and control loop tuning after the system is in operation and building is in use. Document all final setpoints on the as-built control drawings. Any questions regarding the intended operation of the HVAC equipment and control systems shall be referred to the HVAC design engineer through the appropriate construction communication process. The following setpoints should be used as initial setpoints unless otherwise specified in the individual control sequences or instructed by the user Agency. If the contractor fails to check with the user Owner for final setpoints, they shall adjust setpoints at no additional cost.
 - a. Occupied Space Terminal Unit Heating: 68 deg F
 - b. Occupied Space Terminal Unit Cooling: 75 deg F
 - c. Unoccupied Space Terminal Unit Heating: 60 deg F
 - d. Unoccupied Space Terminal Unit Cooling: 80 deg F
- H. Anti-cycling:
 - 1. When HVAC equipment or a sequence is specified to be started and stopped by a temperature, pressure setpoint or any other controlled variable, there shall be an adjustable differential setpoint that shall be set to prevent short cycling of the systems and equipment due to minor changes in the controlled variable. Temperature differential setpoints shall be set at 2 deg F and non-temperature setpoints shall be set at 10% of the controlled range unless otherwise specified. Setpoints shall indicate at when the process should be turned on. Heating and cooling differentials shall be set for above setpoint and shall be used to turn the process off. For example, an economizer sequence called to switch at 68° F, would turn on at 68 deg F and off at 70 deg F since it is a cooling function. A heating lockout setpoint of 50° F would turn on heating control at 50 deg F and off at 52 deg F Non-temperature differentials shall be set above setpoint if the setpoint is indicating a minimum value or below setpoint if the setpoint is indicating a maximum value. Provide minimum runtime timers for loads that are cycled to prevent over-cycling. Timers shall be set as specified or as needed to prevent damage or excessive wear to the equipment. Unless otherwise specified in the individual control sequences, fans shall have a minimum runtime on timers

of 15 minutes (adj.) and off timers of 5 minutes (adj.). Safeties shall override runtime timers.

- I. Deadbands:
 - 1. Provide deadbands for all DDC control loops to prevent constant hunting of output signals to controlled devices. Deadbands shall be set to provide adequate control around setpoint as follows unless otherwise specified in the individual control sequences:
 - a. Temperature Control: ±0.5 deg F
 - b. Humidity Control: NA
 - c. Airflow Control: ±2% of total flow
 - d. AHU Static Pressure Control: ±0.01 in. w.c.
- J. Alarms:
 - 1. Provide all alarmed points with adjustable time delays to prevent nuisance tripping under normal operation and on equipment start-up. For all commanded outputs that have status feedback, provide an alarm that shall indicate the commanded output is not in its commanded state. Provide alarms on all points as indicated on point charts. For existing campus automations systems, add/delete what is called on the point charts for after consultation with user Agency to provide consistent alarming throughout the automation system.
 - 2. For devices that have form "C" contacts available for alarm monitoring, use closed contacts for the Normal condition and open contacts on Alarm condition. This shall provide a level of supervision by detecting a break in the wiring.
- K. Equipment Start/Stop Failure States:
 - 1. All start/stop points for equipment shall utilize normally open contacts unless called out specifically in the individual control sequences.
- L. Variable Frequency Drive (VFD) Motor Run Status:
 - 1. Use the VFD programmable relay dry contact output specified to be provided with the VFD under Section 23 05 14 to prove motor run status and detect belt loss or coupling break.
- M. VFD Minimum Speed & Ramp Timers:
 - 1. The VFD start-up technician shall work with the DDC Temperature Control Contractor determine the minimum speed required for the motor controlled by the VFD to provide cooling of the motor as installed to prevent heat related problems. This minimum speed shall be set in the VFD controller. The VFD start-up technician shall work with the DDC Temperature Control Contractor to set the acceleration and deceleration timers in the VFD controller at 30 seconds for motors less than 40 HP.
- N. Current Switch Setup:

- 1. When current switches are used for proving fan status, they shall be set up so that they will detect belt or coupling loss by the reduction in current draw on loss of coupled load. The current switch set up shall be redone by the 23 09 00 contractor after the balancer is complete.
- O. Damper Interlocks for Fans with ECM motors:
 - 1. For fan systems with ECM motors and shutoff dampers specified with end switches, the damper interlock shall be hardwired in such a way that the damper shall open if the fan starter hand / off / auto switch is in the hand or in the auto position and being called to start. After the damper end switch has proven the damper open, a hardwire interlock from the end switch to the starter holding coil for the fan shall cause the fan to start.
- P. Damper Interlocks for Fans with VFD's:
 - 1. For fan systems with VFD's and shutoff dampers specified with end switches, the damper end switches shall be hardwire interlocked to the safety circuit(s) of the VFD to prevent the fan from starting until the damper is proven open. The damper end switch shall also be monitored by the DDC system.
- Q. Fan Interlocking:
 - 1. Provide interlocks between supply and return or exhaust fan systems as scheduled on the plans or called out in individual control sequences. If DDC controlled, interlocks shall be done through DDC start/stop points unless otherwise specified in individual control sequences. If not DDC controlled, interlocks shall be accomplished via hardwire interlocks between fan starters or VFD's.
- R. Thermostats and Sensors:
 - 1. All devices and equipment including terminal units, specified to be controlled in a control sequence by a thermostat or sensor, shall be provided with a thermostat or sensor, whether or not the device is indicated on the plans.
- S. Watch Dog Timer:
 - 1. Where the integrated system consists of programmable DDC controllers with BACnet objects mapped to an enterprise level Building Automation System (BAS) and it is shown that the BACnet objects do not indicate when they are offline on the enterprise level BAS when communication is lost between the two systems, software algorithms shall be provided to alarm when communication is lost. The integrated system shall program a binary data object that is toggled on and off at an adjustable rate (initially one minute) that shall be monitored by the enterprise level BAS which shall alarm if the toggling ceases.
- T. Weekly Scheduling:
 - 1. Provide scheduling of DDC terminal units based on occupancy. Work with the user Owner to determine scheduling and which zones should be included.

Individual terminal units shall be able to receive temporary schedules that shall override the group schedules. Temporary override buttons at the zone sensor (where specified on point charts) shall override the scheduling to occupied. When 20 % or more terminal units are indexed to occupied, the associated air handling unit shall start if not already running.

- U. DDC Controller Communication Bus Configuration:
 - The actively controlled primary mechanical equipment (VFDs, meters, gas 1. detection, destratification fans etc.) DDC controllers shall be configured to be located on the same supervisory controller BACnet MSTP communication trunk unless the supervisory controller capacity prevents it. If this is the case, the primary mechanical equipment DDC controllers shall be separated onto supervisory controllers in such a way that the systems that need to share information for operation and interlocking shall reside on the same supervisory controllers. Other critical building systems that require communication between DDC controllers to operate shall be on the same BACnet MSTP communication trunk. Terminal unit controllers shall be located on a separate BACnet MSTP trunks if necessary to allow for primary equipment to reside on the same BACnet MSTP trunk. If the DDC controllers used for control of primary mechanical equipment and interlocks or point information is required for proper operation as described above do not use BACnet MSTP communication but use Ethernet communication, the DDC controllers shall be connected to the same Ethernet switch. If the controllers cannot be connected to the same switch, hardwired points between controllers shall be used to share information.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 CONTROLS

A. Refer to Mechanical drawings M-800 Series for Sequence of Operations for HVAC Controls.

END OF SECTION 23 09 93

This page intentionally left blank.

SECTION 23 11 13 FACILITY FUEL-OIL PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Section 23 05 00 "Common Work Results for HVAC."

1.2 COORDINATION

- A. Coordinate sequencing with Owner and other Contractors. Coordinate scope of work with all other Contractors and the Owner at the project site. Schedule removal of fuel-oil piping and equipment with Owner.
- B. Coordinate with the Authority Having Jurisdiction (AHJ) for fuel-oil piping and equipment removal. Contractor shall obtain the necessary local permits for demolition of fuel-oil piping and equipment removal.
- C. Coordinate with the Contractor for the Vehicle Fuel Equipment and associated temporary fuel-oil piping reroute. Refer to Section 11 11 28 Vehicle Fuel Equipment for existing emergency generator. Coordinate the removal of fuel-oil piping with the Contractor for the Vehicle Fuel Equipment for temporary reroute of fuel-oil piping.
- D. Coordinate with the fuel-oil piping removal with the Contractor for the Removal and Disposal of Storage Tank. Refer to Section 02 65 00 Removal and Disposal of Storage Tanks for existing underground storage tank (UST).

1.3 SUMMARY

- A. Facility fuel-oil piping and equipment demolition.
 - 1. The drawings are intended to indicate the scope of work required and do not indicate every piping accessories or equipment that must be removed. The Contractor shall visit the site prior to submitting a bid and verify the existing conditions.

1.4 CONTINUITY OF EXISTING SERVICES AND SYSTEMS

- A. No outages shall be permitted on existing fuel-oil systems except at the time and during the interval specified by the Owner. The Owner may require written approval. Any outage must be scheduled when the interruption causes the least interference with normal Owner schedules and business routines. No extra costs will be paid to the Contractor for such outages which must occur outside of regular weekly working hours.
- B. This Contractor shall restore any circuit interrupted as a result of this work to proper operation as soon as possible. Note that facility operations are on a seven-day week schedule.

- C. Prior to demolition or alteration of existing services, the following shall be accomplished:
 - 1. Coordinate with Electrical Contractor for any disconnection of electrical power to utilization equipment and circuits removed or affected by demolition work.
 - 2. Coordinate with Electrical Contractor for any necessary electrical for shut-off for area of demolition.
 - 3. Survey and record condition of existing facilities to remain in place that may be affected by demolition operations. After demolition operations are completed, survey conditions again and restores existing facilities to their predemolition condition.
 - 4. Contractor shall notify Architect/Engineer of existing code violations observed during the course of performing his work. If corrective action needs to be taken that changes the scope of the work, corrective action to proceed only after approved by Architect/Engineer.
 - 5. Provide temporary piping connections to maintain existing systems in service during construction. Assume all equipment and systems must remain operational unless specifically noted otherwise on drawings.
 - 6. Existing Fuel-Oil Service: Maintain existing fuel-oil system in service until temporary reroute of fuel-oil piping in Area C is installed by Division 11 Contractor or the new electrical generator system is completed and ready for service. Obtain permission no fewer than seven days in advance of proposed interruption of the existing fuel-oil service before partially or completely removal of the fuel-oil system. Minimize outage duration. If required, make temporary connections to maintain service in areas adjacent to work area. Do not proceed with interruption of fuel-oil service without Owner's written permission.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

<u>3.1</u> <u>GENERAL</u>

A. Provide suitable personnel, material, and equipment to clean and remove the fuel-oil piping and all sludge and liquids that may be in the piping prior to removal. Take all necessary precautions during removal of the equipment to prevent damage to utilities adjacent to the area. All fuel-oil fill, supply and other fuel-oil lines and vents shall be removed.

3.2 PERMITTING

- A. Prior to initiating fuel-oil piping and equipment removal activities, the Contractor shall notify the local AHJ. The Contractor shall apply for and obtain a Permit for fuel-oil piping and equipment for removal and transportation to approved disposal yard in accordance with the local codes.
- B. Within 72 hours of disposal of the fuel-oil piping and equipment, the Contractor shall provide receipt to the local AHJ for delivery of the piping and equipment to the disposal site designated on permit.

C. Within 30 days of removing the piping and equipment, the Contractor shall send notice to State of Wisconsin to change registration information for the equipment removed.

3.3 PREPARATION

A. Where walls, ceilings, structures, etc., are indicated as being renovated and/or removed on general drawings, the Contractor shall be responsible for the removal of all fuel-oil piping and equipment serving the existing generator and boilers, etc., from the removed area.

<u>3.4</u> <u>DEMOLITION OF THE EXISTING FUEL PIPING/EQUIPMENT WORK</u>

- A. Disconnect and demo the existing fuel piping and equipment as noted in drawings. Patch openings created from removal of devices to match surrounding finishes.
- B. Repair adjacent construction and finishes damaged during demolition and extension work. Patch openings to match existing surrounding finishes.
- C. Maintain access to existing fuel piping installations which remain active. Modify installation or provide access panel as appropriate.
- D. Regulatory Requirements: Comply with governing notification regulations before beginning demolition. Comply with hauling and disposal regulations of authorities having jurisdiction.
- E. Contractor is responsible for <u>all</u> costs incurred in repair, relocations, or replacement of any other services if damaged without proper investigation.

3.5 INSTALLATION

A. Install relocated materials and equipment under the provisions of Division 23 Specifications.

END OF SECTION 23 11 13

This page intentionally left blank.

SECTION 23 11 23 FACILITY NATURAL-GAS PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 DEFINITIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

1.3 PERFORMANCE REQUIREMENTS

- A. Minimum Operating-Pressure Ratings:
 - 1. Piping and Valves: 100 psig minimum unless otherwise indicated.
 - 2. Service Regulators: 100 psig minimum unless otherwise indicated.
- B. Natural-Gas System Pressures within Buildings: Two pressure ranges. Primary pressure is more than 2 psig but not more than 5 psig and is reduced to secondary pressure of more than 0.5 psig but not more than 2 psig.
 - 1. Madison Metro's existing gas pressure within building is 5 psi downstream of the MG&E's service regulator and meter.
 - 2. Contractor shall work with MG&E to remove the secondary diaphragm gas meter serving the existing two water heaters and air-conditioning unit AC-01. Contractor shall re-pipe the gas connection to the main gas meter service as indicated in the drawings.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of the following:
 - 1. Piping specialties.
 - 2. Valves. Include pressure rating, capacity, settings, and electrical connection data of selected models.
 - 3. Pressure regulators. Indicate pressure ratings and capacities.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For pressure regulators to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Handling Flammable Liquids: Remove and dispose of liquids from existing natural-gas piping according to requirements of authorities having jurisdiction.
- B. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
- C. Store and handle pipes and tubes having factory-applied protective coatings to avoid damaging coating and protect from direct sunlight.

1.8 PROJECT CONDITIONS

- A. Perform site survey, research public utility records, and verify existing utility locations. Contact utility-locating service for area where Project is located.
- B. Interruption of Existing Natural-Gas Service: Do not interrupt natural-gas service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide purging and startup of natural-gas supply according to requirements indicated:
 - 1. Notify Owner no fewer than two days in advance of proposed interruption of natural-gas service.
 - 2. Do not proceed with interruption of natural-gas service without Owner's written permission.

1.9 COORDINATION

- A. Coordinate sizes and locations of concrete bases with actual equipment provided.
- B. Coordinate requirements for access panels and doors for valves installed concealed behind finished surfaces. Comply with requirements in Division 08.

1.10 NATURAL GAS SERVICE

- A. Contact local gas company for shutdown of the existing gas meter. Any cost of gas service shutdown to building, including pressure reducing valves and gas meter. All charges for gas service shutdown including connection from main in street or other location to gas meter shall be paid by this Contractor.
- B. Existing gas service, meters, and regulating equipment on inlet side of meters is existing to remain and operated by the Madison & Electric Gas (MG&E) Company.
- C. Include cost of alterations of existing gas service, meters, and reducing valves in base bid. This includes work performed by the Gas Company to and including the gas meters.

PART 2 - PRODUCTS

- 2.1 PIPES, TUBES, AND FITTINGS
- A. Pipe and Fittings: See drawing schedule for pipe and fitting material requirements
- 2.2 PIPING SPECIALTIES
- A. Quick-Disconnect Devices: Comply with ANSI Z21.41.
 - 1. Copper-alloy convenience outlet and matching plug connector.
 - 2. Nitrile seals.
 - 3. Hand operated with automatic shutoff when disconnected.
 - 4. For indoor or outdoor applications.
 - 5. Adjustable, retractable restraining cable.
- B. Y-Pattern Strainers:
 - 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
 - 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
 - 3. Strainer Screen: 60-mesh startup strainer and perforated stainless-steel basket with 50 percent free area.
 - 4. CWP Rating: 125 psig.
- C. Weatherproof Vent Cap: Cast- or malleable-iron increaser fitting with corrosion-resistant wire screen, with free area at least equal to cross-sectional area of connecting pipe and threaded-end connection.
- 2.3 JOINING MATERIALS
- A. Joint Compound and Tape: Suitable for natural gas.
- B. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.4 MANUAL GAS SHUTOFF VALVES

- A. See "Aboveground Manual Gas Shutoff Valve Schedule" Articles for where each valve type is applied in various services.
- B. General Requirements for Metallic Valves, NPS 2 and Smaller: Comply with ASME B16.33.
 - 1. CWP Rating: 125 psig.
 - 2. Threaded Ends: Comply with ASME B1.20.1.
 - 3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
 - 4. Tamperproof Feature: Locking feature for valves indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 5. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller.
 - 6. Service Mark: Valves 1-1/4 inches to NPS 2 shall have initials "WOG" permanently marked on valve body.
- C. General Requirements for Metallic Valves, NPS 2-1/2 and Larger: Comply with ASME B16.38.
 - 1. CWP Rating: 125 psig.
 - 2. Flanged Ends: Comply with ASME B16.5 for steel flanges.
 - 3. Tamperproof Feature: Locking feature for valves indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 4. Service Mark: Initials "WOG" shall be permanently marked on valve body.
- D. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim: MSS SP-110.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. BrassCraft Manufacturing Company; a Masco company.
 - b. Conbraco Industries, Inc.; Apollo Div.
 - c. Lyall, R. W. & Company, Inc.
 - d. McDonald, A. Y. Mfg. Co.
 - e. Perfection Corporation; a subsidiary of American Meter Company.
 - 2. Body: Bronze, complying with ASTM B 584.
 - 3. Ball: Chrome-plated bronze.
 - 4. Stem: Bronze; blowout proof.
 - 5. Seats: Reinforced TFE; blowout proof.
 - 6. Packing: Threaded-body packnut design with adjustable-stem packing.
 - 7. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 - 8. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- E. Bronze Plug Valves: MSS SP-78.

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Lee Brass Company.
 - b. McDonald, A. Y. Mfg. Co.
- 2. Body: Bronze, complying with ASTM B 584.
- 3. Plug: Bronze.
- 4. Operator: Square head or lug type with tamperproof feature where indicated.
- 5. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
- 6. Service: Suitable for natural-gas service with "WOG" indicated on valve body.
- F. Cast-Iron, Nonlubricated Plug Valves: MSS SP-78.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. McDonald, A. Y. Mfg. Co.
 - b. Mueller Co.; Gas Products Div.
 - c. Xomox Corporation; a Crane company.
 - 2. Body: Cast iron, complying with ASTM A 126, Class B.
 - 3. Plug: Bronze or nickel-plated cast iron.
 - 4. Seat: Coated with thermoplastic.
 - 5. Stem Seal: Compatible with natural gas.
 - 6. Operator: Square head or lug type with tamperproof feature where indicated.
 - 7. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 - 8. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

2.5 PRESSURE REGULATORS

- A. General Requirements:
 - 1. Single stage and suitable for natural gas.
 - 2. Steel jacket and corrosion-resistant components.
 - 3. Elevation compensator.
 - 4. End Connections: Threaded for regulators NPS 2 and smaller; flanged for regulators NPS 2-1/2 and larger.
- B. Line Pressure Regulators: Comply with ANSI Z21.80.
 - 1. Basis-of-Design Product: The design is based on the following:
 - a. Maxitrol Company; Series 325-L with line regulator with OPD. (Ventless)
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- a. Actaris.
- b. American Meter Company.
- c. Eclipse Combustion, Inc.
- d. Fisher Control Valves and Regulators; Division of Emerson Process Management.
- e. Invensys.
- f. Richards Industries; Jordan Valve Div.
- 3. Body and Diaphragm Case: Cast iron or die-cast aluminum.
- 4. Springs: Zinc-plated steel; interchangeable.
- 5. Diaphragm Plate: Zinc-plated steel.
- 6. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
- 7. Orifice: Aluminum; interchangeable.
- 8. Seal Plug: Ultraviolet-stabilized, mineral-filled nylon.
- 9. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.
- 10. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.
- 11. Overpressure Protection Device: Factory mounted on pressure regulator.
- 12. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.
- 13. Provide vent protector for regulator vent opening from the outdoor elements and debris.
- 14. Regulator certified for up to 5 PSI inlet pressure and outlet pressures ranging 7 to 11 inches WC per ANSI Z21.80/CSA 6.22 in 2 PSI and 5 PSI systems.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in for natural-gas piping system to verify actual locations of piping connections before equipment installation.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Close equipment shutoff valves before turning off natural gas to premises or piping section.
- B. Inspect natural-gas piping according to NFPA 54 to determine that natural-gas utilization devices are turned off in piping section affected.
- C. Comply with NFPA 54 requirements for prevention of accidental ignition.
- 3.3 OUTDOOR PIPING INSTALLATION
- A. Comply with NFPA 54 for installation and purging of natural-gas piping.

- B. Steel Piping with Protective Coating:
 - 1. Apply joint cover kits to pipe after joining to cover, seal, and protect joints.
 - 2. Repair damage to PE coating on pipe as recommended in writing by protective coating manufacturer.
 - 3. Replace pipe having damaged PE coating with new pipe.
- C. Install fittings for changes in direction and branch connections.
- D. Install pressure gage upstream and downstream from each service regulator. Pressure gages are specified in Section 23 05 19 "Meters and Gages for HVAC Piping."

3.4 INDOOR PIPING INSTALLATION

- A. Comply with NFPA 54 for installation and purging of natural-gas piping.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.
- D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- G. Locate valves for easy access.
- H. Install natural-gas piping at uniform grade of 2 percent down toward drip and sediment traps.
- I. Install piping free of sags and bends.
- J. Install fittings for changes in direction and branch connections.
- K. Verify final equipment locations for roughing-in.
- L. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.
- M. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.

- 1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.
- N. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.
- O. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.
- P. Concealed Location Installations: Except as specified below, install concealed naturalgas piping and piping installed under the building in containment conduit constructed of steel pipe with welded joints as described in Part 2. Install a vent pipe from containment conduit to outdoors and terminate with weatherproof vent cap.
 - 1. Above Accessible Ceilings: Natural-gas piping, fittings, valves, and regulators may be installed in accessible spaces without containment conduit.
 - 2. Prohibited Locations:
 - a. Do not install natural-gas piping in or through circulating air ducts, clothes or trash chutes, chimneys, or gas vents (flues), ventilating ducts, or dumbwaiter or elevator shafts.
 - b. Do not install natural-gas piping in solid walls or partitions.
- Q. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.
- R. Connect branch piping from top or side of horizontal piping.
- S. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment. Unions are not required at flanged connections.
- T. Do not use natural-gas piping as grounding electrode.
- U. Install strainer on inlet of each line-pressure regulator and automatic or electrically operated valve.
- V. Install pressure gage upstream and downstream from each line regulator. Pressure gages are specified in Section 23 05 19 "Meters and Gages for HVAC Piping."
- W. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 23 05 00 " Common Work Results for HVAC."
- X. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 23 05 00 "Common Work Results for HVAC."

Y. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 23 05 00 " Common Work Results for HVAC."

3.5 VALVE INSTALLATION

A. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.

3.6 PIPING JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Threaded Joints:
 - 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
 - 2. Cut threads full and clean using sharp dies.
 - 3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.
 - 4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
 - 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- D. Welded Joints:
 - 1. Construct joints according to AWS D10.12/D10.12M, using qualified processes and welding operators.
 - 2. Bevel plain ends of steel pipe.
 - 3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.

3.7 HANGER AND SUPPORT INSTALLATION

- A. Install seismic restraints on piping. Comply with requirements for restraint devices specified in Section 23 05 48.13 "Vibration Controls for HVAC."
- B. Comply with requirements for pipe hangers and supports specified in Section 23 05 29 "Hangers and Supports for HVAC Piping and Equipment."
- C. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 1 and Smaller: Maximum span, 96 inches; minimum rod size, 3/8-inch.
 - 2. NPS 1-1/4: Maximum span, 108 inches; minimum rod size, 3/8-inch.
 - 3. NPS 1-1/2 and NPS 2: Maximum span, 108 inches; minimum rod size, 3/8-inch.
 - 4. NPS 2-1/2 to NPS 3-1/2: Maximum span, 10 feet; minimum rod size, 1/2-inch.
 - 5. NPS 4 and Larger: Maximum span, 10 feet; minimum rod size, 5/8-inch.

- D. Provide additional intermediate supports as required so deflection of piping does not exceed 1/240 of span.
- E. Support spacings listed above are minimum requirements. Contractor shall provide additional supports as required by codes or authority having jurisdiction at no additional cost to contract.

3.8 CONNECTIONS

- A. Connect to utility's gas main according to utility's procedures and requirements.
- B. Install natural-gas piping electrically continuous and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.
- C. Install piping adjacent to appliances to allow service and maintenance of appliances.
- D. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72-inches of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.
- E. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

3.9 LABELING AND IDENTIFYING

A. Comply with requirements in Section 23 05 53 "Identification for HVAC Piping and Equipment" for piping and valve identification.

3.10 PAINTING

- A. Paint exposed, exterior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components, with factory-applied paint or protective coating.
 - 1. Alkyd System: MPI EXT 5.1D.
 - a. Prime Coat: Alkyd anticorrosive metal primer.
 - b. Intermediate Coat: Exterior alkyd enamel matching topcoat.
 - c. Topcoat: Exterior alkyd enamel (gloss).
 - d. Color: Gray.
- B. Paint exposed, interior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components, with factory-applied paint or protective coating.
 - 1. Latex Over Alkyd Primer System: MPI INT 5.1Q.
 - a. Prime Coat: Alkyd anticorrosive metal primer.
 - b. Intermediate Coat: Interior latex matching topcoat.
 - c. Topcoat: Interior latex (semigloss).
 - d. Color: Yellow.

- C. Damage and Touchup: Repair marred and damaged factory-applied finishes with materials and by procedures to match original factory finish.
- D. Comply with requirements in Division 09 for interior and exterior painting of natural gas piping.
- 3.11 FIELD QUALITY CONTROL
- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Test, inspect, and purge natural gas according to NFPA 54 and authorities having jurisdiction.
- C. Natural-gas piping will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.
- E. Prior to start-up, Contractor shall verify gas system pressure downstream of gas meter as indicated on plans. If meter pressure is not within ±5% of pressure indicated on plans, Contractor shall notify the Architect/Engineer immediately.
 - 1. If a pressure tap is not available for connectors of a gas pressure gauge, one shall be installed at no additional cost to the Contract.
- F. Downstream gas pressure measurement shall be taken within 15 feet of the gas meter discharge.

3.12 OUTDOOR AND INDOOR PIPING SCHEDULE

A. See pipe and valve schedule on drawings for piping materials schedule

3.13 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

A. See pipe and valve schedule on drawings for piping materials schedule

END OF SECTION 23 11 23

This page intentionally left blank.

SECTION 23 21 13 HYDRONIC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of the following:
 - 1. Contractor shall submit schedule indicating the ASTM specification number of the pipe being proposed along with its type and grade and sufficient information to indicate the type and rating of fittings for each service.
 - 2. Type F Steel Pipe: Statement from manufacturer on his letterhead that the pipe furnished meets the ASTM specification contained in this section.
 - 3. Type E OR S Steel Pipe: Mill certification papers, also known as material test reports, for the pipe furnished for this project, in English. Heat numbers on these papers to match the heat numbers stenciled on the pipe. Chemical analysis indicated on the mill certification papers to meet or exceed the requirements of the referenced ASTM specification.
 - 4. Copper Tube: Statement from manufacturer on his letterhead that the pipe furnished meets the ASTM specification contained in this section.

1.3 QUALITY ASSURANCE

- A. Steel Support Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code: Section IX.
 - 1. Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation.
 - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature unless otherwise indicated:
 - 1. Hot-Water Heating Piping: 150 psig at 200 deg F.
 - 2. Makeup-Water Piping: 80 psig at 150 deg F.
 - 3. Condensate-Drain Piping: 150 deg F.

- 4. Air-Vent Piping: 200 deg F.
- 5. Safety-Valve-Inlet and -Outlet Piping: Equal to the pressure of the piping system to which it is attached.

2.2 COPPER TUBE AND FITTINGS

- A. Drawn-Temper Copper Tubing: ASTM B 88, Type L.
- B. Annealed-Temper Copper Tubing: ASTM B 88, Type K.
- C. Wrought-Copper Unions: ASME B16.22.

2.3 STEEL PIPE AND FITTINGS

- A. Steel Pipe: ASTM A 53/A 53M, black steel with plain ends; welded and seamless, Grade B, and wall thickness as indicated in "Piping Applications" Article.
- B. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125 and 250 as indicated in "Piping Applications" Article.
- C. Malleable-Iron Threaded Fittings: ASME B16.3, Classes 150 as indicated in "Piping Applications" Article.
- D. Malleable-Iron Unions: ASME B16.39; Classes 150 as indicated in "Piping Applications" Article.
- E. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Classes 125, raised ground face, and bolt holes spot faced as indicated in "Piping Applications" Article. Standard weight, seamless, carbon steel weld fittings.
- F. Wrought-Steel Fittings: ASTM A 234/A 234M grade: WPB/ANSI B16.9 standard, wall thickness to match adjoining pipe.
- G. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 - 1. Material Group: 1.1.
 - 2. End Connections: Butt welding.
 - 3. Facings: Raised face.
- H. Grooved Mechanical-Joint Fittings and Couplings:
 - 1. Acceptable Manufacturer:
 - a. Victaulic Company.
 - 2. Mechanical grooved pipe couplings and fittings may be used with steel pipe on the systems indicated below. Either cut-groove or equivalent roll-groove products are acceptable providing the system temperature and pressure requirements are met. Where malleable iron fittings are indicated, they shall conform to ASTM A47. Where ductile iron fittings are indicated, they shall conform to ASTM A 536. Where forged steel fittings are indicated, they shall conform to ASTM A106,
Grade B. Where fabricated steel fittings are indicated, they shall conform to ASTM A53, type F in sizes $\frac{3}{4}$ " through $\frac{1}{2}$ " and type E or S, grade B in sizes 2" through 20". Do not use fabricated fittings where malleable or ductile iron or forged steel fittings are available. Gaskets in all cases shall be EPDM suitable for temperatures to 230 degrees F.

- 3. Joint Fittings: ASTM A 536, Grade 65-45-12 ductile iron; ASTM A 47/A 47M, Grade 32510 malleable iron; ASTM A 53/A 53M, Type F, E, or S, Grade B fabricated steel; or ASTM A 106/A 106M, Grade B steel fittings with grooves or shoulders constructed to accept grooved-end couplings; with nuts, bolts, locking pin, locking toggle, or lugs to secure grooved pipe and fittings.
- 4. Couplings: Ductile- or malleable-iron housing and EPDM gasket of central cavity pressure-responsive design; with nuts, bolts, locking pin, locking toggle, or lugs to secure grooved pipe and fittings.
 - a. Couplings: Ductile iron standard couplings, Style 77; lightweight couplings, Style 75; and rigid couplings. Reducing couplings are not acceptable.
 - b. Flanges: Ductile iron Style 741 or 742 except at lug type butterfly valves where standard welding flanges shall be used.
- I. Steel Pipe Nipples: ASTM A 733, made of same materials and wall thicknesses as pipe in which they are installed.
- J. The following services may use mechanical grooved pipe connections in exposed areas within the building in mechanical space, Maintenance B and Maintenance Service areas. Mechanical chases are not considered accessible.
 - 1. Heating Hot Water.
- K. Acceptable fittings and couplings are listed below, based on Victaulic. When used on galvanized piping, fittings and couplings shall be galvanized. When used on black steel piping, fittings and couplings shall have an enamel coating.
- L. Fittings: Ductile iron elbows and tees of the manufacturer's standard line may be used in all sizes except bullhead tees will not be accepted. Fabricated steel fittings may be used in all sizes where fitting wall thickness conforms to standard weight pipe. Mechanical-T Style 920 fittings with malleable iron housings may be used for up to 2" outlet size.

2.4 JOINING MATERIALS

- A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch maximum thickness unless otherwise indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.

- B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.
- D. Brazing Filler Metals: AWS A5.8/A5.8M, BCuP Series, copper-phosphorus alloys for joining copper with copper; or BAg-1, silver alloy for joining copper with bronze or steel.
- E. Welding Filler Metals: Comply with AWS D10.12M/D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- F. Gasket Material: Thickness, material, and type suitable for fluid to be handled and working temperatures and pressures.

2.5 TRANSITION FITTINGS

A. See specification Section 23 05 00 – Common Work Results for HVAC

2.6 DIELECTRIC FITTINGS

A. See specification Section 23 05 00 – Common Work Results for HVAC

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS

- A. See drawing mechanical piping and valve schedule for piping application requirements.
- B. Hot-water heating piping, aboveground, NPS 2 and smaller, shall be the following:
 - 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
 - 2. Schedule 40 steel pipe; grooved, mechanical joint coupling and fittings; and grooved, mechanical joints.
 - 3. Victaulic grooved couplings, valves and fittings made of, or designed for use on, Type 304/304L stainless steel pipe alternative to copper.
- C. Hot-water heating piping, aboveground, NPS 2-1/2 and larger, shall be the following:
 - 1. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints.
 - 2. Schedule 40 steel pipe; grooved, mechanical joint coupling and fittings; and grooved, mechanical joints.
- D. Hot-water heating piping installed belowground and within slabs shall be the following:
 - 1. Type K, annealed-temper copper tubing, wrought-copper fittings, and brazed joints. Use the fewest possible joints.
- E. Makeup-water piping installed aboveground shall be either of the following:

- 1. Type L, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
- F. Condensate-Drain Piping: Type M, drawn-temper copper tubing, wrought-copper fittings, and soldered joints.
- G. Air-Vent Piping:
 - 1. Use pipe and pipe fittings as specified for the system to which the relief valve or vent is connected.
 - 2. Inlet: Same as service where installed and according to piping manufacturer's written instructions.
 - 3. Use pipe and pipe fittings as specified for the system to which the relief valve or vent is connected.
 - 4. Outlet: Type K, annealed-temper copper tubing with soldered or flared joints.
- H. Safety-Valve-Inlet and -Outlet Piping for Hot-Water Piping: Same materials and joining methods as for piping specified for the service in which safety valve is installed with metal-to-plastic transition fittings for plastic piping systems according to piping manufacturer's written instructions.
- I. Gaskets:
 - 1. Water Systems: Branded, compressed, non-asbestos sheet gaskets. Klingersil C4401, Garlock 3000, JM Clipper 978-C or approved equal.

3.2 PIPING INSTALLATIONS

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Install piping to allow application of insulation.

- J. Select system components with pressure rating equal to or greater than system operating pressure.
- K. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves.
- L. Install drains, consisting of a tee fitting, NPS 3/4 ball valve, and short NPS 3/4 threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage.
- M. Install piping at a uniform grade of 0.2 percent upward in direction of flow.
- N. Reduce pipe sizes using eccentric reducer fitting installed with level side up.
- O. Install valves according to Section 23 05 23 "General-Duty Valves for HVAC Piping."
- P. Install unions in piping, NPS 2 and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated.
- Q. Install flanges in piping, NPS 2-1/2 and larger, at final connections of equipment and elsewhere as indicated.
- R. Install shutoff valve immediately upstream of each dielectric fitting.
- S. Comply with requirements in Section 23 05 16 "Expansion Fittings and Loops for HVAC Piping" for installation of expansion loops, expansion joints, anchors, and pipe alignment guides.
- T. Comply with requirements in Section 23 05 53 "Identification for HVAC Piping and Equipment" for identifying piping.
- U. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 23 05 00 " Common Work Results for HVAC."
- V. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 23 05 00 "Common Work Results for HVAC."
- W. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 23 05 00 " Common Work Results for HVAC."

3.3 DIELECTRIC FITTING INSTALLATION

- A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
- B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric unions.
- C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flanges.
- D. Dielectric Fittings for NPS 5 and Larger: Use dielectric flange kits.

3.4 HANGERS AND SUPPORTS

- A. Comply with requirements in Section 23 05 29 "Hangers and Supports for HVAC Piping and Equipment" for hanger, support, and anchor devices. Comply with the following requirements for maximum spacing of supports.
- B. Comply with requirements in Section 23 05 48.13 "Vibration Controls for HVAC" for restraints.
- C. Install the following pipe attachments:
 - 1. Adjustable steel clevis hangers for individual horizontal piping less than 20 feet long.
 - 2. Adjustable roller hangers and spring hangers for individual horizontal piping 20 feet or longer.
 - 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
 - 4. Spring hangers to support vertical runs.
 - 5. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
- D. Install hangers for steel piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 3/4: Maximum span, 7 feet.
 - 2. NPS 1: Maximum span, 7 feet.
 - 3. NPS 1-1/2: Maximum span, 9 feet.
 - 4. NPS 2: Maximum span, 10 feet.
 - 5. NPS 2-1/2: Maximum span, 11 feet.
 - 6. NPS 3 and Larger: Maximum span, 12 feet.
- E. Install hangers for drawn-temper copper piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 3/4: Maximum span, 5 feet; minimum rod size, 1/4 inch.
 - 2. NPS 1: Maximum span, 6 feet; minimum rod size, 1/4 inch.
 - 3. NPS 1-1/4Maximum span, 7 feet; minimum rod size, 3/8 inch.
 - 4. NPS 1-1/2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
 - 5. NPS 2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
 - 6. NPS 2-1/2: Maximum span, 9 feet; minimum rod size, 3/8 inch.
 - 7. NPS 3 and Larger: Maximum span, 10 feet; minimum rod size, 3/8 inch.
- F. Support vertical runs at roof, at each floor, and at 10-foot intervals between floors.

3.5 PIPE JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

- C. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32.
- D. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8/A5.8M.
- E. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- F. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to "Quality Assurance" Article.
- G. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
- H. Grooved Joints: Assemble joints with coupling and gasket, lubricant, and bolts. Cut or roll grooves in ends of pipe based on pipe and coupling manufacturer's written instructions for pipe wall thickness. Use grooved-end fittings and rigid, grooved-end-pipe couplings.

3.6 GASKETS

- A. Store horizontally in cool, dry location and protect from sunlight, water, and chemicals. Inspect flange surfaces for warping, radial scoring, or heavy tool marks. Inspect fasteners, nuts and washers for burrs or cracks. Replace defective materials.
- B. Align flanges parallel and perpendicular with bolt holes centered without using excessive force. Center gasket in opening. Lubricate fastener threads, nuts and washers with lubricant formulated for application.
- C. Draw flanges together evenly to avoid pinching gasket. Tighten fasteners in cross pattern sequence (12 6 o'clock, 3 9 o'clock, etc.), one pass by hand and four passes by torque wrench at 30% full torque, 60% full torque and two passes at full torque per ASME B16.5.

3.7 MECHANICAL GROOVED PIPE CONNECTIONS

A. Use pipe factory grooved in accordance with the coupling manufacturer's specifications or field grooved pipe in accordance with the same specifications using specially designed tools available for the application.

- B. Lubricate pipe and coupling gasket, align pipe, and secure joint in accordance with the coupling manufacturer's specifications.
- C. Support pipe as indicated in Section 23 05 29 of these specifications except as modified below. Support each horizontal pipe section at least once between couplings and whenever a change in direction of line flow takes place. Support vertical pipe at every other floor or every other pipe length, whichever is most frequent. Set the base of the riser or the base fitting on a pedestal or foundation.
- D. Follow coupling manufacturer's installation recommendations if they are more stringent that the above requirements.

3.8 TERMINAL EQUIPMENT CONNECTIONS

- A. Sizes for supply and return piping connections shall be the same as or larger than equipment connections.
- B. Install control valves in accessible locations close to connected equipment.

3.9 FIELD QUALITY CONTROL

- A. Prepare hydronic piping according to ASME B31.9 and as follows:
 - 1. Leave joints, including welds, uninsulated and exposed for examination during test.
 - 2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing.
 - 3. Flush hydronic piping systems with clean water; then remove and clean or replace strainer screens.
 - 4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment.
 - 5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test.
- B. Perform the following tests on hydronic piping:
 - 1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used.
 - 2. While filling system, use vents installed at high points of system to release air. Use drains installed at low points for complete draining of test liquid.
 - 3. Isolate expansion tanks and determine that hydronic system is full of water.
 - 4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system's working pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum yield strength or 1.7 times the "SE" value in Appendix A in ASME B31.9, "Building Services Piping."

- 5. After hydrostatic test pressure has been applied for at least 10 minutes, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks.
 - a. For hydrostatic tests, use clean water and remove all air from the piping being tested by means of air vents or loosening of flanges/unions. Measure and record test pressure at the high point in the system.

System	Pressure	Medium	Duration
Heating hot water	100 psig	Water	8 hr

- 6. Prepare written report of testing.
- C. Perform the following before operating the system:
 - 1. Open manual valves fully.
 - 2. Inspect pumps for proper rotation.
 - 3. Set makeup pressure-reducing valves for required system pressure.
 - 4. Inspect air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type).
 - 5. Set temperature controls so all coils are calling for full flow.
 - 6. Inspect and set operating temperatures of hydronic equipment, such as boilers to specified values.
 - 7. Verify lubrication of motors and bearings.

END OF SECTION 23 21 13

SECTION 23 21 16 HYDRONIC PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of the following:
 - 1. Valves: Include flow and pressure drop curves based on manufacturer's testing for calibrated-orifice balancing valves and automatic flow-control valves.
 - 2. Air-control devices.
 - 3. Hydronic specialties.

1.3 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air-control devices, hydronic specialties, and special-duty valves to include in emergency, operation, and maintenance manuals.

1.4 MAINTENANCE MATERIAL SUBMITTALS

A. Differential Pressure Meter: For each type of balancing valve and automatic flow control valve, include flowmeter, probes, hoses, flow charts, and carrying case.

1.5 QUALITY ASSURANCE

- A. Pipe Welding: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code: Section IX.
 - 1. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature unless otherwise indicated:
 - 1. Hot-Water Heating Piping: 150 psig at 200 deg F.
 - 2. Makeup-Water Piping: 80 psig at 150 deg F.
 - 3. Condensate-Drain Piping: 150 deg F.
 - 4. Air-Vent Piping: 200 deg F.

5. Safety-Valve-Inlet and -Outlet Piping: Equal to the pressure of the piping system to which it is attached.

2.2 VALVES

- A. Gate, Globe, Check, Ball, and Butterfly Valves: Comply with requirements specified in Section 23 05 23 "General-Duty Valves for HVAC Piping."
- B. Automatic Temperature-Control Valves, Actuators, and Sensors: Comply with requirements specified in Section 23 09 00 "Instrumentation and Control for HVAC."
- C. Bronze, Calibrated-Orifice, Balancing Valves:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Armstrong Pumps, Inc.
 - b. Bell & Gossett Domestic Pump.
 - c. Flow Design Inc.
 - d. Gerand Engineering Co.
 - e. Griswold Controls.
 - f. Nexus Valve, Inc.
 - g. Tour & Andersson; available through Victaulic Company.
 - 2. Body: Bronze, ball or plug type with calibrated orifice or venturi.
 - 3. Ball: Brass or stainless steel.
 - 4. Plug: Resin.
 - 5. Seat: PTFE.
 - 6. End Connections: Threaded or socket.
 - 7. Pressure Gage Connections: Integral seals for portable differential pressure meter.
 - 8. Handle Style: Lever, with memory stop to retain set position.
 - 9. CWP Rating: Minimum 125 psig.
 - 10. Maximum Operating Temperature: 250 deg F.
- D. Cast-Iron or Steel, Calibrated-Orifice, Balancing Valves:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Armstrong Pumps, Inc.
 - b. Bell & Gossett Domestic Pump.
 - c. Flow Design Inc.
 - d. Gerand Engineering Co.
 - e. Griswold Controls.
 - f. Nexus Valve, Inc.
 - g. Tour & Andersson.

- 2. Body: Cast-iron or steel body, ball, plug, or globe pattern with calibrated orifice or venturi.
- 3. Ball: Brass or stainless steel.
- 4. Stem Seals: EPDM O-rings.
- 5. Disc: Glass and carbon-filled PTFE.
- 6. Seat: PTFE.
- 7. End Connections: Flanged or grooved.
- 8. Pressure Gage Connections: Integral seals for portable differential pressure meter.
- 9. Handle Style: Lever, with memory stop to retain set position.
- 10. CWP Rating: Minimum 125 psig.
- 11. Maximum Operating Temperature: 250 deg F.
- E. Diaphragm-Operated, Pressure-Reducing Valves: ASME labeled.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. AMTROL, Inc.
 - b. Armstrong Pumps, Inc.
 - c. Bell & Gossett Domestic Pump.
 - d. Spence Engineering Company, Inc.
 - e. Watts Regulator Co.
 - 2. Body: Bronze or brass.
 - 3. Disc: Glass and carbon-filled PTFE.
 - 4. Seat: Brass.
 - 5. Stem Seals: EPDM O-rings.
 - 6. Diaphragm: EPT.
 - 7. Low inlet-pressure check valve.
 - 8. Inlet Strainer: Removable without system shutdown.
 - 9. Valve Seat and Stem: Noncorrosive.
 - 10. Valve Size, Capacity, and Operating Pressure: Selected to suit system in which installed, with operating pressure and capacity factory set and field adjustable.
- F. Diaphragm-Operated Safety Valves: ASME labeled.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. AMTROL, Inc.
 - b. Armstrong Pumps, Inc.
 - c. Bell & Gossett Domestic Pump.
 - d. Spence Engineering Company, Inc.
 - e. Watts Regulator Co.
 - 2. Body: Bronze or brass.
 - 3. Disc: Glass and carbon-filled PTFE.
 - 4. Seat: Brass.

- 5. Stem Seals: EPDM O-rings.
- 6. Diaphragm: EPT.
- 7. Wetted, Internal Work Parts: Brass and rubber.
- 8. Inlet Strainer: Removable without system shutdown.
- 9. Valve Seat and Stem: Noncorrosive.
- 10. Valve Size, Capacity, and Operating Pressure: Comply with ASME Boiler and Pressure Vessel Code: Section IV, and selected to suit system in which installed, with operating pressure and capacity factory set and field adjustable.

2.3 AIR-CONTROL DEVICES

- A. Manual Air Vents:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. AMTROL, Inc.
 - b. Armstrong Pumps, Inc.
 - c. Bell & Gossett Domestic Pump.
 - d. Nexus Valve, Inc.
 - e. Taco, Inc.
 - 2. Body: Bronze.
 - 3. Internal Parts: Nonferrous.
 - 4. Operator: Screwdriver or thumbscrew.
 - 5. Inlet Connection: NPS 1/2.
 - 6. Discharge Connection: NPS 1/8.
 - 7. CWP Rating: 150 psig.
 - 8. Maximum Operating Temperature: 225 deg F.
- B. Automatic Air Vents:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. AMTROL, Inc.
 - b. Armstrong Pumps, Inc.
 - c. Bell & Gossett Domestic Pump.
 - d. Nexus Valve, Inc.
 - e. Taco, Inc.
 - 2. Body: Bronze or cast iron.
 - 3. Internal Parts: Nonferrous.
 - 4. Operator: Noncorrosive metal float.
 - 5. Inlet Connection: NPS 1/2.
 - 6. Discharge Connection: NPS 1/4.
 - 7. CWP Rating: 150 psig.
 - 8. Maximum Operating Temperature: 240 deg F.

- C. Bladder-Type Expansion Tanks:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. AMTROL, Inc.
 - b. Armstrong Pumps, Inc.
 - c. Bell & Gossett Domestic Pump.
 - d. Taco, Inc.
 - e. Wessel
 - 2. Tank: Welded steel, rated for 125-psig working pressure and 375 deg F maximum operating temperature. Factory test after taps are fabricated and supports installed and are labeled according to ASME Boiler and Pressure Vessel Code: Section VIII, Division 1.
 - 3. Bladder: Securely sealed into tank to separate air charge from system water to maintain required expansion capacity.
 - 4. Provide a precharged with air to the initial fill pressure indicated on the drawings, butyl replaceable bladder suitable for propylene glycol and furnished with a tank drain connection, system connection, base for vertical installation, prime coated, size/capacity as indicated on the drawings.
 - 5. Bladder: Butyl Securely sealed into tank to separate air charge from system water to maintain required expansion capacity.
 - 6. Air-Charge Fittings: Schrader valve, stainless steel with EPDM seats.
 - 7. Tank and bladder construction must allow field replacement of the bladder on its failure.
 - 8. Provide bladder rupture indicator with air valve release.
- D. Coalescing-Type Air and Dirt Separators:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Spirotherm VDT.
 - b. Wessel: WVA Series.
 - 2. Tank: Fabricated steel tank; ASME constructed and stamped for 125-psig working pressure and 270 deg F maximum operating temperature.
 - 3. Coalescing Medium: Copper or Stainless steel.
 - 4. Air Vent: Threaded to the top of the separator.
 - 5. Inline Inlet and Outlet Connections: Threaded for NPS 2 and smaller; Class 150 flanged connections for NPS 2-1/2 and larger.
 - 6. Blowdown Connection: Threaded to the bottom of the separator.
 - 7. Size: Match system flow capacity and with pipe size as schedules on drawings. In no case shall entering velocity exceed 10 feet per second.

2.4 HYDRONIC PIPING SPECIALTIES

A. Y-Pattern Strainers:

- 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
- 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
- 3. Strainer Screen: Stainless-steel, 20-mesh strainer, or perforated stainless-steel basket.
- 4. CWP Rating: 125 psig.
- 5. Manufacturers: Armstrong, Hoffman, Illinois, Keckley, Metraflex, Mueller Steam, or Sarco.
- B. Stainless-Steel Bellow, Flexible Connectors:
 - 1. Body: Stainless-steel bellows with woven, flexible, bronze, wire-reinforcing protective jacket.
 - 2. End Connections: Threaded or flanged to match equipment connected.
 - 3. Performance: Capable of 3/4-inch misalignment.
 - 4. CWP Rating: 150 psig.
 - 5. Maximum Operating Temperature: 250 deg F.
- C. Spherical, Rubber, Flexible Connectors:
 - 1. Body: Fiber-reinforced rubber body.
 - 2. End Connections: Steel flanges drilled to align with Classes 150 and 300 steel flanges.
 - 3. Performance: Capable of misalignment.
 - 4. CWP Rating: 150 psig
 - 5. Maximum Operating Temperature: 250 deg F
- D. Expansion Fittings: Comply with requirements in Section 23 05 16 "Expansion Fittings and Loops for HVAC Piping."

PART 3 - EXECUTION

3.1 VALVE APPLICATIONS

- A. Install shutoff-duty valves at each branch connection to supply mains and at supply connection to each piece of equipment.
- B. Install calibrated-orifice, balancing valves at each branch connection to return main.
- C. Install calibrated-orifice, balancing valves in the return pipe of each heating terminal.
- D. Install check valves at each pump discharge and elsewhere as required to control flow direction.
- E. Install safety valves at hot-water generators and elsewhere as required by ASME Boiler and Pressure Vessel Code. Install drip-pan elbow on safety-valve outlet and pipe without valves to the outdoors; pipe drain to nearest floor drain or as indicated on Drawings. Comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1, for installation requirements.

- F. Install pressure-reducing valves at makeup-water connection to regulate system fill pressure.
- 3.2 HYDRONIC SPECIALTIES INSTALLATION
- A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting.
- B. Install automatic air vents at high points of system piping in mechanical equipment rooms only. Install manual vents at heat-transfer coils and elsewhere as required for air venting.
- C. Install piping from boiler air outlet, air/dirt separator, or air purger to expansion tank with a 2 percent upward slope toward tank.
- D. Install expansion tanks above the air separator. Install tank fitting in tank bottom and charge tank. Use manual vent for initial fill to establish proper water level in tank.
 - 1. Install tank fittings that are shipped loose.
 - 2. Support tank from floor or structure above with sufficient strength to carry weight of tank, piping connections, fittings, plus tank full of water. Do not overload building components and structural members.
- E. Install expansion tanks on the floor. Vent and purge air from hydronic system and ensure that tank is properly charged with air to suit system Project requirements.
- 3.3 COALESCING-TYPE AIR AND DIRT SEPARATORS:
- A. Install coalescing type air and dirt separator for the hot water heating systems. Install blowdown piping with gate or full-port ball valve; extend full size to nearest floor drain.

END OF SECTION 23 21 16

This page intentionally left blank.

SECTION 23 21 23 HYDRONIC PUMPS

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- <u>1.2</u> <u>DEFINITIONS</u>
- A. Buna-N: Nitrile rubber.
- B. EPT: Ethyl propylene terpolymer.
- 1.3 ACTION SUBMITTALS
- A. Product Data: For each type of pump. Include certified performance curves and rated capacities, operating characteristics, furnished specialties, final impeller dimensions, and accessories for each type of product indicated. Indicate pump's operating point on curves.
- B. Shop Drawings: For each pump.
 - 1. Show pump layout and connections.
 - 2. Include diagrams for power, signal, and control wiring.
 - 3. Include NPSH curve when specified.
 - 4. Certified dimension prints showing all necessary details of construction.

1.4 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For pumps to include in emergency, operation, and maintenance manuals.
- 1.5 MAINTENANCE MATERIAL SUBMITTALS
- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Mechanical Seals: One mechanical seal(s) for each pump.

PART 2 - PRODUCTS

- 2.1 CLOSE-COUPLED, IN-LINE CENTRIFUGAL PUMPS
- A. Manufacturers Basis-of-Design Product: The design is based on the following:
 - 1. Grundfos/Paco

- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Bell & Gossett
- C. Description: Factory-assembled and -tested, centrifugal, overhung-impeller, closecoupled, in-line pump as defined in HI 1.1-1.2 and HI 1.3; designed for installation with pump and motor shafts mounted horizontally or vertically.
- D. Pump Construction:
 - 1. Casing: Radially split, cast iron, with threaded gage tappings at inlet and outlet, replaceable bronze wear rings, and threaded companion-flange or union-end connections.
 - 2. Impeller: ASTM A743, stainless steel; statically and dynamically balanced, keyed to shaft, and secured with a locking cap screw. For constant-speed pumps, trim impeller to match specified performance.
 - 3. Pump Shaft Sleeve: Stainless steel.
 - 4. Seal: Mechanical seal consisting of carbon rotating ring against a ceramic seat held by a stainless-steel spring, and Buna-N bellows and gasket. Include water slinger on shaft between motor and seal.
 - 5. Pump Bearings: Permanently lubricated ball bearings.
- E. Motor: Single speed and rigidly mounted to pump casing.
 - 1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."
 - a. Enclosure: Open, drip proof or Totally enclosed, fan cooled.

2.2 PUMP SPECIALTY FITTINGS

- A. Grounding Rings:
 - 1. Provide bearing protection grounding rings to bleed current from the motor shaft to the motor casing. Refer to in Section 23 05 13 "Common Motor Requirements for HVAC Equipment".

2.3 CAPACITIES AND CHARACTERISTICS:

A. Refer to Schedule on drawings.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine equipment foundations and anchor-bolt locations for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for piping systems to verify actual locations of piping connections before pump installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PUMP INSTALLATION

- A. Install pumps to provide access for periodic maintenance including removing motors, impellers, couplings, and accessories.
- B. Independently support pumps and piping so weight of piping is not supported by pumps and weight of pumps is not supported by piping.
- C. Equipment Mounting: Install in-line pumps with continuous-thread hanger rods and elastomeric hangers of size required to support weight of in-line pumps.
 - 1. Comply with requirements for seismic-restraint devices specified in Section 23 05 48.13 "Vibration Controls for HVAC."
 - 2. Comply with requirements for hangers and supports specified in Section 23 05 29 "Hangers and Supports for HVAC Piping and Equipment."

3.3 ALIGNMENT

- A. Perform alignment service.
- B. Comply with requirements in Hydronics Institute standards for alignment of pump and motor shaft.
- C. Comply with pump and coupling manufacturers' written instructions.

3.4 CONNECTIONS

- A. Piping installation requirements are specified in Section 23 21 13 "Hydronic Piping" and Section 23 21 16 Hydronic Piping Specialties." Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Where installing piping adjacent to pump, allow space for service and maintenance.
- C. Connect piping to pumps. Install valves that are same size as piping connected to pumps.
- D. Install suction and discharge pipe sizes equal to or greater than diameter of pump nozzles.
- E. Install check valve and throttling valve with memory stop on discharge side of pumps.
- F. Install Y-type strainer and shutoff valve on suction side of pumps. Drawings indicate general arrangement of piping, fittings, and specialties.

- G. Install pressure gages on pump suction and discharge or at integral pressure-gage tapping or install single gage with multiple-input selector valve.
- H. Ground equipment according to Division 26,
- I. Connect wiring according to Division 26.
- J. Provide air cock and drain connection on horizontal pump casings.
- K. Threaded piping may be connected to flanged pumps with threaded/flanged valves equal to Webstone "The Isolator" uni-flange ball valve.

3.5 STARTUP SERVICE

- A. Perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Check piping connections for tightness.
 - 3. Clean strainers on suction piping.
 - 4. Perform the following startup checks for each pump before starting:
 - a. Verify bearing lubrication.
 - b. Verify that pump is free to rotate by hand and that pump for handling hot liquid is free to rotate with pump hot and cold. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.
 - c. Verify that pump is rotating in the correct direction.
 - 5. Prime pump by opening suction valves and closing drains and prepare pump for operation.
 - 6. Start motor.
 - 7. Open discharge valve slowly.
 - 8. Ensure pumps operate at specified system fluid temperatures without vapor binding or cavitation and are non-overloading in both parallel and individual operation.

3.6 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain hydronic pumps.

END OF SECTION 23 21 23

SECTION 23 23 00 REFRIGERANT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes refrigerant piping used for air-conditioning applications.

1.3 PERFORMANCE REQUIREMENTS

- A. Line Test Pressure for Refrigerant R-410A:
 - 1. Suction Lines for Air-Conditioning Applications: 300 psig.
 - 2. Suction Lines for Heat-Pump Applications: 535 psig.
 - 3. Hot-Gas and Liquid Lines: 535 psig.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of valve and refrigerant piping specialty indicated. Include pressure drop, based on manufacturer's test data, for the following:
 - 1. Thermostatic expansion valves.
 - 2. Solenoid valves.
 - 3. Hot-gas bypass valves.
 - 4. Filter dryers.
 - 5. Strainers.
 - 6. Pressure-regulating valves.
 - 7. Refrigerant piping indicated on Drawings is schematic only. Size piping and design actual piping layout, including oil traps, double risers, specialties, and pipe and tube sizes to accommodate, as a minimum, equipment provided, elevation difference between compressor and evaporator, and length of piping to ensure proper operation and compliance with warranties of connected equipment.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For refrigerant valves and piping specialties to include in maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Comply with ASHRAE 15, "Safety Code for Refrigeration Systems."
- B. Comply with ASME B31.5, "Refrigeration Piping and Heat Transfer Components."

1.7 PRODUCT STORAGE AND HANDLING

A. Store piping in a clean and protected area with end caps in place to ensure that piping interior and exterior are clean when installed.

1.8 COORDINATION

A. Coordinate size and location of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07.

PART 2 - PRODUCTS

- 2.1 COPPER TUBE AND FITTINGS
- A. Copper Tube: ASTM B 88, Type K or L.
- B. Wrought-Copper Fittings: ASME B16.22.
- C. Wrought-Copper Unions: ASME B16.22.
- D. Solder Filler Metals: ASTM B 32. Use 95-5 tin antimony or alloy HB solder to join copper socket fittings on copper pipe.
- E. Brazing Filler Metals: AWS A5.8.
- F. Flexible Connectors:
 - 1. Body: Tin-bronze bellows with woven, double braided, flexible, tinned-bronzewire-reinforced protective jacket.
 - 2. End Connections: Socket ends.
 - 3. Offset Performance: Capable of minimum 3/4-inch misalignment in minimum 7-inch-long assembly.
 - 4. Pressure Rating: Factory test at minimum 500 psig.
 - 5. Maximum Operating Temperature: 250 deg F.

2.2 VALVES AND SPECIALTIES

- A. Check Valves:
 - 1. Body: Ductile iron, forged brass, or cast bronze; globe pattern.
 - 2. Bonnet: Bolted ductile iron, forged brass, or cast bronze; or brass hex plug.
 - 3. Piston: Removable polytetrafluoroethylene seat.
 - 4. Closing Spring: Stainless steel.
 - 5. End Connections: Socket, union, threaded, or flanged.
 - 6. Maximum Opening Pressure: 0.50 psig.
 - 7. Working Pressure Rating: 500 psig.
 - 8. Maximum Operating Temperature: 275 deg F.
- B. Service Valves:
 - 1. Body: Forged brass with brass cap including key end to remove core.

- 2. Core: Removable ball-type check valve with stainless-steel spring.
- 3. Seat: Polytetrafluoroethylene.
- 4. End Connections: Copper spring.
- 5. Working Pressure Rating: 500 psig.
- C. Solenoid Valves: Comply with ARI 760 and UL 429; listed and labeled by an NRTL.
 - 1. Body and Bonnet: Plated steel.
 - 2. Solenoid Tube, Plunger, Closing Spring, and Seat Orifice: Stainless steel.
 - 3. Seat: Polytetrafluoroethylene.
 - 4. End Connections: Threaded.
 - 5. Electrical: Molded, watertight coil in NEMA 250 enclosure of type required by location with 1/2-inch conduit adapter.
 - 6. Working Pressure Rating: 400 psig.
 - 7. Maximum Operating Temperature: 240 deg F.
- D. Safety Relief Valves: Comply with ASME Boiler and Pressure Vessel Code; listed and labeled by an NRTL.
 - 1. Body and Bonnet: Ductile iron and steel, with neoprene O-ring seal.
 - 2. Piston, Closing Spring, and Seat Insert: Stainless steel.
 - 3. Seat Disc: Polytetrafluoroethylene.
 - 4. End Connections: Threaded.
 - 5. Working Pressure Rating: 400 psig.
 - 6. Maximum Operating Temperature: 240 deg F.
- E. Thermostatic Expansion Valves: Comply with ARI 750.
 - 1. Body, Bonnet, and Seal Cap: Forged brass or steel.
 - 2. Diaphragm, Piston, Closing Spring, and Seat Insert: Stainless steel.
 - 3. Packing and Gaskets: Non-asbestos.
 - 4. Capillary and Bulb: Copper tubing filled with refrigerant charge.
 - 5. Reverse-flow option (for heat-pump applications).
 - 6. End Connections: Socket, flare, or threaded union.
 - 7. Working Pressure Rating: 700 psig.
- F. Hot-Gas Bypass Valves: Comply with UL 429; listed and labeled by an NRTL.
 - 1. Body, Bonnet, and Seal Cap: Ductile iron or steel.
 - 2. Diaphragm, Piston, Closing Spring, and Seat Insert: Stainless steel.
 - 3. Packing and Gaskets: Non-asbestos.
 - 4. Solenoid Tube, Plunger, Closing Spring, and Seat Orifice: Stainless steel.
 - 5. Seat: Polytetrafluoroethylene.
 - 6. Equalizer: Internal or External.
 - 7. Electrical: Molded, watertight coil in NEMA 250 enclosure of type required by location with 1/2-inch conduit adapter, and 24-V ac coil.
 - 8. End Connections: Socket.
 - 9. Set Pressure: Manufacturer's guidelines.
 - 10. Throttling Range: Maximum 5 psig.
 - 11. Working Pressure Rating: 500 psig.
 - 12. Maximum Operating Temperature: 240 deg F.

- G. Straight-Type Strainers:
 - 1. Body: Welded steel with corrosion-resistant coating.
 - 2. Screen: 100-mesh stainless steel.
 - 3. End Connections: Socket or flare.
 - 4. Working Pressure Rating: 500 psig.
 - 5. Maximum Operating Temperature: 275 deg F.
- H. Angle-Type Strainers:
 - 1. Body: Forged brass or cast bronze.
 - 2. Drain Plug: Brass hex plug.
 - 3. Screen: 100-mesh monel.
 - 4. End Connections: Socket or flare.
 - 5. Working Pressure Rating: 500 psig.
 - 6. Maximum Operating Temperature: 275 deg F.
- I. Moisture/Liquid Indicators:
 - 1. Body: Forged brass.
 - 2. Window: Replaceable, clear, fused glass window with indicating element protected by filter screen.
 - 3. Indicator: Color coded to show moisture content in ppm.
 - 4. Minimum Moisture Indicator Sensitivity: Indicate moisture above 60 ppm.
 - 5. End Connections: Socket or flare.
 - 6. Working Pressure Rating: 500 psig.
 - 7. Maximum Operating Temperature: 240 deg F.
- J. Replaceable-Core Filter Dryers: Comply with ARI 730.
 - 1. Body and Cover: Painted-steel shell with ductile-iron cover, stainless-steel screws, and neoprene gaskets.
 - 2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
 - 3. Access Ports: NPS 1/4 connections at entering and leaving sides for pressure differential measurement.
 - 4. Maximum Pressure Loss: 2 psig.
 - 5. Working Pressure Rating: 500 psig.
 - 6. Maximum Operating Temperature: 240 deg F.
- K. Permanent Filter Dryers: Comply with ARI 730.
 - 1. Body and Cover: Painted-steel shell.
 - 2. Filter Media: 10 micron, pleated with integral end rings; stainless-steel support.
 - 3. Desiccant Media: Activated charcoal.
 - 4. End Connections: Socket.
 - 5. Access Ports: NPS 1/4 connections at entering and leaving sides for pressure differential measurement.
 - 6. Maximum Pressure Loss: 2 psig.
 - 7. Working Pressure Rating: 500 psig.
 - 8. Maximum Operating Temperature: 240 deg F.

- L. Charging Valves:
 - 1. Provide ¹/₄" SAE brass male flare access ports with finger tight, quick seal caps. Provide 2-inch-long copper extension sections.

2.3 <u>REFRIGERANTS</u>

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Atofina Chemicals, Inc.
 - 2. DuPont Company; Fluorochemicals Div.
 - 3. Honeywell, Inc.; Genetron Refrigerants.
 - 4. INEOS Fluor Americas LLC.
- B. ASHRAE 34, R-134a: Tetrafluoroethane.
- C. ASHRAE 34, R-410A: Pentafluoroethane/Difluoromethane.

PART 3 - EXECUTION

3.1 PIPING APPLICATIONS FOR REFRIGERANT R-410A

- A. Suction Lines:
 - 1. NPS 1-1/2 and Smaller: Copper, Type L, annealed-temper tubing, and wroughtcopper fittings with soldered joints.
 - a. Cleaned and capped in accordance with ASTM B280, and marked "ACR"
- B. Hot-Gas and Liquid Lines: Copper.
 - 1. NPS 1-1/2 and Smaller: Type L, drawn-temper tubing, and wrought-copper fittings with soldered joints.
 - a. Cleaned and capped in accordance with ASTM B280, and marked "ACR"
- C. Safety-Relief-Valve Discharge Piping:
 - 1. NPS 1-1/2 and Smaller: Copper, Type L, drawn-temper tubing, and wroughtcopper fittings with soldered joints.
 - a. Cleaned and capped in accordance with ASTM B280, and marked "ACR"

3.2 VALVE AND SPECIALTY APPLICATIONS

A. Install service values for gage taps at inlet and outlet of hot-gas bypass values and strainers if they are not an integral part of values and strainers.

- B. Install solenoid valves upstream from each expansion valve and hot-gas bypass valve. Install solenoid valves in horizontal lines with coil at top.
- C. Install thermostatic expansion valves as close as possible to distributors on evaporators.
 - 1. Install valve so diaphragm case is warmer than bulb.
 - 2. Secure bulb to clean, straight, horizontal section of suction line using two bulb straps. Do not mount bulb in a trap or at bottom of the line.
 - 3. If external equalizer lines are required, make connection where it will reflect suction-line pressure at bulb location.
- D. Install safety relief valves where required by ASME Boiler and Pressure Vessel Code. Pipe safety-relief-valve discharge line to outside according to ASHRAE 15.
- E. Install moisture/liquid indicators in liquid line at the inlet of the thermostatic expansion valve or at the inlet of the evaporator coil capillary tube.
- F. Install strainers upstream from and adjacent to the following unless they are furnished as an integral assembly for device being protected:
 - 1. Solenoid valves.
 - 2. Thermostatic expansion valves.
 - 3. Hot-gas bypass valves.
 - 4. Compressor.
- G. Install filter dryers in liquid line between compressor and thermostatic expansion valve, and in the suction line at the compressor. Filter Dryers: For circuits 15 tons and over provide angle pattern filter dryers with replaceable core. For circuits below 15 tons provide straight pattern filter dryers without replaceable core.
- H. Install flexible connectors at compressors.
- I. Install accessories in accordance with the manufacturer's written instructions and recommendations.

3.3 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems; indicated locations and arrangements. Install piping as indicated unless deviations to layout are approved on Shop Drawings.
- B. Install refrigerant piping according to ASHRAE 15.
- C. Tubing to be new and delivered to the job site with the original mill end caps in place. Clean and polish all joints before brazing. Avoid prolonged heating and burning during brazing. Purge all lines with nitrogen during brazing. Provide manual shut-off and check valves as required.
- D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

- E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- G. Install piping adjacent to machines to allow service and maintenance.
- H. Install piping free of sags and bends.
- I. Install fittings for changes in direction and branch connections.
- J. Select system components with pressure rating equal to or greater than system operating pressure.
- K. Refer to Section 23 09 00 "Instrumentation and Control for HVAC" and Section 23 09 93 "Sequence of Operations for HVAC Controls" for solenoid valve controllers, control wiring, and sequence of operation.
- L. Install piping as short and direct as possible, with a minimum number of joints, elbows, and fittings.
- M. Arrange piping to allow inspection and service of refrigeration equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels, as specified in Division 8, if valves or equipment requiring maintenance are concealed behind finished surfaces.
- N. Install refrigerant piping in rigid or flexible conduit in locations where exposed to mechanical injury.
- O. Slope refrigerant piping as follows:
 - 1. Install horizontal hot-gas discharge piping with a uniform slope downward away from compressor.
 - 2. Install horizontal suction lines with a uniform slope downward to compressor.
 - 3. Install traps and double risers to entrain oil in vertical runs.
 - 4. Liquid lines may be installed level.
- P. When brazing or soldering, remove solenoid-valve coils and sight glasses; also remove valve stems, seats, and packing, and accessible internal parts of refrigerant specialties. Do not apply heat near expansion-valve bulb.
- Q. Install piping with adequate clearance between pipe and adjacent walls and hangers or between pipes for insulation installation.
- R. Identify refrigerant piping and valves according to Section 23 05 53 "Identification for HVAC Piping and Equipment."

- S. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 23 05 00 " Common Work Results for HVAC."
- T. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 23 05 00 "Common Work Results for HVAC."

3.4 PIPE JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- C. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," Chapter "Pipe and Tube."
 - 1. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper pipe.
 - 2. Use Type BAg, cadmium-free silver alloy for joining copper with bronze or steel.

3.5 HANGERS AND SUPPORTS

- A. Hanger, support, and anchor products are specified in Section 23 05 29 "Hangers and Supports for HVAC Piping and Equipment."
- B. Install the following pipe attachments:
 - 1. Adjustable steel clevis hangers for individual horizontal runs less than 20 feet long.
 - 2. Roller hangers and spring hangers for individual horizontal runs 20 feet or longer.
 - 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping 20 feet or longer, supported on a trapeze.
 - 4. Spring hangers to support vertical runs.
 - 5. Copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
- C. Install hangers for copper tubing with the following maximum spacing and minimum rod sizes:
 - 1. NPS 1/2: Maximum span, 60 inches; minimum rod size, 1/4 inch.
 - 2. NPS 5/8: Maximum span, 60 inches; minimum rod size, 1/4 inch.
 - 3. NPS 1: Maximum span, 72 inches; minimum rod size, 1/4 inch.
 - 4. NPS 1-1/2: Maximum span, 96 inches; minimum rod size, 3/8 inch.
- D. Support multi-floor vertical runs at least at each floor.

3.6 FIELD QUALITY CONTROL

A. Perform tests and inspections and prepare test reports.

B. Tests and Inspections:

- 1. Comply with ASME B31.5, Chapter VI.
- 2. Test refrigerant piping, specialties, and receivers. Isolate compressor, condenser, evaporator, and safety devices from test pressure if they are not rated above the test pressure.
- 3. Test high- and low-pressure side piping of each system separately at not less than the pressures indicated in Part 1 "Performance Requirements" Article.
 - a. Fill system with nitrogen to the required test pressure.
 - b. System shall maintain test pressure at the manifold gage throughout duration of test.
 - c. Test joints and fittings with electronic leak detector or by brushing a small amount of soap and glycerin solution over joints.
 - d. Remake leaking joints using new materials, and retest until satisfactory results are achieved.

3.7 SYSTEM CHARGING

- A. Charge system using the following procedures:
 - 1. Install core in filter dryers after leak test but before evacuation.
 - 2. Evacuate entire refrigerant system with a vacuum pump to 500 micrometers. If vacuum holds for 12 hours, system is ready for charging.
 - 3. Break vacuum with refrigerant gas, allowing pressure to build up to 2 psig.
 - 4. Charge system with a new filter-dryer core in charging line.

3.8 ADJUSTING

- A. Adjust thermostatic expansion valve to obtain proper evaporator superheat.
- B. Adjust high- and low-pressure switch settings to avoid short cycling in response to fluctuating suction pressure.
- C. Adjust set-point temperature of air-conditioning controllers to the system design temperature.
- D. Perform the following adjustments before operating the refrigeration system, according to manufacturer's written instructions:
 - 1. Verify that compressor oil level is correct.
 - 2. Open compressor suction and discharge valves.
 - 3. Open refrigerant valves except bypass valves that are used for other purposes.
 - 4. Check open compressor-motor alignment and verify lubrication for motors and bearings.
- E. Replace core of replaceable filter dryer after system has been adjusted and after design flow rates and pressures are established.

END OF SECTION 23 23 00

This page intentionally left blank.

SECTION 23 25 00 HVAC WATER TREATMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes the following HVAC water-treatment systems:
 - 1. Manual and automatic chemical-feed equipment and controls.
 - 2. Chemical treatment test equipment.
 - 3. Chemicals.
 - 4. Water filtration equipment.

1.3 ACTION SUBMITTALS

- A. Product Data: Include rated capacities, operating characteristics, and furnished specialties and accessories for the following products:
 - 1. Chemical test equipment.
 - 2. Chemical material safety data sheets.
 - 3. Replaceable bag-type filters.
- B. Shop Drawings: Pretreatment and chemical treatment equipment showing tanks, maintenance space required, and piping connections to HVAC systems.

1.4 INFORMATIONAL SUBMITTALS

- A. Water Analysis Provider Qualifications: Verification of experience and capability of HVAC water-treatment service provider.
- B. Other Informational Submittals:
 - 1. Water-Treatment Program: Written sequence of operation on an annual basis for the application equipment required to achieve water quality defined in "Performance Requirements" Article.

1.5 QUALITY ASSURANCE

A. HVAC Water-Treatment Service Provider Qualifications: An experienced HVAC watertreatment service provider capable of analyzing water qualities, installing watertreatment equipment, and applying water treatment as specified in this Section.

1.6 MAINTENANCE SERVICE

- A. Scope of Maintenance Service: Provide chemicals and service program to maintain water conditions required above to inhibit corrosion and scale formation for hydronic piping and equipment. Services and chemicals shall be provided for a period of one year from date of Substantial Completion and shall include the following:
 - 1. Initial water analysis and HVAC water-treatment recommendations.
 - 2. Startup assistance for Contractor to flush the systems, clean with detergents, and initially fill systems with required chemical treatment prior to operation.
 - 3. Periodic field service and consultation.
 - 4. Customer report charts and log sheets.
 - 5. Laboratory technical analysis.
 - 6. Analyses and reports of all chemical items concerning safety and compliance with government regulations.

1.7 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For sensors, water filtration units, and controllers to include in emergency, operation, and maintenance manuals.
- B. Water Analysis: Illustrate water quality available at Project site.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Fremont Industries
 - 2. IWM Corporation
 - 3. H-O-H Water Technology, Inc.
 - 4. Nalco; an Ecolab company.
 - 5. WATERTECH of America, Inc.

2.2 PERFORMANCE REQUIREMENTS

- A. Water quality for HVAC systems shall minimize corrosion, scale buildup, and biological growth for optimum efficiency of HVAC equipment without creating a hazard to operating personnel or to the environment.
- B. Base HVAC water treatment on quality of water available at Project site, HVAC system equipment material characteristics and functional performance characteristics, operating personnel capabilities, and requirements and guidelines of authorities having jurisdiction.
- C. Closed hydronic systems, including hot-water heating shall have the following water qualities:

- 1. pH: Maintain a value within 9.0 to 10.5.
- 2. "P" Alkalinity: Maintain a value within 100 to 500 ppm.
- 3. Boron: Maintain a value within 100 to 200 ppm.
- 4. Chemical Oxygen Demand: Maintain a maximum value of 100 ppm.
- 5. Soluble Copper: Maintain a maximum value of 0.20 ppm.
- 6. TSS: Maintain a maximum value of 10 ppm.
- 7. Ammonia: Maintain a maximum value of 20 ppm.
- 8. Free Caustic Alkalinity: Maintain a maximum value of 20 ppm.
- 9. Microbiological Limits:
 - a. Total Aerobic Plate Count: Maintain a maximum value of 1000 organisms/mL.
 - b. Total Anaerobic Plate Count: Maintain a maximum value of 100 organisms/mL.
 - c. Nitrate Reducers: Maintain a maximum value of 100 organisms/mL.
 - d. Sulfate Reducers: Maintain a maximum value of zero organisms/mL.
 - e. Iron Bacteria: Maintain a maximum value of zero organisms/mL.

2.3 MANUAL CHEMICAL-FEED EQUIPMENT

- A. Use Existing Bypass Feeders: Steel, with corrosion-resistant exterior coating, minimum 3½-inch fill opening in the top, and NPS ¾ bottom inlet and top side outlet. Quarter turn or threaded fill cap with gasket seal and diaphragm to lock the top on the feeder when exposed to system pressure in the vessel.
 - 1. Capacity: 2 gal.
 - 2. Minimum Working Pressure: 125 psig.

2.4 CHEMICALS

A. Chemicals shall be as recommended by water-treatment system manufacturer that are compatible with piping system components and connected equipment and that can attain water quality specified in "Performance Requirements" Article.

2.5 FILTRATION EQUIPMENT

- A. Bag-Type Filters:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Pall Trinity Micro Corporation, Model Fulflo
 - b. Parker Hannifin Corp.; Process Filtration Div.
 - c. Dover Corp./Ronningen-Petter Division
 - d. Commercial Filters (Carborundum)
 - 2. Description: Floor-mounting housing with filter bags for removing particles from water.

- a. Housing: Corrosion resistant; designed to separate inlet from outlet and to direct inlet through bag-type water filter; with bag support and base, feet, or skirt.
 - 1) Pipe Connections NPS 2 and Smaller: Threaded according to ASME B1.20.1.
 - Steel Housing Pipe Connections NPS 2-1/2 and Larger: Steel, Class 150 flanges according to ASME B16.5 or grooved according to AWWA C606.
 - 3) Plastic Housing Pipe Connections NPS 2-1/2 and Larger: 150-psig plastic flanges.
- b. Bag: Replaceable; of shape to fit housing.
- 3. Furnish 4 sets of cleanable nylon bag filters, two capable of removing 95% of solids that are 10 microns or large and two cable of removing 95% of solids that are 50 microns or larger.
- 4. Assembly to function properly with pressure differentials to 75 psi.
- 5. Capacities and Characteristics: See schedule on drawings.

PART 3 - EXECUTION

3.1 WATER ANALYSIS

A. Perform an analysis of supply water to determine quality of water available at Project site.

3.2 INSTALLATION

- A. Install chemical application equipment on concrete bases level and plumb. Maintain manufacturer's recommended clearances. Arrange units so controls and devices that require servicing are accessible. Anchor chemical tanks and floor-mounting accessories to substrate.
- B. Install water-testing equipment on wall near water-chemical-application equipment.
- C. Existing Bypass Feeders: Reuse the existing unit installed in the closed hydronic systems, including hot-water heating, and equipped with the following:
 - 1. Use existing bypass feeder in a bypass circuit around circulating pumps unless otherwise indicated on Drawings. Contractor to re-pipe the existing bypass feeders.
 - 2. Install new water meter in makeup-water supply.
 - 3. Install test-coupon assembly in bypass circuit around circulating pumps unless otherwise indicated on Drawings.
- D. Filtration Equipment: Install in closed hydronic systems, including hot-water heating, and equipped with the following:

- 1. Install filtration equipment in a bypass circuit around circulating pumps unless otherwise indicated on Drawings.
- 2. Install a full-port ball isolation valves on inlet, outlet, and drain below feeder inlet.
- 3. Install a swing check on inlet after the isolation valve.

3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Where installing piping adjacent to equipment, allow space for service and maintenance.
- C. Make piping connections between HVAC water-treatment equipment and dissimilarmetal piping with dielectric fittings. Dielectric fittings are specified in Section 23 21 13 "Hydronic Piping."
- D. Install shutoff valves on HVAC water-treatment equipment inlet and outlet. Metal general-duty valves are specified in Section 23 05 23 "General-Duty Valves for HVAC Piping."
- E. See Division 22 for backflow preventers required in makeup-water connections to potable-water systems.
- F. Confirm applicable electrical requirements in electrical Sections for connecting electrical equipment.
- G. Ground equipment according to Division 26.
- H. Connect wiring according to Section Division 26.
- 3.4 FIELD QUALITY CONTROL
- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Inspect field-assembled components and equipment installation, including piping and electrical connections.
 - 2. Inspect piping and equipment to determine that systems and equipment have been cleaned, flushed, and filled with water, and are fully operational before introducing chemicals for water-treatment system.
 - a. Remove water filter elements from the system before starting circulation.
 - b. Re-install filter when cleaning is complete.
 - c. Remove, clean, and replace strainer screens.
 - 3. Place HVAC water-treatment system into operation and calibrate controls during the preliminary phase of HVAC system's startup procedures.

- 4. Do not enclose, cover, or put piping into operation until it is tested, and satisfactory test results are achieved.
- 5. Test for leaks and defects. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
- 6. Leave uncovered and unconcealed new, altered, extended, and replaced water piping until it has been tested and approved. Expose work that has been covered or concealed before it has been tested and approved.
- 7. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source and allow test pressure to stand for four hours. Leaks and loss in test pressure constitute defects.
- 8. Repair leaks and defects with new materials and retest piping until no leaks exist.
- C. Equipment will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.
- E. Comply with ASTM D 3370 and with the following standards:
 - 1. Silica: ASTM D 859.
 - 2. Acidity and Alkalinity: ASTM D 1067.
 - 3. Iron: ASTM D 1068.
 - 4. Water Hardness: ASTM D 1126.

3.5 DEMONSTRATION

- A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain HVAC water-treatment systems and equipment.
- B. Provide site inspection of equipment during scheduled shutdown to evaluate success of the treatment program. Make recommendations in writing based on these inspections.

END OF SECTION 23 25 00
SECTION 23 31 13 METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Shop-fabricated, field-assembled, single wall casings for HVAC equipment.
 - 2. Single-wall rectangular ducts and fittings.
 - 3. Single-wall round ducts and fittings.
 - 4. Sheet metal materials.
 - 5. Duct liner.
 - 6. Sealants and gaskets.
 - 7. Hangers and supports.

1.3 PERFORMANCE REQUIREMENTS

- A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.
- B. Structural Performance: Duct hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- D. Indicated duct sizes are inside clear dimensions.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of the following products:
 - 1. Factory-fabricated metal ducts.
 - 2. Liners and adhesives.
 - 3. Sealants and gaskets.
- B. Product Data: For each type of the following products:
 - 1. Leakage Test Report for Documentation of work performed for compliance with ASHRAE/IESNA 90.1, Section 6.4.4.2.2 "Duct Leakage Tests."

- 2. Duct-Cleaning Test Report for Documentation of work performed for compliance with ASHRAE 62.1, Section 7.2.4 "Ventilation System Start-up."
- 3. Product Data for adhesives and sealants, documentation including printed statement of VOC content.
- 4. Laboratory Test Reports for adhesives and sealants, documentation indicating that products comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
- C. Shop Drawings: For HVAC metal ducts. Include plans, elevations, sections, components, and attachments to other work.
 - 1. Detail HVAC casing assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 2. Sheet metal thickness(es).
 - 3. Reinforcement and spacing.
 - 4. Seam and joint construction.

1.5 INFORMATIONAL SUBMITTALS

- A. Welding certificates.
- B. Product Certificates: For acoustically critical casings, from manufacturer.
 - 1. Show sound-absorption coefficients in each octave band lower than those scheduled when tested according to ASTM C 423.
 - 2. Show airborne sound transmission losses lower than those scheduled when tested according to ASTM E 90.

1.6 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports.
 - 2. AWS D1.2/D1.2M, "Structural Welding Code Aluminum," for aluminum supports.
 - 3. AWS D9.1M/D9.1, "Sheet Metal Welding Code," for duct joint and seam welding.
- B. Construct all ductwork to be free from vibration, chatter, objectionable pulsations and leakage under specified operating conditions. Objectionable conditions shall be corrected to the satisfaction of the Owner, at no cost to the Contract.

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.

- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- E. Leakage Class: All rectangular ductwork shall be SMACNA Leakage Class 6.
- F. Seams: All longitudinal seams shall be "Pittsburgh" style. Snap-lock seams are not allowed.
- G. Crossbreak or bead rectangular ductwork. Crossbreaks shall be "out" on positive pressure duct and "in" on negative pressure ducts.

2.2 SINGLE-WALL ROUND DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Lindab Inc.
 - b. McGill AirFlow LLC.
 - c. SEMCO Incorporated.
 - d. Sheet Metal Connectors, Inc.
 - e. Spiral Manufacturing Co., Inc.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, ductsupport intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
 - 1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.

- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
 - 2. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with buttwelded longitudinal seams.
- D. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- E. Leakage Class: All round ductwork shall be SMACNA Leakage Class 3.
- 2.3 EXHAUST DUCT (Moisture laden air)
- A. Moisture laden ductwork systems include:
 - 1. Showers and lockers rooms.
- B. Exhaust ducts conveying moisture laden air to be constructed of sheet aluminum in accordance with SMACNA standards.
- C. Seal all joints and seams watertight.
- 2.4 SHEET METAL MATERIALS
- A. See drawing schedule for sheet metal material requirements.
- B. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- C. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G90.
 - 2. Finishes for Surfaces Exposed to View: Mill phosphatized.
- D. Aluminum Sheets: Comply with ASTM B 209 Alloy 3003, H14 temper; with mill finish for concealed ducts, and standard, one-side bright finish for duct surfaces exposed to view.
- E. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

- 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
- F. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.
- G. Provide paint grip type ductwork where ductwork is exposed and indicated to be painted.
- 2.5 DUCT LINER
- A. Fibrous-Glass Duct Liner: Comply with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. CertainTeed Corporation; Insulation Group.
 - b. Johns Manville.
 - c. Knauf Insulation.
 - d. Owens Corning.
 - e. Maximum Thermal Conductivity:
 - 1) Type I, Flexible: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
 - 2. Antimicrobial Erosion-Resistant Coating: Apply to the surface of the liner that will form the interior surface of the duct to act as a moisture repellent and erosion-resistant coating. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
 - 3. Water-Based Liner Adhesive: Comply with NFPA 90A or NFPA 90B and with ASTM C 916.
 - a. For indoor applications, adhesive shall have a VOC content of 80 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Insulation Pins and Washers:
 - 1. Cupped-Head, Capacitor-Discharge-Weld Pins: Copper- or zinc-coated steel pin, fully annealed for capacitor-discharge welding, 0.106-inch- diameter shank, length to suit depth of insulation indicated with integral 1-1/2-inch galvanized carbon-steel washer.
 - 2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick galvanized steel; with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.
- C. Shop Application of Duct Liner: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 7-11, "Flexible Duct Liner Installation."

- 1. Adhere a single layer of indicated thickness of duct liner with at least 90 percent adhesive coverage at liner contact surface area. Attaining indicated thickness with multiple layers of duct liner is prohibited.
- 2. Apply adhesive to transverse edges of liner facing upstream that do not receive metal nosing.
- 3. Butt transverse joints without gaps, and coat joint with adhesive.
- 4. Fold and compress liner in corners of rectangular ducts or cut and fit to ensure butted-edge overlapping.
- 5. Do not apply liner in rectangular ducts with longitudinal joints, except at corners of ducts, unless duct size and dimensions of standard liner make longitudinal joints necessary.
- 6. Secure liner with mechanical fasteners 4 inches from corners and at intervals not exceeding 12 inches transversely; at 3 inches from transverse joints and at intervals not exceeding 18 inches longitudinally.
- 7. Secure transversely oriented liner edges facing the airstream with metal nosings that have either channel or "Z" profiles or are integrally formed from duct wall. Fabricate edge facings at the following locations:
 - a. Fan discharges.
 - b. Intervals of lined duct preceding unlined duct.
- 8. Terminate inner ducts with buildouts attached to fire-damper sleeves, dampers, turning vane assemblies, or other devices. Fabricated buildouts (metal hat sections) or other buildout means are optional; when used, secure buildouts to duct walls with bolts, screws, rivets, or welds.

2.6 SEALANT AND GASKETS

- A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- B. Water-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Solids Content: Minimum 65 percent.
 - 3. Shore A Hardness: Minimum 20.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. VOC: Maximum 75 g/L (less water).
 - 7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 - 8. Service: Indoor or outdoor.
 - 9. Substrate: Compatible with galvanized sheet steel or aluminum sheets.
- C. Flanged Joint Sealant: Comply with ASTM C 920.
 - 1. General: Single-component, acid-curing, silicone, elastomeric.
 - 2. Type: S.
 - 3. Grade: NS.
 - 4. Class: 25.
 - 5. Use: O.

- 6. For indoor applications, sealant shall have a VOC content of 250 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- D. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.
- E. Round Duct Joint O-Ring Seals:
 - 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg static-pressure class, positive or negative.
 - 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 - 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.7 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
- B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
- C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards -Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."
- D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.
- E. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- F. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- G. Trapeze and Riser Supports:
 - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.
 - 2. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

PART 3 - EXECUTION

- 3.1 DUCT INSTALLATION
- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.

- B. Install ducts according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.
- C. Install round ducts in maximum practical lengths.
- D. Install ducts with fewest possible joints.
- E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.
- F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.
- I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.
- J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.
- K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Section 23 33 00 "Air Duct Accessories" for fire and smoke dampers.
- L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "IAQ Guidelines for Occupied Buildings Under Construction," Appendix G, "Duct Cleanliness for New Construction Guidelines."
- M. Ductwork sleeves shall be formed with galvanized steel.
- N. Screws or duct penetrations shall not be permitted for FRP, PVC, Phenolic, or other ducts conveying dust, chemical, or fume exhausts.
- O. Locate ducts with sufficient space around equipment to allow normal operating and maintenance activities.
- P. At ends of ducts not connected to equipment or air distribution devices at time of ductwork installation, provide temporary closure of polyethylene film or other covering until time connections to be completed.
- Q. Sizing Variation: Round ducts may be installed in place of rectangular ducts and rectangular ducts may be installed in place of round ducts using equivalency tables from ASHRAE or SMACNA.
- R. Drain Pockets:

- 1. Provide form drain pocket in outdoor air, dishwasher exhaust, any duct carrying high-moisture air, and humidifier sections with deep seal traps.
- 2. Connect to drainage system.
- S. Provide expanded take-offs for branch duct connections or 45-degree entry fittings. Square edge 90-degree take-off fittings or straight taps will not be accepted.
- T. Size Change:
 - 1. Increase and decrease duct sizes gradually, not exceeding 20 degrees divergence and 30 degrees convergence from connecting upstream duct surface, unless otherwise noted on drawings.
 - 2. Maximum divergence upstream of equipment to be 20 degrees and maximum convergence downstream to be 30 degrees.
- U. Where ducts pass through interior partitions and exterior walls and are exposed to view, conceal spaces between construction openings and ducts or duct insulation with sheet metal flanges of same metal thickness as ducts. Overlap openings on 4 sides by at least 1-1/2 inches.
- V. Install duct to pitch as indicated on the drawings.

3.2 INSTALLATION OF EXPOSED DUCTWORK

- A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.
- B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.
- C. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.
- D. Repair or replace damaged sections and finished work that does not comply with these requirements.
- 3.3 DUCT SEALING
- A. See drawing schedule for duct sealing requirements.
- B. Install duct to pitch toward outside air intakes and drain to outside of building. Solder or seal seams to form watertight joints.
- C. Fabricate seams and joints liquid-tight with continuous exterior welds or gasketed, bolted flanged connections in following locations:
 - 1. Shower rooms.
 - 2. Lower 6 inches of horizontal outdoor air ducts.

3.4 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 5, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
 - 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
- C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.
- D. Hangers Exposed to View: Threaded rod and angle or channel supports.
- E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum interval of 16 feet.
- F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.5 CONNECTIONS

- A. Make connections to equipment with flexible connectors complying with Section 23 33 00 "Air Duct Accessories."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.6 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Division 9.

3.7 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Leakage Tests:

- 1. Comply with SMACNA's "HVAC Air Duct Leakage Test Manual." Submit a test report for each test.
- 2. Test the following systems:
 - a. Supply Ducts with a Pressure Class of 3-Inch wg or Higher: Test representative duct sections totaling no less than 50 percent of total installed duct area for each designated pressure class.
 - b. Return Ducts with a Pressure Class of 3-Inch wg or Higher: Test representative duct sections totaling no less than 50 percent of total installed duct area for each designated pressure class.
 - c. Exhaust Ducts with a Pressure Class of 3-Inch wg or Higher: Test representative duct sections totaling no less than 50 percent of total installed duct area for each designated pressure class.
- 3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
- 4. Test for leaks before applying external insulation.
- 5. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
- 6. Give seven days' advance notice for testing.
- C. Duct System Cleanliness Tests:
 - 1. Visually inspect duct system to ensure that no visible contaminants are present.
 - Test sections of metal duct system, chosen randomly by Owner, for cleanliness according to "Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."
 - a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.
- D. Duct system will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.
- 3.8 DUCT CLEANING
- A. Clean new duct system(s) before testing, adjusting, and balancing.
- B. Use service openings for entry and inspection.
 - 1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Section 23 33 00 "Air Duct Accessories" for access panels and doors.
 - 2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.
 - 3. Remove and reinstall ceiling to gain access during the cleaning process.
- C. Particulate Collection and Odor Control:

- 1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.
- 2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.
- D. Clean the following components by removing surface contaminants and deposits:
 - 1. Air outlets and inlets (registers, grilles, and diffusers).
 - 2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
 - 3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
 - 4. Coils and related components.
 - 5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
 - 6. Supply-air ducts, dampers, actuators, and turning vanes.
 - 7. Dedicated exhaust and ventilation components and makeup air systems.
- E. Mechanical Cleaning Methodology:
 - 1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
 - 2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
 - 3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.
 - 4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
 - 5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
 - 6. Provide drainage and cleanup for wash-down procedures.
 - 7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents according to manufacturer's written instructions after removal of surface deposits and debris.
- <u>3.9</u> <u>START UP</u>
- A. Air Balance: Comply with requirements in Section 23 05 93 "Testing, Adjusting, and Balancing for HVAC."
- 3.10 DUCT SCHEDULE
- A. See drawing schedule for duct pressure, seal and leakage class, and elbow configuration.
- B. Fabricate ducts with galvanized sheet steel except as otherwise indicated and as follows:

- 1. Moisture Laden Ducts:
- C. Intermediate Reinforcement:
 - 1. Galvanized-Steel Ducts: Galvanized steel or carbon steel coated with zincchromate primer.
 - 2. Aluminum Ducts: Aluminum.
- D. Liner:
 - 1. Transfer Ducts: Fibrous glass, Type I, 1 inch thick.
- E. Elbow Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards -Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Velocity 1000 fpm or Lower:
 - 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 - 2) Mitered Type RE 4 without vanes.
 - b. Velocity 1000 to 1500 fpm:
 - 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 - 2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.
 - 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
 - c. Velocity 1500 fpm or Higher:
 - 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - 2) Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 - 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
 - 2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards -Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 - c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."

- 3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-4, "Round Duct Elbows."
 - Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 - 1) Velocity 1000 fpm or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
 - 2) Velocity 1000 to 1500 fpm: 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
 - 3) Velocity 1500 fpm or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
 - 4) Radius-to Diameter Ratio: 1.5.
 - b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 - c. Round Elbows, 14 Inches and Larger in Diameter: Standing seam.
- F. Branch Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards -Metal and Flexible," Figure 4-6, "Branch Connection."
 - a. Rectangular Main to Rectangular Branch: 45-degree entry.
 - b. Rectangular Main to Round Branch: Spin in.
 - 2. Round: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
 - a. Velocity 1000 fpm or Lower: 90-degree tap.
 - b. Velocity 1000 to 1500 fpm: Conical tap.
 - c. Velocity 1500 fpm or Higher: 45-degree lateral.

END OF SECTION 23 31 13

SECTION 23 33 00 AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. For duct silencers, include pressure drop and dynamic insertion loss data. Include breakout noise calculations for high transmission loss casings.
- B. Product data to include but not be limited to:
 - 1. Dimensional and weight data.
 - 2. Temperature/Pressure ratings.
 - 3. Manufacturer's name and model number.
 - 4. Materials of construction.
 - 5. Sealant and gasket materials.
 - 6. Manufacturer's installation instructions.
 - 7. Capacities and performance.

1.3 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

A. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.2 MATERIALS

- A. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G90.
 - 2. Exposed-Surface Finish: Mill phosphatized.
- B. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304, and having a No. 2 finish for concealed ducts and finish for exposed ducts.

- C. Aluminum Sheets: Comply with ASTM B 209, Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.
- D. Extruded Aluminum: Comply with ASTM B 221, Alloy 6063, Temper T6.
- E. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.
- F. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.3 MANUAL VOLUME DAMPERS

- A. Standard, Steel, Manual Volume Dampers:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Air Balance Inc.; a division of Mestek, Inc.
 - b. American Warming and Ventilating; a division of Mestek, Inc.
 - c. Flexmaster U.S.A., Inc.
 - d. McGill AirFlow LLC.
 - e. Nailor Industries Inc.
 - f. Pottorff.
 - g. Ruskin Company.
 - h. Trox USA Inc.
 - i. Vent Products Company, Inc.
 - 2. Standard leakage rating, with linkage outside airstream.
 - 3. Suitable for horizontal or vertical applications.
 - 4. Frames:
 - a. Frame: Hat-shaped, 0.094-inch-thick, galvanized sheet steel.
 - b. Mitered and welded corners.
 - c. Flanges for attaching to walls and flangeless frames for installing in ducts.
 - 5. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Stiffen damper blades for stability.
 - d. Galvanized steel, 0.064 inch thick.
 - 6. Blade Axles: Galvanized steel.
 - 7. Bearings:
 - a. Molded synthetic.

- b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
- 8. Tie Bars and Brackets: Galvanized steel.
- B. Standard, Aluminum, Manual Volume Dampers:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Air Balance Inc.; a division of Mestek, Inc.
 - b. American Warming and Ventilating; a division of Mestek, Inc.
 - c. McGill AirFlow LLC.
 - d. Nailor Industries Inc.
 - e. Pottorff.
 - f. Ruskin Company.
 - g. Trox USA Inc.
 - h. Vent Products Company, Inc.
 - 2. Standard leakage rating, with linkage outside airstream.
 - 3. Suitable for horizontal or vertical applications.
 - 4. Frames: Hat-shaped, 0.10-inch-thick, aluminum sheet channels; frames with flanges for attaching to walls and flangeless frames for installing in ducts.
 - 5. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Stiffen damper blades for stability.
 - d. Roll-Formed Aluminum Blades: 0.10-inch-thick aluminum sheet.
 - e. Extruded-Aluminum Blades: 0.050-inch-thick extruded aluminum.
 - 6. Blade Axles: Galvanized steel.
 - 7. Bearings:
 - a. Molded synthetic.
 - b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
 - 8. Tie Bars and Brackets: Aluminum.
- C. Damper Hardware:
 - 1. Zinc-plated, die-cast core with dial and handle made of 3/32-inch-thick zincplated steel, and a 3/4-inch hexagon locking nut.
 - 2. Include center hole to suit damper operating-rod size.
 - 3. Include elevated platform for insulated duct mounting.

2.4 SMOKE DETECTORS

A. Smoke detectors are furnished and installed by the Electrical Contractor.

2.5 CONTROL DAMPERS

A. Control dampers are specified in Section 23 09 00 for "Instrumentation and Control for HVAC."

2.6 FIRE DAMPERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Air Balance Inc.; a division of Mestek, Inc.
 - 2. Arrow United Industries; a division of Mestek, Inc.
 - 3. Cesco Products; a division of Mestek, Inc.
 - 4. Greenheck Fan Corporation.
 - 5. Nailor Industries Inc.
 - 6. Pottorff.
 - 7. Prefco; Perfect Air Control, Inc.
 - 8. Ruskin Company.
 - 9. Vent Products Company, Inc.
 - 10. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Type: Static and dynamic; rated and labeled according to UL 555 by an NRTL.
- C. Closing rating in ducts up to 4-inch wg static pressure class and minimum 2000-fpm velocity.
- D. Fire Rating: 1-1/2 hours.
- E. Frame: Curtain type with blades outside airstream except when located behind grille where blades may be inside airstream; fabricated with roll-formed, 0.034-inch-thick galvanized steel; with mitered and interlocking corners.
- F. Mounting Sleeve: Factory- or field-installed, galvanized sheet steel.
 - 1. Minimum Thickness: 0.05 thick, as indicated, and of length to suit application.
 - 2. Exception: Omit sleeve where damper-frame width permits direct attachment of perimeter mounting angles on each side of wall or floor; thickness of damper frame must comply with sleeve requirements.
- G. Mounting Orientation: Vertical as indicated.
- H. Blades: Roll-formed, interlocking, 0.024-inch- thick, galvanized sheet steel. In place of interlocking blades, use full-length, 0.034-inch-thick, galvanized-steel blade connectors.
- I. Heat-Responsive Device: Replaceable, 165 deg F rated, fusible links.

2.7 DUCT SILENCERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Dynasonics.
 - 2. Industrial Noise Control, Inc.
 - 3. McGill AirFlow LLC.
 - 4. Price Industries.
 - 5. Ruskin Company.
 - 6. VAW Systems.
 - 7. Vibro-Acoustics.
- B. General Requirements:
 - 1. Factory fabricated.
 - 2. Fire-Performance Characteristics: Adhesives, sealants, packing materials, and accessory materials shall have flame-spread index not exceeding 25 and smoke-developed index not exceeding 50 when tested according to ASTM E 84.
 - 3. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- C. Rectangular Silencer Outer Casing: ASTM A 653/A 653M, G90, galvanized sheet steel, minimum 0.034 inch thick.
- D. Inner Casing and Baffles: ASTM A 653/A 653M, G90 galvanized sheet metal, 0.034 inch thick, and with 1/8-inch-diameter perforations.
- E. Connection Sizes: Match connecting ductwork unless otherwise indicated.
- F. Principal Sound-Absorbing Mechanism:
 - 1. Controlled impedance membranes and broadly tuned resonators without absorptive media.
 - 2. Dissipative type with fill material.
 - a. Fill Material: Inert and vermin-proof fibrous material, packed under not less than 5 percent compression.
 - b. Erosion Barrier: Polymer bag enclosing fill, and heat sealed before assembly.
 - 3. Lining: Fiberglas cloth.
- G. Fabricate silencers to form rigid units that will not pulsate, vibrate, rattle, or otherwise react to system pressure variations. Do not use mechanical fasteners for unit assemblies.
 - 1. Joints: Lock formed and sealed or flanged connections.
 - 2. Suspended Units: Factory-installed suspension hooks or lugs attached to frame in quantities and spaced to prevent deflection or distortion.

3. Reinforcement: Cross or trapeze angles for rigid suspension.

H. Accessories:

- 1. Factory-installed end caps to prevent contamination during shipping.
- 2. Removable splitters.
- 3. Airflow measuring devices.
- 2.8 TURNING VANES
- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Ductmate Industries, Inc.
 - 2. Duro Dyne Inc.
 - 3. Elgen Manufacturing.
 - 4. MĚTALAIRE, Inc.
 - 5. SEMCO Incorporated.
 - 6. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
- C. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards -Metal and Flexible"; Figures 4-3, "Vanes and Vane Runners," and 4-4, "Vane Support in Elbows."
- D. Vane Construction: Single wall for ducts up to 48 inches wide and double wall for larger dimensions.

2.9 DUCT-MOUNTED ACCESS DOORS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. American Warming and Ventilating; a division of Mestek, Inc.
 - 2. Cesco Products; a division of Mestek, Inc.
 - 3. Ductmate Industries, Inc.
 - 4. Elgen Manufacturing.
 - 5. Flexmaster U.S.A., Inc.
 - 6. Greenheck Fan Corporation.
 - 7. McGill AirFlow LLC.
 - 8. Nailor Industries Inc.
 - 9. Pottorff.
 - 10. Ventfabrics, Inc.
 - 11. Ward Industries, Inc.; a division of Hart & Cooley, Inc.

- B. Duct-Mounted Access Doors: Fabricate access panels according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figures 7-2, "Duct Access Doors and Panels," and 7-3, "Access Doors Round Duct."
 - 1. Door:
 - a. Double wall, rectangular.
 - b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 - c. Vision panel.
 - d. Hinges and Latches: 1-by-1-inchbutt or piano hinge and cam latches.
 - e. Fabricate doors airtight and suitable for duct pressure class.
 - 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
 - 3. Number of Hinges and Locks:
 - a. Access Doors Less Than 12 Inches Square: No hinges and two sash locks.
 - b. Access Doors up to 18 Inches Square: Two hinges or Continuous and with two sash locks.
 - c. Access Doors up to 24 by 48 Inches: Three hinges or Continuous and with two compression latches with outside and inside handles.
 - d. Access Doors Larger Than 24 by 48 Inches: Four hinges or Continuous and with two compression latches with outside and inside handles.

2.10 DUCT ACCESS PANEL ASSEMBLIES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Ductmate Industries, Inc.
 - 2. Flame Gard, Inc.
 - 3. 3M.
- B. Labeled according to UL 1978 by an NRTL.
- C. Panel and Frame: Minimum thickness 0.0528-inch carbon steel.
- D. Fasteners: Carbon steel. Panel fasteners shall not penetrate duct wall.
- E. Gasket: Comply with NFPA 96; grease-tight, high-temperature ceramic fiber, rated for minimum 2000 deg F.
- F. Minimum Pressure Rating: 10-inch wg, positive or negative.

2.11 FLEXIBLE CONNECTORS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

- 1. Ductmate Industries, Inc.
- 2. Duro Dyne Inc.
- 3. Elgen Manufacturing.
- 4. Ventfabrics, Inc.
- 5. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Materials: Flame-retardant or noncombustible fabrics.
- C. Coatings and Adhesives: Comply with UL 181, Class 1.
- D. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches wide attached to two strips of 2-3/4-inch-wide, 0.028-inch-thick, galvanized sheet steel or 0.032-inch-thick aluminum sheets. Provide metal compatible with connected ducts.
- E. Indoor System, Flexible Connector Fabric: Glass fabric double coated with neoprene.
 - 1. Minimum Weight: 26 oz./sq. yd.
 - 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 - 3. Service Temperature: Minus 40 to plus 200 deg F.
- F. Outdoor System, Flexible Connector Fabric: Glass fabric double coated with weatherproof, synthetic rubber resistant to UV rays and ozone.
 - 1. Minimum Weight: 24 oz./sq. yd.
 - 2. Tensile Strength: 530 lbf/inch in the warp and 440 lbf/inch in the filling.
 - 3. Service Temperature: Minus 50 to plus 250 deg F.

2.12 FLEXIBLE DUCTS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Flexmaster U.S.A., Inc.
 - 2. McGill AirFlow LLC.
 - 3. Ward Industries, Inc.; a division of Hart & Cooley, Inc.
- B. Insulated, Flexible Duct: UL 181, Class 1, meeting requirements of NFPA 90A with flame spread of 25 or less and smoke developed rating of 50 or under, black polymer film supported by helically wound, spring-steel wire; fibrous-glass insulation; polyethylene vapor-barrier film with minimum perm rating of 0.05 perm.
 - 1. Pressure Rating:
 - a. 10-inch wg positive for ducts 4"-12" ID.
 - b. 6-inch wg positive for ducts 14"-16" ID.
 - c. 4-inch wg positive for ducts 18"-20" ID.
 - d. 1-inch wg negative for ducts 4"-12" ID.
 - e. 0.5-inch wg negative for ducts 14"-20" ID.
 - 2. Maximum Air Velocity: 4000 fpm.

- 3. Temperature Range: Minus 20 to plus 175 deg F.
- 4. Insulation R-Value: Comply with ASHRAE/IESNA 90.1 minimum 1" fiberglass insulation blanket with maximum thermal conductance of 0.23 K at 75°F.
- C. Flexible Duct Connectors:
 - 1. Clamps: Nylon strap in sizes 3 through 18 inches, to suit duct size.
 - 2. Non-Clamp Connectors: Liquid adhesive plus tape.
- D. Flexible Ductwork Elbow Supports:
 - 1. Available Manufacturers:
 - a. Thermaflex: Flexflow Elbow
 - 2. In lieu of using die stamped elbows for flexible duct connections to supply air diffusers (as detailed on the drawings), the Contractor may delete the die stamped elbow and directly connect the flexible duct to the diffusers with the use of a flexible ductwork elbow support.
 - 3. Elbow supports shall be constructed of durable composite material and shall be fully adjustable to support flexible ductwork diameter from 6" to 16" in diameter.
 - 4. Elbow supports shall be in UL listed for use in return air plenums.

2.13 PREFAB INSULATED ROOF CURBS

- A. Manufacturers: Pate, Thy or Vent Products.
- B. Furnish for each duct penetration through roof.
- C. Each complete with 18-gauge galvanized steel construction, continuous mitered and welded.
- D. Corner seams, integral base plate and factory installed wood nailer.
- E. Factory insulated with 1-1/2" thick, 3 lb. density rigid fiberglass insulation with built-in cant for roof as required.
 - 1. Overall Height: 18 inches.
 - 2. Sound Curb: Curb with sound-absorbing insulation.
 - 3. Pitch Mounting: Manufacture curb for roof slope.
 - 4. Metal Liner: Galvanized steel.
- F. See architectural plans for roof deck type, pitch and insulation thickness.

2.14 EQUIPMENT SUPPORT CURBS

- A. Manufacturers: Pate, Thy or Vent Products.
- B. Furnish for each piece of roof-mounted equipment as indicated on the drawings.
- C. Curbs shall be sized for equipment being mounted, complete with minimum 18-gauge galvanized steel construction with integral base plate, continuous welded corner seams,

factory installed wood nailer, counter flashing with lag screws and built-in cant for roof as required.

- 1. Overall Height: 18 inches.
- 2. Sound Curb: Curb with sound-absorbing insulation.
- 3. Pitch Mounting: Manufacture curb for roof slope.
- 4. Metal Liner: Galvanized steel.
- D. See Architectural plans or visit the site for roof deck type, pitch and insulation thickness.

2.15 DUCT ACCESSORY HARDWARE

- A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.
- B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.
- B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and aluminum accessories in aluminum ducts.
- C. Install control dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated.
- D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 - 1. Install steel volume dampers in galvanized steel ducts.
 - 2. Install aluminum volume dampers in aluminum ducts.
- E. Set dampers to fully open position before testing, adjusting, and balancing.
- F. Install test holes at fan inlets and outlets and elsewhere as indicated.
- G. Install fire dampers according to UL listing.
- H. Connect ducts to duct silencers rigidly.
- I. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:

- 1. On both sides of duct coils.
- 2. At outdoor-air intakes and mixed-air plenums.
- 3. At drain pans and seals.
- 4. Adjacent to and close enough to fire dampers, to reset or reinstall fusible links. Access doors for access to fire dampers having fusible links shall be pressure relief access doors and shall be outward operation for access doors installed upstream from dampers and inward operation for access doors installed downstream from dampers.
- 5. At each change in direction and at maximum 50-foot spacing.
- 6. Upstream and downstream from turning vanes.
- 7. Upstream or downstream from duct silencers.
- 8. Control devices requiring inspection.
- 9. Duct smoke detectors.
- 10. Elsewhere as indicated.
- J. Install access doors with swing against duct static pressure.
- K. Access Door Sizes:
 - 1. One-Hand or Inspection Access: 12 by 12 inches.
 - 2. Two-Hand Access: 12 by 12 inches.
 - 3. Head and Hand Access: 18 by 12 inches.
 - 4. Head and Shoulders Access: 21 by 14 inches.
 - 5. Body Access: 25 by 14 inches.
 - 6. Body plus Ladder Access: 25 by 17 inches.
- L. Label access doors according to Section 23 05 53 "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.
- M. Install flexible connectors to connect ducts to equipment.
- N. For fans developing static pressures of 5-inch wg and more, cover flexible connectors with loaded vinyl sheet held in place with metal straps.
- O. Connect diffusers to ducts directly or with maximum 60-inch lengths of flexible duct clamped or strapped in place.
- P. Install duct test holes where required for testing and balancing purposes.
- Q. Access doors constructed with sheet metal screw fasteners will not be accepted.
- R. Flexible Ductwork:
 - 1. Do not exceed 5 feet in length. Flexible ducts shall be used only to compensate for branch duct and diffuser/grille misalignment. No kinks or bends shall be allowed.
 - 2. Install flexible ductwork with minimum offsets, sag, and trim.
 - 3. Connect with adjustable band and clamp to secure duct to trunk fitting and to distribution unit fitting. Banding shall be nylon straps, fastened under insulation and over the inner lines with a second band securing the insulation and jacket. Sheet metal screws will not be accepted.

- 4. Seal ends of flex duct with foil duct tape over insulation and jacket.
- 5. Individual sections of flexible ductwork shall be of one-piece construction. Splicing of short sections will not be accepted.
- 6. Penetration of any partition, wall, or floor with flexible duct will not be accepted.
- 7. Minimum length of duct trunk fitting for flex duct connection shall be 4 inches.
- S. Fire dampers shall be installed where and when necessary, whether or not indicated on drawings, in compliance with all applicable local, state and insurance codes and requirements, and other authorities having jurisdiction.
- T. Manually test each fire damper for proper operation by removing the fusible link. Repair or replace any fire damper that does not close completely. Re-install fusible link after test.
- U. Demonstrate re-setting of fire dampers to Owner's representative.

3.2 SMOKE DETECTORS

A. Installation and wiring of detectors will be by the Electrical Contractor. Install an access door at each detector location.

3.3 CONTROL DAMPERS

A. Install dampers in locations indicated on the drawings, as detailed, and according to the manufacturer's instructions. Install blank-off plates or transitions where required for proper mixing of airstreams in mixing plenums. Provide adequate operating clearance and access to the operator. Install an access door adjacent to each control damper for inspection and maintenance.

3.4 PREFAB INSULATED ROOF CURBS

A. Install roof curbs where ducts pass through roof. This contractor shall furnish roof curbs to the General Contractor with complete roof curb dimensions. Coordinate roof penetrations and flashing with roof construction specified in Division 07.

3.5 EQUIPMENT SUPPORT CURBS

A. Install equipment support curbs to support roof-mounted equipment as indicated. This contractor shall furnish equipment support curbs to the General Contractor with complete curb dimensions. Generator Contractor to install curbs and flashing. Coordinate roof penetrations and flashing with roof construction specified in Division 07.

3.6 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Operate dampers to verify full range of movement.
 - 2. Inspect locations of access doors and verify that purpose of access door can be performed.
 - 3. Operate fire dampers to verify full range of movement and verify that proper heatresponse device is installed.

4. Inspect turning vanes for proper and secure installation.

END OF SECTION 23 33 00

This page intentionally left blank.

SECTION 23 34 00 FUME EXHAUST EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUBMITTALS

- A. Product Data: Include rated capacities, furnished specialties, and accessories for each type of product indicated and include the following:
 - 1. Certified fan performance curves with system operating conditions indicated.
 - 2. Certified fan sound-power ratings.
 - 3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 - 4. Material thickness and finishes, including color charts.
 - 5. Dampers, including housings, linkages, and operators.
 - 6. Fan speed controllers.
 - 7. Vibration isolators.
- B. Operation and Maintenance Data: For fume exhaust equipment to include in emergency, operation, and maintenance manuals.

1.3 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. AMCA Compliance: Products shall comply with performance requirements and shall be licensed to use the AMCA-Certified Ratings Seal.
- C. NEMA Compliance: Motors and electrical accessories shall comply with NEMA standards.
- 1.4 DELIVERY, STORAGE, AND HANDLING
- A. Deliver fans as factory-assembled unit, to the extent allowable by shipping limitations, with protective crating and covering.
- B. Disassemble and reassemble units, as required for moving to final location, according to manufacturer's written instructions.
- C. Lift and support units with manufacturer's designated lifting or supporting points.
- 1.5 COORDINATION
- A. Coordinate size and location of structural-steel support members.

- B. Coordinate installation of roof curbs, equipment supports, and roof penetrations. Roof curbs are to be furnished by this Contractor and are specified in Section 23 33 00 "Air Duct Accessories
- C. Verify dimensions installation areas by field measurements for vehicle exhaust rail system.
- D. Coordinate layout and installation with other work, including light fixtures, fixed equipment and workstations, HVAC equipment, fire-suppression system components and equipment of movement such as overhead fall protection harnesses systems.
- E. Coordinate location and requirements of service-utility connections.

PART 2 - PRODUCTS

- 2.1 VEHICLE EXHAUST RAIL SYSTEM
- A. Basis-of-Design Product: The design is based on the following:
 - 1. Nederman, ALU 150 with trolley assembly.
- B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include for the following:
 - 1. Car-Mon.
 - 2. Eurovac.
 - 3. Monoxivent.
 - 4. Plymovent.
 - 5. Ventaire, Inc.
- C. Suction rail:
 - 1. Suction rail shall be a polished aluminum extrusion that is formed in a configuration such that the extrusion serves not only as a suction duct, but also as the guide rail that the extraction trolley travels in.
 - 2. Each open end of the suction rail shall be covered with an end cap.
 - 3. A pair of EPDM rubber seals shall be installed at the bottom of the extrusion opening.
 - 4. Rubber seals shall remain tight during fan operation for an airtight seal, but open evenly around the trolley during trolley travel.
 - 5. The suction rail shall be supplied with internal rubber bumpers installed at both ends that serve as secondary stops to the trolley.
 - 6. The suction rail shall have suspension attachments that are specifically designed for fastening to the configuration of the suction rail. Spacing not to exceed 16 feet center-to-center.
 - 7. Each trolley shall travel the entire length of the suction rail.
 - 8. Suction rail Length: Refer to drawings and schedules.

- D. Extraction trolley assembly:
 - 1. The extraction trolley assembly shall serve as the component in the rail system that travels in the suction rail, carries, and supports the hose assembly and balancer.
 - a. Each trolley shall have eight wheels that support the weight of the hose and nozzle.
 - b. Each extraction trolley body shall be made of light weight composite with allow friction surface on each side to enable the trolley to travel smooth through the rubber seal.
 - c. Extraction Trolley assembly is comprised of the following items:
 - 1) Nederman or equivalent:
 - a) Nederman 0943210 Suction Trolley for 6" hose.
 - b) Nederman 20941310 holder for balancer
 - c) Nederman 20800631 Balancer with latch.
 - d) Nederman 20373609 Hose Suspension Saddle.

E. Tubing:

- 1. Abrasion resistant, fire retardant, heat resistant, high tensile strength material to withstand exhaust temperatures up to 800°F continuously.
- 2. Interior spring-steel wire reinforcement.
- 3. Exhaust adapters, guide rings, flanges, etc., as required, shall be factory attached to ensure assembly integrity.
- 4. Tubing length and diameter shall be as scheduled.
- 5. In addition to the tubing on the reel, provide an additional 25' length of tubing with swivel socket fittings on each end for attachment to other tubing or adaptors.
- 6. The hose Nederman series NFC4.2 No. 86900692 or equivalent shall be constructed of silver fabric with an abrasion protector over the external galvanized steel helix to prevent damage to vehicles.
- F. Tailpipe Connector:
 - 1. Tapered cone adaptors to fit over tail pipes of all vehicles. Adaptors shall be constructed of minimum 20 gage stainless steel.
 - 2. Adapter shall include heat resistant handles for easy handling, spring clip for tailpipe attachment, emission testing opening, and extension and retraction cable and ring.
 - 3. A 6-inch exhaust extraction nozzle with clamp. Nozzle shall accept an up to 5inch exhaust port. Stainless Steel tapered nozzle with clamp for connection Nederman No. 89298067 or equivalent.
 - 4. Nozzles shall be capable of withstanding temperatures up to 800 degrees F.
 - 5. A fully adjustable locking clamp shall be used to secure the nozzle to the vehicle exhaust pipe(s).
 - 6. Provide one each per hose.
- G. Balancer with built-in friction brake:

- 1. The adjustable tension balancer shall retract and lift the hose and nozzle.
- 2. The balancer shall have a spring characteristic that ensures that the cord is wound onto the drum at a safe and constant speed.
- 3. The balancer shall have a latch that will lock the balancer when the hose is pulled down. The latch shall release when the hose is pulled a second time allowing the balancer to retract the cord and lift the hose and nozzle.

H. Flange Mounted Fan:

- 1. Single inlet, single width, radial pressure blower, non-overleading type. Statically and dynamically balanced.
- 2. Housing: Heavy gauge cold rolled steel of all welded construction.
- 3. Corrosion protection: Exhaust fan shall be centrifugal type fan constructed of powder coated steel or Heresite air-dry phenolic coating on all fan and wheel components.
- 4. Electrical: Fan motor shall be an industrial grade, high efficiency, C-face type, bolted directly to the housing. Fan construction to be arrangement 4 direct drive with the radial wheel attached directly to the motor shaft.
- 5. The rail shall have an individual exhaust fan which shall be suspended between joists with included fan mounting bracket.
- 6. Exhaust fan shall be radial pressure blower type fan constructed of powder coated steel with spark-resistant construction.
- 7. The exhaust fan shall be Nederman series NIF307-3 Fan, No. 87000453 or equivalent.
- 8. Fan air volume: Minimum 1,800 CFM at 7.5 inches static pressure (measured in inches of water), size for quantity of exhaust hoses per rail.
- 9. Duct connection: the two duct connections manifolded shall be at the top of the rail to the fan. Provide fan connection cone adaptor to rail with top outlet side connection to fan.
- 10. Provide nine (qty. 9) for rectangular Gillig style exhaust pipes adaptors located at top of bus, Nederman Item: 89299170.
- I. Accessories:
 - 1. Pendant remote push button station for reel drive.
- J. Portable Gillig adapter cart.
 - 1. Provide three (qty. 3) adapter carts with telescoping mast device on a mobile cart system which mounts on a steel base with heavy duty swivel casters. This for rectangular Gillig style exhaust pipes located at top of bus. Nederman Item: 89299170 or equivalent.
- K. Controls:
 - 1. Manufacturer provided all controls and controller for vehicle exhaust rail system activation with the fan blower.
 - 2. Coordinate with Div. 26 start/stop switch located in the electrical starter/disconnect. Electrical starter/disconnect to be near column serving each fan blower rail system.

2.2 FILTER/BLOWER UNITS

- A. Basis-of-Design Product: The design is based on the following:
 - 1. Air Technology Solutions: AirMation AMB-302ND.
- B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include for the following:
 - 1. Industrial Maid.
 - 2. Iowa Distribution Co., Inc.: Air King Model M-30C
 - 3. Air Flow Systems, Inc.: Model T140
 - 4. Trion Inc.
- C. Cabinet:
 - 1. 16-gauge cold rolled steel, welded type construction.
 - 2. Panel on cabinet to expose blower/motor assembly.
 - 3. Single inlet, single exhaust outlet configuration.
 - a. If a different inlet/outlet configuration is proposed, shop drawings showing the revised unit layout shall be submitted to and approved by the Engineer prior to unit installation. This layout submittal shall show as a minimum:
 - 1) Room filter/blower unit air flow pattern.
 - 2) Unit mounting elevation.
 - 3) Dimensioned spacing between units.
 - 4. Finish cabinet with chemical resistant polyurethane paint.
- D. Fan:
 - 1. Blower: Forward curved, centrifugal type.
 - 2. Capacity: 3000 cfm with filters in place. Range 3000-1100 cfm at 0-1.85 "WC.
 - 3. Motor: 1-Hp, TEFC, with 460 Volt, 3-Phase power supply @7.2 FLA.
 - 4. ECM motor with three speed motor.
- E. Filters:
 - 1. Prefilter: Disposable, 4-inch thick, 30% ASHRAE average efficiency.
 - 2. Final filter: Disposable 99% ASHRAE average efficiency, deep pocket V-bags.
 - 3. Gas Phase filter: V-bank carbon cell with 50/50 blend of carbon and potassium permanganate.
 - 4. Easily accessible from installed unit.
- F. Controls:
 - 1. Manufacturer provided timer controller for system activation, timer speed control, and maintenance monitor.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install units' level and plumb.
- B. Install vehicle exhaust rail system following manufacturer's written instructions and referenced standards.
- C. Roof curbs are to be furnished by this Contractor and are specified in Section 23 33 00 "Air Duct Accessories." Refer to Division 07 for installation of roof curbs for roof penetrations of the exhaust ductwork termination above the roof.
- D. Support suspended units from structure using threaded steel rods and elastomeric hangers spring hangers having a static deflection of 1-inch. This Contractor to provide supporting structural steel framing for all exhaust fans and suspended units. Vibration-control devices are specified in in Section 23 05 48.13 " Vibration Controls for HVAC."
- E. Install units with clearances for service and maintenance.
- F. Label units according to requirements specified in Section 23 05 53 "Identification for HVAC Piping and Equipment."

3.2 CONNECTIONS

- A. Duct installation and connection requirements are specified in other Division 23 Sections. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 23 33 00 "Air Duct Accessories."
- B. This Contractor is to install all wiring, conduit, raceway and manufacturer's control devices for the vehicle exhaust rail systems and filter/blower units. For electrical wiring and connection installation requirements, comply with requirements in Section 23 09 00 "Instrumentation and Control for HVAC".
- C. Ground equipment according to Division 26. Connect wiring according to Division 26.
- D. Provide safety screen(s) when fan inlet or outlet is exposed.
- E. Where fan inlet or outlet ducting has been changed from that shown on the drawings, provide any motor, drive, and/or electrical system changes required to increase static pressure.

3.3 FIELD QUALITY CONTROL

- A. Perform the following field tests and inspections and prepare test reports:
 - 1. Verify that shipping, blocking, and bracing are removed.
 - 2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.

- 3. Verify that cleaning and adjusting are complete.
- 4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system and align.
- 5. Verify lubrication for bearings and other moving parts.
- 6. Disable automatic temperature-control operators, energize motor, and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
- 7. Shut unit down and reconnect automatic temperature-control operators.
- 8. Remove and replace malfunctioning units and retest as specified above.
- B. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- <u>3.4</u> <u>ADJUSTING</u>
- A. Refer to Section 23 05 93 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.
- B. Lubricate bearings.

3.5 DEMONSTRATION

- A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain vehicle exhaust rail systems.
- B. Train Owner's maintenance personnel to adjust, operate, and maintain the filter/blower units.

END OF SECTION 23 34 00

This page intentionally left blank.
SECTION 23 34 23 HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This section includes HVAC Power Ventilators. The following for each product:
 - 1. Centrifugal roof ventilators Electronically commutated motors (ECM) Motors.
 - 2. Propeller Fans Electronically commutated motors (ECM) Motors.
 - 3. Destratification Fans Venturi Nozzle/Basket type.
 - 4. Roof Curbs.

1.3 PERFORMANCE REQUIREMENTS

- A. Project Altitude: Base fan-performance ratings on actual Project site elevations.
- B. Operating Limits: Classify according to AMCA 99.
- C. Each fan system shall be capable of delivering 110% of the scheduled airflow at the scheduled static pressure. The fan motor shall not operate into the motor service factor when operating under these conditions.
- D. Drive efficiency shall be considered when selecting motors in accordance with manufacturer's recommendations or according to AMCA Publication 203, Appendix L.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Also include the following:
 - 1. Certified fan performance curves with system operating conditions indicated.
 - 2. Certified fan sound-power ratings.
 - 3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 - 4. Material thickness and finishes, including color charts.
 - 5. Roof curbs.
 - 6. ECM Fan with remote speed control and built-in fan speed controller.
 - 7. Wiring Diagrams: For power, signal, and control wiring.
 - 8. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For power ventilators to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. AMCA Compliance: Fans shall have AMCA-Certified performance ratings and shall bear the AMCA-Certified Ratings Seal.

1.7 COORDINATION

- A. Coordinate size and location of structural-steel support members.
- B. Coordinate sizes and locations of concrete bases with actual equipment provided.
- C. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

PART 2 - PRODUCTS

2.1 CENTRIFUGAL ROOF VENTILATORS

- A. Basis-of-Design Product: The design is based on the following:
 - 1. Greenheck Fan Corporation.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Acme Engineering & Manufacturing Corporation.
 - 2. PennBarry.
 - 3. Twin City.
- C. Fan Capacities, Characteristics, and Configuration: Refer to Drawing schedule.
- D. Housing: Removable, spun-aluminum, dome top and outlet baffle; square, one-piece, aluminum base with venturi inlet cone.
 - 1. Upblast Units: Provide spun-aluminum discharge baffle to direct discharge air upward, with rain and snow drains.
 - 2. Hinged Subbase: Galvanized-steel hinged arrangement permitting service and maintenance.
 - 3. Nameplate: Include aluminum engraved nameplate with unit manufacturer, model number, and performance data.
- E. Fan Wheels: Aluminum hub and wheel with backward-inclined blades.

- 1. Resiliently mounted to housing.
- 2. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
- 3. Shaft Bearings: Permanently lubricated, permanently sealed, self-aligning ball bearings.
- 4. Pulleys: Cast-iron, adjustable-pitch motor pulley.
- 5. Fan and motor isolated from exhaust airstream.
- 6. Bearings for belt drive units shall be selected for a minimum L50 life in excess of 200,000 hours at maximum cataloged operating speed.
- F. Direct-Drive Units: Motor mounted in airstream, factory wired to disconnect switch. ECM motor arrangement. Factory shall provide toggle disconnect switch. Provide ECM motor with remote speed control and built-in fan speed controller. Factory to provide accessories, hardware, and transformer to receive a 2 vdc signal for fan speed from 2-10 vdc.
- G. Accessories:
 - 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 - 2. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside fan housing, factory wired through an internal aluminum conduit.
 - 3. Bird Screens: Removable, 1/2-inch mesh, aluminum, or brass wire.

2.2 PROPELLER FANS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Acme Engineering & Manufacturing Corporation.
 - 2. Carnes Company.
 - 3. Chicago Blower Corporation.
 - 4. Greenheck Fan Corporation.
 - 5. Hartzell Fan Incorporated.
 - 6. Loren Cook Company.
 - 7. New York Blower Company (The).
 - 8. PennBarry.
- B. Housing: Galvanized-steel sheet with flanged edges and integral orifice ring with bakedenamel finish coat applied after assembly.
- C. Steel Fan Wheels: Formed-steel blades riveted to heavy-gage steel spider bolted to cast-iron hub.
- D. Fan Wheel: Replaceable, cast-aluminum, airfoil blades fastened to cast-aluminum hub; factory set pitch angle of blades.
- E. Direct-Drive Units: Motor mounted in airstream, factory wired to disconnect switch. ECM motor arrangement. Factory shall provide toggle disconnect switch. Provide ECM motor with remote speed control and built-in fan speed controller. Factory to provide

accessories, hardware and transformer to receive a 2 vdc signal for fan speed from 2-10 vdc.

- F. Fan Drive:
 - 1. Resiliently mounted to housing.
 - 2. Statically and dynamically balanced.
 - 3. Selected for continuous operation at maximum rated fan speed and motor horsepower, with final alignment and belt adjustment made after installation.
 - 4. Extend grease fitting to accessible location outside of unit.
 - 5. Service Factor Based on Fan Motor Size: 1.4.
 - 6. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
 - 7. Shaft Bearings: Permanently lubricated, permanently sealed, self-aligning ball bearings.
 - a. Ball-Bearing Rating Life: ABMA 9, L₁₀ of 100,000 hours.
- G. Accessories:
 - 1. Motor-Side Back Guard: Galvanized steel, complying with OSHA specifications, removable for maintenance.
 - 2. Wall Sleeve: Galvanized steel to match fan and accessory size.
 - 3. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 - 4. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted inside fan housing, factory wired through an internal aluminum conduit.

2.3 DESTRATIFICATION FANS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Airius, LLC.
 - 2. ZOO fan.

B. General:

- 1. Venturi Nozzle/Basket type destratification fan.
- 2. Axial fan capable of producing columnar laminar flow of air.
- 3. Performance: Must be able to deliver a minimum 110 fpm at center of column at floor level.
- 4. Intake: Provide grill guard.
- C. Motor Mounting: Enclosed in housing, above stator. Motor: Electrically commutated variable speed (ECM), 92 percent energy efficient axial type.
- D. Stator: Patented multiple-vane fixed blade assembly, coordinated with fan design for optimal air flow.

- E. Material: PC/ABS 5VA resin, rated 5VA for flame resistance.
- F. Color: Off White.
- G. Seismic restraint point integrated in housing.
- H. Certification: UL Standard 507 for Safety Electric Fans, as certified by nationally recognized testing laboratory.
 - 1. Acceptable Testing: ETL, CSA, UL.
- I. Electrical Requirements: 100-130V AC, single phase, 50/60 Hz.; 0 2.2 Amps; 0 170 watts.
- J. Speed Control: 0-10V DC analog input. Provide solid state variable speed controls as scheduled.
- K. Ball Bearings: Permanently lubricated, sealed.
- L. Fan Blades: Steel and fabrication: Blades welded to steel hub.
 - 1. Thermally Protected Motor Temperatures.
 - 2. Operating Range: -13 degrees F to +160 degrees F.
 - 3. Shutoff: 275 degrees F.
 - 4. Reset: 255 degrees F.

2.4 AIR CIRCULATION FANS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Global Industrial.
 - 2. Dayton.
- B. Industrial quality, wall mounted circulation fan.
- C. Housing: Galvanized-steel sheet with flanged edges and integral orifice ring with bakedenamel finish coat applied after assembly.
- D. Steel Fan Wheels: Formed-steel blades riveted to heavy-gage steel spider bolted to cast-iron hub.
- E. Fan Wheel: Replaceable, cast-aluminum, airfoil blades fastened to cast-aluminum hub; factory set pitch angle of blades.
- F. Direct-Drive Units: Motor mounted in airstream, factory wired to disconnect switch. ECM motor arrangement. Factory shall provide toggle disconnect switch.
- G. Electrical Requirements: 100-130V AC, single phase, 60 Hz.

2.5 <u>MOTORS</u>

- A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2.6 ROOF CURBS

- A. Galvanized steel; mitered and welded corners; 1½-inch- thick, rigid, fiberglass insulation adhered to inside walls; and 1½-inch wood nailer. Size as required to suit roof opening and fan base.
 - 1. Overall Height: 18 inches.
 - 2. Sound Curb: Curb with sound-absorbing insulation.
 - 3. Pitch Mounting: Manufacture curb for roof slope.
 - 4. Metal Liner: Galvanized steel.

2.7 DAMPERS

A. Control dampers are specified in Section 23 09 00 "Instrumentation and Control for HVAC" and Section 23 09 93 "Sequence of Operations for HVAC Controls."

2.8 SOURCE QUALITY CONTROL

- A. Certify sound-power level ratings according to AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.
- B. Certify fan performance ratings, including flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests according to AMCA 210, "Laboratory Methods of Testing Fans for Aerodynamic Performance Rating." Label fans with the AMCA-Certified Ratings Seal.

2.9 CAPACITIES AND CHARACTERISTICS:

A. Refer to Schedule on drawings.

PART 3 - EXECUTION

- 3.1 INSTALLATION
- A. Install power ventilators level and plumb.
- B. Secure roof-mounted fans to roof curbs with cadmium-plated hardware. See Division 07 for installation requirements to integrate with the roof system.

- C. Curb Support: Install centrifugal fans on curbs and install flexible duct connectors and vibration isolation and control devices.
 - 1. Comply with requirements in Section 23 33 00 "Air Duct Accessories" for flexible duct connectors.
 - 2. Comply with requirements for vibration isolation devices specified in Section 23 05 48.13 "Vibration Controls for HVAC."
- D. Ceiling Units: Suspend units from structure; use steel wire or metal straps.
- E. Support suspended units from structure using threaded steel rods and spring hangers having a static deflection of 1 inch. Vibration-control devices are specified in Section 23 05 48.13 "Vibration Controls for HVAC."
- F. Install units with clearances for service and maintenance.
- G. Label units according to requirements specified in Section 23 05 53 "Identification for HVAC Piping and Equipment."
- H. Equipment Mounting:
 - 1. Comply with requirements for vibration isolation devices specified in Section 23 05 48.13 "Vibration Controls for HVAC."

3.2 CONNECTIONS

- A. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 23 33 00 "Air Duct Accessories."
- B. Install ducts adjacent to power ventilators to allow service and maintenance.
- C. Ground equipment according to Division 26.
- D. Connect wiring according to Division 26.
- E. Provide safety screen(s) when inlet or outlet is exposed.
- F. Where fan inlet or outlet ducting has been changed from that shown on the drawings, provide any motor, drive, and/or electrical system changes required to increase static pressure.
- G. On units provided with a drain connection, install a drain valve and cap discharge of drain.
- H. Install bird deterrent pre-assembled device for each roof fan.
- 3.3 FIELD QUALITY CONTROL
- A. Perform tests and inspections.

- 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
- B. Tests and Inspections:
 - 1. Verify that shipping, blocking, and bracing are removed.
 - 2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
 - 3. Verify that cleaning and adjusting are complete.
 - 4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system and align.
 - 5. Adjust damper linkages for proper damper operation.
 - 6. Verify lubrication for bearings and other moving parts.
 - 7. Verify that automatic volume control in connected ductwork systems are in fully open position.
 - 8. Disable automatic temperature-control operators, energize motor, and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
 - 9. Shut unit down and reconnect automatic temperature-control operators.
 - 10. Remove and replace malfunctioning units and retest as specified above.
- C. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Prepare test and inspection reports.
- <u>3.4</u> <u>ADJUSTING</u>
- A. Adjust damper linkages for proper damper operation.
- B. Comply with requirements in Section 23 05 93 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.
- C. Lubricate bearings.

3.5 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain HVAC Power Ventilators.

END OF SECTION 23 34 23

SECTION 23 34 39 HIGH-VOLUME, LOW-SPEED FANS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes high-volume, low-speed fans.

1.3 DEFINITIONS

A. HVLS - High volume, low speed.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include rated capacities, furnished specialties, and accessories for each fan.
 - 2. Certified fan performance curves with system operating conditions indicated.
 - 3. Certified fan sound-power ratings.
 - 4. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 - 5. Material thickness and finishes, including color charts.
 - 6. Fan speed controllers.
- B. Shop Drawings:
 - 1. Include plans, elevations, sections, and mounting details.
 - 2. Include details of equipment assemblies. Show dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.
- C. Delegated-Design Submittal: For each HVLS fan.
 - 1. Include design calculations and details for selecting product mounting components complying with performance requirements, design criteria, and analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 2. Design Calculations: Calculate static and dynamic loading due to equipment weight, operation, and seismic forces required to select mounting components.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Floor plans and details, drawn to scale and coordinated with each other, using input from installers of the items involved.

- B. Qualification Data:
 - 1. For Installer: Certificate from HVLS fan manufacturer certifying that Installer has successfully completed prerequisite training administered by manufacturer for proper installation of systems, including but not limited to, equipment, controls, and accessories indicated and furnished for installation.
- C. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For HVLS fans to include in emergency, operation, and maintenance manuals.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Deliver and store products in a clean and dry place.
- B. Comply with manufacturer's written rigging and installation instructions for unloading and moving to final installed location.
- C. Handle products carefully to prevent damage, breaking, denting, and scoring. Do not install damaged products.
- D. Protect products from weather, dirt, dust, water, construction debris, and physical damage.
 - 1. Retain factory-applied coverings on equipment to protect finishes during construction and remove just prior to operating unit.
 - 2. Cover unit openings before installation to prevent dirt and dust from entering inside of units. If required to remove coverings during unit installation, reapply coverings over openings after unit installation and remove just prior to operating unit.
- E. Replace installed products damaged during construction.

1.8 WARRANTY

- A. Warranty: Manufacturer and Installer agree to repair or replace components of fans that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period:
 - a. For Motor, Including Controls: Five (5) years from date of Substantial Completion.
 - b. For Parts, Including Blades and Hub: Five (5) years from date of Substantial Completion.
 - c. For Labor: One (1) year from date of Substantial Completion.

PART 2 - PRODUCTS

- 2.1 PERFORMANCE REQUIREMENTS
- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. UL Compliance: Listed and labeled to UL 507.
- C. CSA Compliance: Listed and labeled to CSA C22.2, No. 113.
- D. AMCA Compliance:
 - 1. Test HVLS fans according to AMCA 230.
 - 2. Certify HVLS fan performance according to AMCA 211.
- E. Performance Data: Comply with ANSI 230 test procedure standard, based on five rating points: 20-, 40-, 60-, 80-, and 100-percent of maximum speed. Comply with AMCA 211 for publication of performance data.

2.2 CAPACITIES AND CHARACTERISTICS

A. See schedule on drawings.

2.3 MANUFACTURERS

- A. Source Limitations: Obtain HVLS fans from single source from single manufacturer.
- B. Basis-of-Design Product: The design is based on the following:
 - 1. Greenheck Fan Corporation, Model DS
- C. Subject to compliance with requirements, provide the named product or a comparable product by one the following:
 - 1. MacorAir
 - 2. Entrematic Fans, C-Class
 - 3. Hunter Industrial, Titan HVLS

<u>2.4</u><u>HIGH-VOLUME, LOW-SPEED FANS</u>

- A. The fan shall be designed to move the maximum amount of free air contained within a given space with the least amount of electrical power (note: free air is defined as that air within a given space at a constant static pressure).
- B. Manufacturer to provide the optional airfoil finish in custom powder coated colors per manufacturer's chart for Architect's selection.

C. Airfoils:

- 1. Each fan shall have a minimum 6 blades with low-speed extruded aluminum airfoils and AMCA certified HVLS.
- 2. Each airfoil shall be of the high-performance design.
- 3. The foils shall be connected to the hub section of the fan by means of two (2) locking bolts per foil. The locking bolts shall be SAE grade 8 only, 5/16" diameter with 150,000 psi tensile strength.
- 4. Additionally, the airfoils shall be interlocked with airfoil retainers to prevent an individual airfoil from becoming accidentally disconnected from the hub. The straps shall consist of 1008 steel with a clear zinc chromate finish.
- D. Motor:
 - 1. The fan motor shall be 1750 RPM, 460V AC, 60 Hz, 3-Phase, Inverter rated with Class F Insulation, 40°C Ambient-Continuous.
- E. Motor Frame:
 - 1. The fan motor frame and mount shall be constructed of no less than 3/16" powder-coated steel.
- F. Hub:
 - 1. The fan hub assembly shall be constructed of a precision cast of aluminum zinc magnesium alloy.
 - 2. The hub shall incorporate six (6) safety clips made of 1/4" steel that shall restrain the hub/airfoil assembly in case of shaft failure.
- G. Mount:
 - 1. The fan mount shall be designed for quick and secure mounting of the fan from a structure's support beams.
 - 2. The mounting system of the fan shall allow easy removal and relocation, if required.
 - 3. The fan mount shall be constructed of no less than 3/16" powder-coated steel.
- H. Safety Cable:
 - 1. The safety cable shall provide an additional means of securing the fan assembly to the building structure.
 - 2. The fan shall include four (4) guy wires attached to the building structure at recommended 45° angles to level and secure frame position.
 - 3. The safety cable shall be 1/4" in diameter and consist of 7 x 19 galvanized steel with swaged Nicopress end loops. The ends shall be secured by 7/16" screw-in shackles.

I. Fan Controller:

- 1. Each fan controller shall be UL listed as Industrial Control Panels and built pursuant to construction guidelines set forth by UL article 508A and the National Electrical Code.
- 2. Each fan controller shall include a factory programmed Variable Frequency Drive (VFD) to provide a soft-start for the fan as well as infinite speed control capability for the fan.
- 3. The VFD shall be sized per the motor's full load amp rating.
- 4. When more than one fan motor is controlled by a VFD, the size of the VFD shall be based on the maximum current requirements of the motor full load amps.
- 5. Multiple motor systems shall include a Solid-State Overload relay for each motor.
- 6. Load reactors shall be included for 575-600V single fan controls and 400-600V multi-fan controls.
- 7. Each fan controller shall be equipped with an ON/OFF/ON switch, speed control potentiometer, safety disconnect, and properly sized fuse block.
- 8. The controls shall be housed in a NEMA Type 1 enclosure.
- J. Fan Controller Program:
 - 1. Controllers and VFD shall be factory programmed to minimize starting and braking torques.
 - 2. Controller shall integrate HVLS fans with building automation system (BAS) and its BACnet protocols using BACnet MS/TP. Refer to Sections 230924 and 230993 for interface. System shall enable to energized or de-energized though BAS.
 - 3. Each fan shall be Estop compatible for fire and building automated systems (BAS).

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine conditions for compliance with requirements for installation tolerances and other conditions affecting HVLS fan performance, maintenance, and operations.
 - 1. Fan locations indicated on Drawings are approximate. Determine exact locations before roughing-in for mounting, control, and electrical connections.
- B. Examine roughing-in for mounting location, anchor-bolt sizes, and locations, to verify actual locations for mounting connections before installation of fan.
- C. Examine areas for suitable conditions where fan will be installed.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.
- 3.2 INSTALLATION OF HIGH-VOLUME LOW-SPEED FANS
- A. Install fan according to manufacturer's published instructions.

- B. Comply with NECA 1 and NFPA 70.
- C. Equipment Mounting:
 - 1. Anchor fan to building structure with manufacturer's recommended mounting bracket as shown in approved delegated design for installed condition.
 - 2. Consult a licensed professional structural engineer for mounting methods and approval for mounting to the structure. Structure must be able to withstand the torque and forces generated by the fan.
 - 3. Comply with requirements for hangers and supports specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
 - 4. Comply with requirements for vibration isolation devices specified in Section 230548.13 "Vibration Controls for HVAC."
- D. Install unit to permit access for maintenance.
- E. Install parts and accessories shipped loose.

3.3 ELECTRICAL CONNECTIONS

- A. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- B. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- C. Install electrical devices furnished by manufacturer, but not factory mounted, according to NFPA 70 and NECA 1.
- D. Install nameplate for each electrical connection, indicating electrical equipment designation and circuit number feeding connection.
 - 1. Nameplate shall be laminated acrylic or melamine plastic signs, as specified in Section 260553 "Identification for Electrical Systems."
- E. Install power wiring to field-mounted electrical devices, furnished by fan manufacturer, but not factory mounted.

3.4 CONTROL CONNECTIONS

- A. Connect control wiring to field-mounted control devices.
- B. Connect control wiring according to Section 260523 "Control-Voltage Electrical Power Cables."
- C. Connect control interlock wiring between HVLS fan and other equipment to provide a complete and functioning system.
- D. Connect control wiring between fan unit control interface and control system to provide remote control and monitoring.
- E. Install control devices furnished by manufacturer, but not factory mounted.

- F. Install control wiring to field-mounted control devices, furnished by fan manufacturer, but not factory mounted.
- G. Protect installed units from damage caused by other work.

3.5 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Fan Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- B. Fan or components will be considered defective if fan or components do not pass tests and inspections.
- C. Prepare and submit test and inspection reports.

3.6 STARTUP SERVICE

- A. Perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Verify that fan is secure on mountings and supporting devices and that connections to electrical systems are complete. Verify that proper thermal-overload protection is installed in motors, controllers, and switches.
 - 3. Verify proper motor rotation direction and free fan rotation.
 - 4. Check bearing lubrication.
 - 5. Verify proper fan rotation. Set rotation selector to blow vertically downward during heating season, and vertically upward during cooling season.

<u>3.7</u> <u>ADJUSTING</u>

A. Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC" for air-handling system testing, adjusting, and balancing.

3.8 CLEANING

A. Clean equipment externally; remove coatings applied for protection during shipping and storage, foreign material, and oily residue according to manufacturer's written instructions. Following manufacturer's cleaning procedures, and clean with manufacturer-recommended cleaning products.

3.9 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain HVLS fans.

END OF SECTION 23 34 39

This page intentionally left blank.

SECTION 23 36 00 AIR TERMINAL UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of the following products, including rated capacities, furnished specialties, sound-power ratings, and accessories.
 - 1. Air terminal units.
 - 2. Liners and adhesives.
 - 3. Sealants and gaskets.
- B. Shop Drawings: For air terminal units. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

1.3 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For air terminal units to include in emergency, operation, and maintenance manuals. In addition to items specified in Division 1, include the following:
 - 1. Instructions for resetting minimum and maximum air volumes.
 - 2. Instructions for adjusting software set points.

1.4 QUALITY ASSURANCE

A. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 - "Systems and Equipment" and Section 7 - "Construction and System Start-Up."

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Structural Performance: Hangers and supports shall withstand the effects of gravity loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible".

2.2 SHUTOFF, SINGLE-DUCT AIR TERMINAL UNITS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Krueger.
 - 2. METĂLAIRE, Inc.
 - 3. Nailor Industries Inc.
 - 4. Price Industries.
 - 5. Titus.
 - 6. Trane; a business of American Standard Companies.
 - 7. Tuttle & Bailey.
- B. Configuration: Volume-damper assembly inside unit casing with control components inside a protective metal shroud.
- C. Casing: 0.034-inch steel, single wall.
 - 1. Casing Lining: Adhesive attached, 1-inch-thick, coated, fibrous-glass duct liner complying with ASTM C 1071, and having a maximum flame-spread index of 25 and a maximum smoke-developed index of 50, for both insulation and adhesive, when tested according to ASTM E 84.
 - a. Cover liner with nonporous foil.
 - 2. Air Inlet: Round stub connection or S-slip and drive connections for duct attachment.
 - 3. Air Outlet: S-slip and drive connections.
 - 4. Access: Removable panels for access to parts requiring service, adjustment, or maintenance; with airtight gasket.
 - 5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- D. Volume Damper: Galvanized steel with peripheral gasket and self-lubricating bearings.
 - 1. Maximum Damper Leakage: ARI 880 rated, 2 percent of nominal airflow at 3-inch wg inlet static pressure.
 - 2. Damper Position: Normally open.
- E. Hydronic Coils: Copper tube, with mechanically bonded aluminum fins spaced no closer than 0.1 inch and rated for a minimum working pressure of 200 psig and a maximum entering-water temperature of 220 deg F. Include manual air vent and drain valve.
- F. Direct Digital Controls: Single-package unitary controller and actuator specified in Section 23 09 00 "Instrumentation and Control for HVAC."
- 2.3 HANGERS AND SUPPORTS
- A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.

- B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
- C. Steel Cables: Galvanized steel complying with ASTM A 603.
- D. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- E. Air Terminal Unit Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- F. Trapeze and Riser Supports: Steel shapes and plates for units with steel casings; aluminum for units with aluminum casings.

2.4 SOURCE QUALITY CONTROL

- A. Factory Tests: Test assembled air terminal units according to ARI 880.
 - 1. Label each air terminal unit with plan number, nominal airflow, maximum and minimum factory-set airflows, and ARI certification seal.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install air terminal units as indicated on project drawings and in accordance with the manufacturer's installation instructions.
- B. Install air terminal units according to NFPA 90A, "Standard for the Installation of Air Conditioning and Ventilating Systems."
- C. Install air terminal units level and plumb. Maintain sufficient clearance for normal service and maintenance.
- D. Units shall be suspended from building structure. Units shall not be mounted to adjacent piping or ductwork.
- E. Provide at least 24" of clearance on controller side of the air terminal unit. The clearance area shall extend the full length of the supply air terminal unit and the full length (including the access door) of the supply air terminal unit.

3.2 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 5, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.

- 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
- 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes and for slabs more than 4 inches thick.
- 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes and for slabs less than 4 inches thick.
- C. Hangers Exposed to View: Threaded rod and angle or channel supports.
- D. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.3 CONNECTIONS

- A. Install piping adjacent to air terminal unit to allow service and maintenance.
- B. Hot-Water Piping: In addition to requirements in Section 23 21 13 "Hydronic Piping" and Section 23 21 16 Hydronic Piping Specialties," connect heating coils to supply with shutoff valve, strainer, control valve, and union or flange; and to return with balancing valve and union or flange.
- C. Connect ducts to air terminal units according to Section 23 31 13 "Metal Ducts."
- D. Provide a minimum three (3) duct diameter straight length of rigid duct to air terminal inlet. Match inlet duct diameter with air terminal inlet collar diameter. Flexible duct connection to air terminal inlet collar will not be permitted.

3.4 IDENTIFICATION

A. Label each air terminal unit with plan number, nominal airflow, and maximum and minimum factory-set airflows. Comply with requirements in Section 23 05 53 "Identification for HVAC Piping and Equipment" for equipment labels and warning signs and labels.

3.5 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. After installing air terminal units and after electrical circuitry has been energized, test for compliance with requirements.
 - 2. Leak Test: After installation, fill water coils and test for leaks. Repair leaks and retest until no leaks exist.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- B. Air terminal unit will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

3.6 STARTUP SERVICE

- A. Perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Verify that inlet duct connections are as recommended by air terminal unit manufacturer to achieve proper performance.
 - 3. Verify that controls and control enclosure are accessible.
 - 4. Verify that control connections are complete.
 - 5. Verify that nameplate and identification tag are visible.
 - 6. Verify that controls respond to inputs as specified.

<u>3.7</u> <u>ADJUSTING</u>

- A. Coordinate adjustment of air terminal units with Section 23 05 93 Testing, Adjusting and Balancing.
- 3.8 DEMONSTRATION
- A. Train Owner's maintenance personnel to adjust, operate, and maintain air terminal units.

END OF SECTION 23 36 00

This page intentionally left blank.

SECTION 23 37 13 DIFFUSERS, REGISTERS, AND GRILLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- 1.2 ACTION SUBMITTALS
- A. Product Data: For each type of product indicated, include the following:
 - 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 - 2. Diffuser, Register, and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

PART 2 - PRODUCTS

2.1 CEILING DIFFUSERS

- A. Rectangular and Square Ceiling Diffusers:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Krueger.
 - b. METĂLAIRE, Inc.
 - c. Nailor Industries Inc.
 - d. Price Industries.
 - e. Titus.
 - f. Tuttle & Bailey.
 - 2. Devices shall be specifically designed for variable-air-volume flows.
 - 3. Material: See Air Outlets and Inlets Schedule on drawings.
 - 4. Finish: See Air Outlets and Inlets Schedule on drawings.
 - 5. Face Size: See Air Outlets and Inlets Schedule on drawings.
 - 6. Face Style: Plaque.
 - 7. Mounting: See Air Outlets and Inlets Schedule on drawings.
 - 8. Pattern: Fixed.
 - 9. Dampers: See Air Outlets and Inlets Schedule on drawings.

- B. Louver Face Diffuser:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Krueger.
 - b. METALAIRE, Inc.
 - c. Nailor Industries Inc.
 - d. Price Industries.
 - e. Titus.
 - f. Tuttle & Bailey.
 - 2. Devices shall be specifically designed for variable-air-volume flows.
 - 3. Material: See Air Outlets and Inlets Schedule on drawings.
 - 4. Finish: See Air Outlets and Inlets Schedule on drawings.
 - 5. Frame: See Air Outlets and Inlets Schedule on drawings.
 - 6. Mounting: See Air Outlets and Inlets Schedule on drawings.

2.2 HIGH-CAPACITY DIFFUSERS

- A. Drum Louver:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Krueger.
 - b. METÁLAIRE, Inc.
 - c. Nailor Industries Inc.
 - d. Price Industries.
 - e. Titus.
 - f. Tuttle & Bailey.
 - 2. Airflow Principle: Extended distance for high airflow rates.
 - 3. Material: See Air Outlets and Inlets Schedule on drawings.
 - 4. Finish: See Air Outlets and Inlets Schedule on drawings.
 - 5. Border: 1-1/4-inch width with countersunk screw holes.
 - 6. Gasket between drum and border.
 - 7. Body: Drum shaped; adjustable vertically.
 - 8. Blades: Individually adjustable horizontally.
 - 9. Mounting: See Air Outlets and Inlets Schedule on drawings.
 - 10. Inlet Width: See Air Outlets and Inlets Schedule on drawings.
 - 11. Inlet Length: See Air Outlets and Inlets Schedule on drawings.
 - 12. Accessories:
 - a. Opposed-blade steel damper.
 - b. Duct-mounting collars with countersunk screw holes.

2.3 REGISTERS AND GRILLES

- A. Adjustable Bar Register:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Krueger.
 - b. METALAIRE, Inc.
 - c. Nailor Industries Inc.
 - d. Price Industries.
 - e. Titus.
 - f. Tuttle & Bailey.
 - 2. Material: See Air Outlets and Inlets Schedule on drawings.
 - 3. Finish: See Air Outlets and Inlets Schedule on drawings.
 - 4. Frame: See Air Outlets and Inlets Schedule on drawings.
 - 5. Mounting: See Air Outlets and Inlets Schedule on drawings.
- B. Adjustable Bar Grille:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Krueger.
 - b. METĂLAIRE, Inc.
 - c. Nailor Industries Inc.
 - d. Price Industries.
 - e. Titus.
 - f. Tuttle & Bailey.
 - 2. Material: See Air Outlets and Inlets Schedule on drawings.
 - 3. Finish: See Air Outlets and Inlets Schedule on drawings.
 - 4. Frame: See Air Outlets and Inlets Schedule on drawings.
 - 5. Mounting: See Air Outlets and Inlets Schedule on drawings.
- C. Fixed Face Grille:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Krueger.
 - b. METALAIRE, Inc.
 - c. Nailor Industries Inc.
 - d. Price Industries.
 - e. Titus.
 - f. Tuttle & Bailey.

- 2. Material: See Air Outlets and Inlets Schedule on drawings.
- 3. Finish: See Air Outlets and Inlets Schedule on drawings.
- 4. Frame: See Air Outlets and Inlets Schedule on drawings.
- 5. Mounting: See Air Outlets and Inlets Schedule on drawings.

2.4 ACCESSORIES

- 1. Provide diffusers/registers/grilles accessories products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Square to round neck adaptor.
 - b. Adjustable pattern vanes.
 - c. Throw reducing vanes.
 - d. Equalizing grid.
 - e. Plaster ring.
 - f. Safety chain.
 - g. Wire guard.
 - h. Sectorizing baffles.
 - i. Operating rod extension.

2.5 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers, registers, and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas where diffusers, registers, and grilles are to be installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install diffusers, registers, and grilles level and plumb.
- B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.
- C. Install diffusers, registers, and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust diffusers, registers, and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 23 37 13

This page intentionally left blank.

SECTION 23 41 00 PARTICULATE AIR FILTRATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include dimensions; operating characteristics; required clearances and access; rated flow capacity, including initial and final pressure drop at rated airflow; efficiency and test method; fire classification; furnished specialties; and accessories for each model indicated.

1.3 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each type of filter and rack to include in emergency, operation, and maintenance manuals.

1.4 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Provide one complete set(s) of filters for each filter bank. If system includes prefilters, provide only prefilters.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ASHRAE Compliance:
 - 1. Comply with applicable requirements in ASHRAE 62.1, Section 4 "Outdoor Air Quality"; Section 5 "Systems and Equipment"; and Section 7 "Construction and Startup."
 - 2. Comply with ASHRAE 52.1 for arrestance and ASHRAE 52.2 for MERV for methods of testing and rating air-filter units.
- C. Comply with NFPA 90A and NFPA 90B.
- D. Supply all filters from one manufacturer, unless indicated otherwise.
- E. Assemble filter components to form filter banks from one manufacturer.
- F. Filter frames and support structures shall be fabricated by equipment manufacturers.

PART 2 - PRODUCTS

2.1 PLEATED PANEL FILTERS

- A. Description: Factory-fabricated, self-supported, extended-surface, pleated, panel-type, disposable air filters with holding frames.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. AAF International.
 - b. Camfil Farr.
 - c. Filtration Group.
 - d. Flanders-Precisionaire.
 - e. Purafil, Inc.
 - f. Research Products Corp.
- B. Filter Unit Class: UL 900, Class 2.
- C. Media: 1-inch Interlaced glass or synthetic fibers coated with nonflammable adhesive.
 - 1. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
 - 2. Media shall be coated with an antimicrobial agent.
 - 3. Separators shall be bonded to the media to maintain pleat configuration.
 - 4. Welded wire grid shall be on downstream side to maintain pleat.
 - 5. Media shall be bonded to frame to prevent air bypass.
 - 6. Support members on upstream and downstream sides to maintain pleat spacing.
- D. Filter-Media Frame: Cardboard frame with perforated metal retainer sealed or bonded to the media.
- E. Mounting Frames: Welded galvanized steel, with gaskets and fasteners; suitable for bolting together into built-up filter banks.
- F. Capacities and Characteristics:
 - 1. See schedule on drawings.
 - 2. MERV Rating: Per scheduled value when tested according to ASHRAE 52.2.

2.2 DISPOSABLE RIGID CARTRIDGE TYPE AIR FILTERS

- A. Description: Factory-fabricated, disposable, packaged air filters with media perpendicular to airflow, and with holding frames.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

- a. AAF International.
- b. Camfil Farr.
- c. Filtration Group.
- d. Flanders-Precisionaire.
- e. Purafil, Inc.
- f. Research Products Corp.
- B. Filter Unit Class: UL 900, Class 1.
- C. Media: 4-inch-deep fibrous material constructed so individual pleats are maintained in tapered form under rated-airflow conditions by flexible corrugated aluminum internal supports.
 - 1. Adhesive shall comply with the testing and product requirements of the California Department of Health Services' "Standard Practice for the Testing of Volatile Organic Emissions from Various Sources Using Small-Scale Environmental Chambers."
 - 2. Media shall be coated with an antimicrobial agent.
- D. Mounting Frames: Welded galvanized steel, with gaskets and fasteners; suitable for bolting together into built-up filter banks.
- E. Capacities and Characteristics:
 - 1. See schedule on drawings.
 - 2. MERV Rating: Per scheduled value when tested according to ASHRAE 52.2.

2.3 HOUSINGS FOR PANEL FILTERS

A. Manufactured by air handling unit manufacturer, filter media manufacturer, or contractor fabricated. Casing and tracks constructed of galvanized or enameled steel or aluminum. Provide access to the media tracks from outside the casing so media and be readily changed.

2.4 HOUSINGS FOR MERV 8 FILTERS

A. Housing or holding frame to be of the same manufacturer as filter media or provided by the air handling unit manufacturer. Contractor fabricated housings or filter racks will not be accepted. Casing and tracks constructed of galvanized or enameled steel or aluminum. Provide access to the media tracks from outside the casing so media and be readily changed. Filter tracks shall be constructed to provide a minimum clearance of 2 inches between the pre-filter and final-filter media to facilitate the installation of static pressure tips.

2.5 SIDE-SERVICE HOUSINGS

A. Description: Factory-assembled, side-service housings, constructed of galvanized steel with flanges to connect to duct or casing system.

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. AAF International.
 - b. Camfil Farr.
 - c. Filtration Group.
 - d. Flanders-Precisionaire.
 - e. Purafil, Inc.
 - f. Research Products Corp.
- B. Prefilters: Integral tracks to accommodate 2-inch-deep, disposable filters.
- C. Access Doors: Hinged, with continuous gaskets on perimeter and positive-locking devices and arranged so filter cartridges can be loaded from either access door.
- D. Sealing: Incorporate positive-sealing gasket material on channels to seal top and bottom of filter cartridge frames and to prevent bypass of unfiltered air.
- E. Standard filter sections provided by air handling unit manufacturers may be used.
- F. Insulate housings where adjacent duct or air handling apparatus is insulated. Insulation to be contained within a 2" thick, double wall steel panel and meet the requirements specified for adjacent duct or apparatus.
- G. Furnish a door on each end of the housing to facilitate filter changing. Doors to be hinged and provided with lever handle latches to secure the door. Doors shall not be secured with nuts, bolts, wing nuts, or sheet metal screws.
- H. Filter bypass shall be less than 5% of design cfm.
- I. Filter tracks shall be constructed to provide a minimum clearance of 2 inches between the pre-filter and final-filter media to facilitate the installation of static pressure tips.

2.6 FILTER GAGES

- A. Diaphragm-type gage with dial and pointer in metal case, vent valves, black figures on white background, and front recalibration adjustment.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Airguard.
 - b. Dwyer Instruments, Inc.
 - 2. Diameter: 4-1/2 inches.
 - 3. Scale Range for Filter Media Having a Recommended Final Resistance of 0.5-Inch wg or Less: 0- to 0.5-inch wg.
 - 4. Scale Range for Filter Media Having a Recommended Final Resistance of 0.5- to 1.0-Inch wg or Less: 0- to 1.0-inch wg.

- B. Manometer-Type Filter Gage: Molded plastic, with epoxy-coated aluminum scale and logarithmic-curve tube gage with integral leveling gage, graduated to read from 0- to 3.0- inch wg, and accurate within 3 percent of the full-scale range.
- C. Accessories: Static-pressure tips, tubing, gage connections, and mounting bracket.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Position each filter unit with clearance for normal service and maintenance. Anchor filter holding frames to substrate.
- B. Where air handling equipment is to be used for temporary heating or ventilation of a facility, do not operate the equipment until specified filter media has been installed. Contractor shall be responsible for maintaining the cleanliness of air handling apparatus and air distribution systems during construction through regular inspection and changing of filter media throughout the construction period.
- C. Where air handling apparatus is used during the construction period, install new filter media prior to start of air balancing. Additionally, deliver one new set of media to the owner prior to substantial completion.
- D. Install units as shown on drawings and details according to manufacturer's instructions.
- E. Install filters in position to prevent passage of unfiltered air.
- F. Install filter gage for each filter bank.
- G. Do not operate fan system until filters (temporary or permanent) are in place. Replace temporary filters used during construction and testing with new, clean filters.
- H. Install filter-gage, static-pressure taps upstream and downstream from filters. Install filter gages on filter banks with separate static-pressure taps upstream and downstream from filters. Mount filter gages on outside of filter housing or filter plenum in an accessible position. Adjust and level inclined gages. Install tubing and gauge valves between gauge and sensor tips.
- I. Coordinate filter installations with duct and air-handling-unit installations.

3.2 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Test for leakage of unfiltered air while system is operating.
- B. Air filter will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.
- D. Operate installed air filters and housings to demonstrate compliance with specifications.

- E. Correct malfunctioning units at site, then retest to demonstrate compliance; otherwise, remove and replace with new units and proceed with retesting.
- F. DO NOT operate fan systems connected to filter banks until filters (temporary or permanent) are in place. Replace filters used during construction. Install new filters at substantial completion.

3.3 CLEANING

A. After completing system installation and testing, adjusting, and balancing of air-handling and air-distribution systems, clean filter housings and install new filter media.

END OF SECTION 23 41 00

SECTION 23 51 00 BREECHINGS, CHIMNEYS, AND STACKS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 ACTION SUBMITTALS

- A. Product Data: For the following:
 - 1. Type B and BW vents.
 - 2. Special gas vents. Exhaust vents for condensing appliances
 - 3. Guy wires and connectors.
- B. Shop Drawings: For vents, breechings, chimneys, and stacks. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, methods of field assembly, components, hangers and seismic restraints, and location and size of each field connection.

1.3 QUALITY ASSURANCE

A. Source Limitations: Obtain listed system components through one source from a single manufacturer.

1.4 COORDINATION

A. Coordinate installation of roof curbs, equipment supports, and roof penetrations. These items are specified in Division 07 Section "Roof Accessories."

1.5 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of venting system that fail in materials or workmanship within specified warranty period. Failures include, but are not limited to, structural failures caused by expansion and contraction.
 - 1. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 LISTED TYPE B AND BW VENTS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Heat-Fab, Inc.
 - 2. Metal-Fab, Inc.
 - 3. Selkirk Inc.; Selkirk Metalbestos and Air Mate.
 - 4. Van-Packer Company, Inc.
- B. Description: Double-wall metal vents tested according to UL 441 and rated for 480 deg F continuously for Type B, or 550 deg F continuously for Type BW; with neutral or negative flue pressure complying with NFPA 211.
- C. Construction: Inner shell and outer jacket separated by at least a 1/4-inch airspace.
- D. Inner Shell: ASTM A 666, Type 430 stainless steel.
- E. Outer Jacket: Galvanized or stainless steel.
- F. Accessories: Tees, elbows, increasers, draft-hood connectors, terminations, adjustable roof flashings, storm collars, support assemblies, thimbles, firestop spacers, and fasteners; fabricated from similar materials and designs as vent-pipe straight sections; all listed for same assembly.
 - 1. Termination: Stack cap designed to exclude minimum 90 percent of rainfall.
 - 2. Termination: Exit cone with drain section incorporated into riser.

2.2 EXHAUST VENTS FOR CONDENSING APPLIANCES

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Heat-Fab, Inc.
 - 2. Metal-Fab, Inc.
 - 3. Selkirk Inc.; Selkirk Metalbestos and Air Mate.
- B. Description: Double-wall metal vents tested according to UL 1738 and rated for 480 deg F continuously, with positive or negative flue pressure complying with NFPA 211.
- C. Construction: Inner shell and outer jacket separated by at least a 1/2-inch airspace.
- D. Inner Shell: ASTM A 959, Type 29-4C stainless steel.
- E. Outer Jacket: Aluminized or Stainless steel.
- F. Accessories: Tees, elbows, increasers, draft-hood connectors, terminations, adjustable roof flashings, storm collars, support assemblies, thimbles, firestop spacers, and fasteners; fabricated from similar materials and designs as vent-pipe straight sections; all listed for same assembly.
 - 1. Termination: Stack cap designed to exclude minimum 90 percent of rainfall.
2. Termination: Exit cone with drain section incorporated into riser.

2.3 COMBUSTION AIR VENTS FOR CONDENSING APPLIANCES

- A. Provide combustion air vents, fittings, and accessories constructed of schedule 40 CPVC where in accordance with appliance manufacturer's recommendations.
- B. Size combustion air vents in strict accordance with appliance manufacturer's requirements.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of work.
 - 1. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATION

- A. Listed Type B and BW Vents: Vents for certified gas appliances.
- B. Listed Special Gas Vent: Exhaust vents for condensing appliances

3.3 INSTALLATION OF LISTED VENTS AND CHIMNEYS

- A. Locate to comply with minimum clearances from combustibles according to product listing or NFPA 211, whichever is most stringent. All vents shall be minimum 6 ft above the existing roof.
- B. Seal between sections of positive-pressure vents and grease exhaust ducts according to manufacturer's written installation instructions, using sealants recommended by manufacturer.
- C. Support vents at intervals recommended by manufacturer to support weight of vents and all accessories, without exceeding appliance loading.
- D. Slope breechings down in direction of appliance, with condensate drain connection at lowest point piped to nearest drain.
- E. Lap joints in direction of flow.
- F. Join sections with acid-resistant joint cement to provide continuous joint and smooth interior finish.
- G. Erect stacks plumb to finished tolerance of no more than 1 inch out of plumb from top to bottom.

3.4 INSTALLATION

- A. Locate exhaust termination in accordance with appliance manufacturer's recommendations to prevent re-entry of products of combustion. All vents shall be minimum 6 ft above the existing roof.
- B. Suspend breechings independent of their appliance connections.
- C. Install, support, and restrain according to manufacturer's requirements. Install stacks plumb.
- D. Align breechings at connections, with smooth internal surface and a maximum 1/8-inch misalignment tolerance.
- E. Slope breechings down in direction of appliance, with condensate drain connection at lowest point piped to nearest drain.
- F. Lap joints in direction of flow.
- G. Support breechings from building structure with bolts, concrete inserts, steel expansion anchors, welded studs, C-clamps, or beam clamps according to manufacturer's written instructions.
- H. Stack Termination:
 - 1. Extend stack to heights above roof recommended by manufacturer for type of roofs, adjacent structures, and appliances served. All stack termination shall be minimum 6 ft above the existing roof.
 - 2. Termination of exhaust within 10 feet of operable windows, other building openings, or air intakes will not be accepted. Termination of exhaust vents shall be a minimum 3 feet and installed per manufacturer's guidelines using the 2-10 Rule. The 2-10 Rule states that combustion vents should terminate at least 2 feet above any part of the roof within 10 feet.
 - 3. Provide spark arrester and fly screen with maximum ³/₄-inch openings.
- I. Ensure that stack sections are properly aligned.
 - 1. Seal sections with manufacturer's joint cement and draw bands.
 - 2. Install with minimum of joints.
 - 3. Provide slip joints to allow removal of appliances without removal or dismantling of exhaust vent.
- J. Support exhaust vent from building structure with suitable ties, braces, hangers, and anchors to hold shape and prevent buckling. Minimum support for vertical sections shall be at roof penetrations. Support from roof structure, or adjacent structural surfaces. Verify load bearing capacity of support points. Support horizontal breeching at 8-foot intervals for sizes up to 12" diameter.
- K. Seal all joints of positive pressure stacks and breeching in accordance with manufacturer's recommendations, using only sealants recommended by stack manufacturer.

3.5 COMBUSTION AIR VENTS FOR CONDENSING APPLIANCE:

- A. Locate combustion air intake in accordance with appliance manufacturer's recommendations to prevent re-entry of products of combustion.
- B. Pitch combustion air vents from intake down toward appliance connection.
- C. At appliances, provide slip joints to allow removal of appliances without removal or dismantling of combustion air vent.
- D. All joints of combustion air shall be solvent welded and leak tight. Provide drain connection at base of air combustion vent, and pipe to nearest open site drain.

3.6 CLEANING

- A. After completing system installation, including outlet fittings and devices, inspect exposed finish. Remove burrs, dirt, and construction debris and repair damaged finishes.
- B. Clean breechings internally, during and after installation, to remove dust and debris. Clean external surfaces to remove welding slag and mill film. Grind welds smooth and apply touchup finish to match factory or shop finish.
- C. Provide temporary closures at ends of breechings, chimneys, and stacks that are not completed or connected to equipment.
- D. At ends of combustion air and exhaust vents which are not completed or connected to equipment, provide temporary closure which will prevent entrance of dust and debris until final connections are made.

END OF SECTION 23 51 00

This page intentionally left blank.

SECTION 23 52 16 CONDENSING BOILERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 ACTION SUBMITTALS

- A. Product Data: Include performance data, operating characteristics, furnished specialties, and accessories. For boilers, boiler trim, and accessories. Include plans, elevations, sections, details, and attachments to other work
 - 1. Include diagrams for power, signal, and control wiring.
 - 2. Warranty: Special warranty specified in this Section.

1.3 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For boilers to include in emergency, operation, and maintenance manuals.

1.4 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. ASME Compliance: Fabricate and label boilers to comply with ASME Boiler and Pressure Vessel Code.
- C. ASHRAE/IESNA 90.1 Compliance: Boilers shall have minimum efficiency according to "Gas and Oil-Fired Boilers - Minimum Efficiency Requirements."
- D. DOE Compliance: Minimum efficiency shall comply with 10 CFR 430, Subpart B, Appendix N, "Uniform Test Method for Measuring the Energy Consumption of Furnaces and Boilers."
- E. UL Compliance: Test boilers for compliance with UL 795, "Commercial-Industrial Gas Heating Equipment." Boilers shall be listed and labeled by a testing agency acceptable to authorities having jurisdiction.
- F. Boiler shall be provided with fuel train and operating controls conforming to the latest CSD-1 requirements, and FM or IRI approval.
- G. Comply with State of Wisconsin boiler codes and regulations.

H. All boiler equipment, trim, and accessories shall be shipped factory mounted, except for items removed due to shipping clearances. All items removed for shipping shall be noted.

1.5 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

1.6 REGISTRATION

A. Complete Boiler and Unfired Pressure Vessel (UPV) Installation Registration and forward to the Department of Safety and Professional Services in accordance with the Wisconsin Administrative Code Chapter SPS 341.24.

1.7 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of boilers that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period for Fire-Tube Condensing Boilers:
 - a. Leakage and Materials: 10 years from date of Substantial Completion.
 - b. Heat Exchanger Damaged by Thermal Stress and Corrosion: Nonprorated for five years from date of Substantial Completion.
 - c. All other boiler, burner and control parts warranted for one year from startup.
 - 2. Sealed combustion boiler, condensing, hi-efficiency, (modular,) helical heat exchanger/combustion chamber design that will be self-supporting and warranted for a period of 10 years to withstand thermal shock. Heat exchanger shall be warranted against leakage for a period of 10 years.

PART 2 - PRODUCTS

2.1 STAINLESS STEEL, FIRE-TUBE CONDENSING BOILERS

- A. Manufacturer Basis-of-Design Product: The design is based on the following:
 - 1. Lochivar Crest
- B. Manufacturers: Subject to compliance with requirements, provide the named product or a comparable product by one the following:
 - 1. AERCO International Benchmark.
 - 2. Viessmann 300CA3
- C. Provide units with capacity and operating characteristics indicated on schedules.

- D. Description: Factory-fabricated, -assembled, and -tested, fire-tube condensing boiler with heat exchanger sealed pressure tight, built on a steel base; including insulated jacket; flue-gas vent; combustion-air intake connections; water supply, return, and condensate drain connections; and controls. Water heating service only.
- E. Single pass firetube boiler with stainless tubes & tube sheet. No minimum return water temperature, and or minimum water flow required for proper operation. Boiler ASME H stamped and constructed for 125 psig and designed per ASME section IV. Furnish a relief valve in compliance with ASME section IV and set at 50 psig.
- F. Heat Exchanger: All internal combustion chamber, and internal burner components, shall be manufactured with stainless steel materials suitable to withstand constant operation under condensing conditions. Combustion chamber shall have a condensate drain to discharge any condensate buildup. CSA certified as an indirect or direct vent boiler and comply with ASME CSD-1.
- G. Heat Exchanger: Nonferrous, corrosion-resistant combustion chamber.
- H. Boiler minimum efficiency of 94%+ per BTS 2000, and operation in the condensing mode with inlet temperatures as low as 90 F.
- I. Combustion air intake capable of accepting direct outside air through a sealed intake pipe. Provide inlet/outlet combustion vent temperature fittings with direct outside air application.
- J. Category II, III, or IV flu vent connection as appropriate for installation, for vertical, horizontal and sidewall venting. The vent outlet shall be compatible with installation.
- K. Pressure Vessel: Carbon steel with welded heads and tube connections.
- L. Burner: Natural gas, forced draft.
- M. Blower: Centrifugal fan to operate during each burner firing sequence and to prepurge and postpurge the combustion chamber.
 - 1. Motors: Comply with requirements specified in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."
 - a. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
- N. Gas Train: Combination gas valve with manual shutoff and pressure regulator.
- O. Furnish units with fuel trains and operating controls conforming to the latest UL or equivalent agency approval, ASME CSD-1 requirements, Boiler/burner package shall be factory assembled, wired, mounted, and factory fire tested.
- P. Ignition: Spark ignition with 100 percent main-valve shutoff with electronic flame supervision.

- Q. Casing:
 - 1. Jacket: Sheet metal, with snap-in or interlocking closures.
 - 2. Control Compartment Enclosures: NEMA 250, Type 1A.
 - 3. Finish: Baked-enamel protective finish.
 - 4. Insulation: Minimum 2-inch-thick, mineral-fiber insulation surrounding the heat exchanger.
 - 5. Combustion-Air Connections: Inlet and vent duct collars.
 - 6. Mounting base to secure boiler.
- R. Capacity Control: Boiler firing rate control shall be the following as a minimum:
 - 1. Full modulation with a minimum 20:1 turndown ratio.

<u>2.2</u> <u>TRIM</u>

- A. Aquastat Controllers: Operating and high limit.
- B. Safety Relief Valve: ASME rated.
- C. Pressure and Temperature Gage: Minimum 3-1/2-inch-diameter, combination waterpressure and -temperature gage. Gages shall have operating-pressure and -temperature ranges so normal operating range is about 50 percent of full range.
- D. Boiler Air Vent: Automatic.
- E. Drain Valve: Minimum NPS 3/4 hose-end gate valve.
- F. Inlet and outlet temperature gauge to monitor and limit inlet and outlet water temperatures.
- G. Pressure gauge mounted on water outlet.
- H. Omit controller if sequencing panel or external control will be used.
- I. Provide a water temperature controller.
- J. Provide each boiler with a low water cutout operationally testable, manually reset on loss of low-water and auto-rest on loss of power in accordance with ASME Section IV and CSD-1.
- K. Provide each boiler with dual over temperature protection, including manual reset, in accordance with ASME Section IV and CSD-1.
- L. Provide remote fault alarm contact for flame sensor and high temperature limit failure.

2.3 CONTROLS

A. Refer to Section 23 09 00 "Instrumentation and Control for HVAC."

- B. Temperature-control devices and sequence of operations are specified in Section 23 09 00 "Instrumentation and Control for HVAC" and Section 23 09 93 "Sequence of Operations for HVAC Controls."
- C. Refer to Specification Section 23 09 93 and mechanical drawings Series M800 for hot water system operation including boiler and primary pumps.
- D. Provide a Boiler controller with capability of burner sequencing, flame supervision, safety shutdown, burner modulation control, gas pressure supervision, combustion air proving, pump control,
- E. Provide an integral boiler controller capable of staging boilers to maintain peak seasonal efficiency. BMS shall include a sensor to monitor main loop system temperature, and a sensor to monitor outside air temperature. BMS shall be capable of outdoor reset, loop temperature span, and set loop temperature. BMS shall have the capability to stage boilers based on loop temperature and outdoor reset for highest operating seasonal efficiencies. BMS shall be capable of starting and stopping the system based on a remote contact closure and have the ability to change set-point from a remote location.
- F. Boiler operating controls shall include the following devices and features:
 - 1. Control transformer.
 - 2. Set-Point Adjust: Set points shall be adjustable.
- G. Burner Operating Controls: To maintain safe operating conditions, burner safety controls limit burner operation.
 - 1. High Cutoff: Manual reset stops burner if operating conditions rise above maximum boiler design temperature.
 - 2. Low-Water Cutoff Switch: Electronic probe shall prevent burner operation on low water. Cutoff switch shall be manual-reset type.
 - 3. Blocked Inlet Safety Switch: Manual-reset pressure switch field mounted on boiler combustion-air inlet.
 - 4. Audible Alarm: Factory mounted on control panel with silence switch; shall sound alarm for above conditions.
- H. Building Automation System Interface: Factory install hardware and software to enable building automation system to monitor and display boiler status and alarms. The BAS will enable the boilers and associated boiler primary pumps to operate.
 - 1. Hardwired Points:
 - a. Monitoring: On/off status, common trouble alarm.
 - b. Control: On/off operation, hot water supply temperature set-point adjustment.
 - 2. A communication interface with building automation system shall enable building automation system operator to remotely control and monitor the boiler from an operator workstation. Control features available, and monitoring points displayed, locally at boiler control panel shall be available through building automation system.

- I. Provide controls to allow system enable/disable and general alarm via binary input and output from the existing control system. Provide all required interface hardware and software required for a BACnet MSTP interface connection to the DDC system. Interface shall be a multi-protocol, communications gateway to support integration with building automation system. Interface captures alarm and trend history of boilers
- J. A list of standard control points for each category of equipment includes set point, fire rate, outlet temperature, unit status, run cycles and run hours.

2.4 ELECTRICAL POWER

- A. Single-Point Field Power Connection: Factory-installed and -wired switches, motor controllers, transformers, and other electrical devices necessary shall provide a single-point field power connection to boiler.
 - 1. House in NEMA 250, Type 1 enclosure.
 - 2. Wiring shall be numbered and color-coded to match wiring diagram.
 - 3. Install factory wiring outside of an enclosure in a metal raceway.
 - 4. Field power interface shall a fused disconnect switch.
 - 5. Provide branch power circuit to each motor and to controls with a disconnect switch or circuit breaker capable of being locked in the open position at an accessible location at the boiler; integral or adjacent to the boiler.
 - 6. Provide each motor with overcurrent protection.
 - 7. Provide a manually operated remote emergency shutdown switch or circuit breaker just outside the boiler room door and mark for easy identification.

2.5 VENTING KITS

- A. Refer to Section 23 51 00 for "Breechings, Chimneys and Stacks" for exhaust and combustion air venting installation.
- B. Kit: Complete system, ASTM A 959, Type 29-4C stainless steel, pipe, vent terminal, thimble, indoor plate, vent adapter, condensate trap and dilution tank, and sealant.
- C. Combustion-Air Intake: Complete system, stainless steel, pipe, vent terminal with screen, inlet air coupling, and sealant.
- D. Verify air pipe sizes shown on drawings with boiler manufacturer to ensure pipe is large enough to accommodate length of pipe and number of fittings in system.

2.6 NEUTRALIZATION KIT

- A. Provide an acid neutralization kit for condensate out of boiler and stack for condensing type boiler.
- B. An acid neutralization kit for condensing boilers as it will produce condensate as heat is transferred from the flue produces into the heat exchanger. This condensate will have a pH imbalance of 2 or 3 pH. The condensate shall be returned to a relatively normal pH level. Neutralizing kit shall bring the condensate back to a pH level near 7 pH. Contractor shall pipe per manufacturer's recommendations.

2.7 SOURCE QUALITY CONTROL

- A. Burner and Hydrostatic Test: Factory adjust burner to eliminate excess oxygen, carbon dioxide, oxides of nitrogen emissions, and carbon monoxide in flue gas and to achieve combustion efficiency; perform hydrostatic test.
- B. Test and inspect factory-assembled boilers, before shipping, according to ASME Boiler and Pressure Vessel Code.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Before boiler installation, examine roughing-in for concrete equipment bases, anchorbolt sizes and locations, and piping and electrical connections to verify actual locations, sizes, and other conditions affecting boiler performance, maintenance, and operations.
 - 1. Final boiler locations indicated on Drawings are approximate. Determine exact locations before roughing-in for piping and electrical connections.
- B. Examine mechanical spaces for suitable conditions where boilers will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 BOILER INSTALLATION

- A. Equipment Mounting:
 - 1. Install boilers on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Division 03.
 - 2. Comply with requirements for vibration isolation devices specified in Section 23 05 48.13 "Vibration Controls for HVAC."
- B. Install gas-fired boilers according to NFPA 54.
- C. Assemble and install boiler trim.
- D. Install electrical devices furnished with boiler but not specified to be factory mounted.
- E. Install control wiring to field-mounted electrical devices.
- F. Flush, cure, and thoroughly clean boilers and boiler accessories upon completion of installation and prior to start-up in accordance with boiler manufacturer's instruction.
- G. After piping system has been flushed, boil out boilers using chemical and procedure as recommended by boiler manufacturer. Perform boil-out under supervision of boiler manufacturer's representative.
- H. Manufacturer shall verify in writing that boilers have been cleaned according to their recommendations and are ready for operation.

- I. Isolate boilers from piping system during boil-out. Owner's representative and/or Engineer will observe boil-out. Contractor must notify Engineer at least 72 hours prior to boil-out.
- J. Install all items shipped loose by equipment manufacturer under supervision of equipment manufacturer's field service personnel.

3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to boiler to allow service and maintenance.
- C. Install piping from equipment drain connection to nearest floor drain. Piping shall be at least full size of connection. Provide an isolation valve if required.
- D. Connect piping to boilers, except safety relief valve connections, with flexible connectors of materials suitable for service. Flexible connectors and their installation are specified in Section 23 21 16 "Hydronic Piping Specialties."
- E. Connect hot-water piping to supply- and return-boiler tappings with shutoff valve and union or flange at each connection.
- F. Connect gas piping to boiler gas-train inlet with union. Piping shall be at least full size of gas train connection. Provide a reducer if required.
- G. Install gas pressure gauges at downstream of gas pressure regulators.
- H. All gas train items requiring venting shall be vented to outdoors.
- I. Pipe vents from gas train to atmosphere. Size of each vent shall not be less than connection size to device.
- J. Install piping from safety relief valves to nearest floor drain.
- K. Boiler Venting:
 - 1. Install flue venting kit and combustion-air intake.
 - 2. Connect full size to boiler connections.
 - 3. Refer to Section 23 51 00 for "Breechings, Chimneys and Stacks" for exhaust and combustion air venting installation
- L. Ground equipment according to Section 26 05 26 "Grounding and Bonding for Electrical Systems."
- M. Connect wiring according to Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."
- N. If remote control panels are used, install all interconnecting wiring and pneumatic tubing if used between panels and units.

- O. Connect condensate drain lines from the boiler and flue to the neutralizing basin and flue gas trap and routed to the nearest floor drain.
- P. The condensate drain lines from the boiler and flue to the neutralizing basin will be piped with polypropylene or schedule 80 PVC designed for acidic applications. The pipe downstream of the neutralizing basin can be any material allowed by Division 22 for drains.

3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Perform installation and startup checks according to manufacturer's written instructions.
 - 2. Leak Test: Hydrostatic test. Repair leaks and retest until no leaks exist.
 - 3. Operational Test: Start units to confirm proper motor rotation and unit operation. Adjust air-fuel ratio and combustion.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - a. Check and adjust initial operating set points and high- and low-limit safety set points of fuel supply, water level and water temperature.
 - b. Set field-adjustable switches and circuit-breaker trip ranges as indicated.
- C. Remove and replace malfunctioning units and retest as specified above.
- D. Performance Tests:
 - 1. Engage a factory-authorized service representative to inspect component assemblies and equipment installations, including connections, and to conduct performance testing.
 - 2. Boilers shall comply with performance requirements indicated, as determined by field performance tests. Adjust, modify, or replace equipment to comply.
 - 3. Perform field performance tests to determine capacity and efficiency of boilers.
 - a. Test for full capacity.
 - b. Test for boiler efficiency at low fire 20, 40, 60, 80, 100, 80, 60, 40, and 20 percent of full capacity. Determine efficiency at each test point.
 - 4. Repeat tests until results comply with requirements indicated.
 - 5. Provide analysis equipment required to determine performance.
 - 6. Provide temporary equipment and system modifications necessary to dissipate the heat produced during tests if building systems are not adequate.
 - 7. Notify Engineer in advance of test dates.
 - 8. Document test results in a report and submit to Architect.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain boilers. Refer to Division 01.

END OF SECTION 23 52 16

SECTION 23 73 33.16 INDOOR, INDIRECT, GAS-FIRED HEATING AND VENTILATING UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.1

1.2 SUMMARY

- A. This Section includes packaged make-up, direct-fired, outdoor heating-only makeup-air units. The unit's construction shall be double wall galvanized-steel casings. The following units:
 - 1. MAU-12.

1.3 DEFINITIONS

A. BAS: Building automation system.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type and configuration of indoor, indirect, gas-fired heating and ventilating unit.
 - 1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 - 2. Materials of construction, including casing construction details and finishes.
 - Fan curves showing CFM, external and total static pressure, and RPM for operating range of 10% above and below design conditions. Clearly indicate specified operating point.
 - 4. Materials of construction, including casing construction details and finishes.
- B. Shop Drawings: For each type and configuration of indoor, indirect, gas-fired heating and ventilating unit.
 - 1. Include plans, elevations, sections, and mounting details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Detail fabrication and assembly of gas-fired heating and ventilating units, as well as procedures and diagrams.
 - 4. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and rails, and base weights.
 - 5. Include diagrams for power, signal, and control wiring.
 - a. Clearly indicate factory installed and field installed wiring.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For indirect-fired heating and ventilating units to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Filters: One set(s) for each unit.

1.7 QUALITY ASSURANCE

- A. Comply with NFPA 70.
- B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
- C. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 "Heating, Ventilating, and Air-Conditioning."
- D. All materials shall meet NFPA 90A flame spread and smoke generation requirements.

1.8 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace components of indirect, gasfired heating and ventilating units that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period for Heat Exchangers: Manufacturer's standard, but not less than five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturer Basis-of-Design Product: The design is based on the following:
 - 1. Greenheck Fan Corporation.
- B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Modine Manufacturing Company.
 - 2. Reznor/Thomas & Betts Corporation.
 - 3. Sterling HVAC Products.
 - 4. Trane Inc.

2.2 SYSTEM DESCRIPTION

- A. Factory-assembled, prewired, self-contained unit consisting of cabinet, supply fan, gas controls, filters, and indirect-fired gas burner to be installed exterior the building.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.3 UNIT CASINGS

- A. General Fabrication Requirements for Casings:
 - 1. Forming: Form walls, roofs, and floors with at least two breaks at each joint.
 - 2. Casing Joints: Sheet metal screws or pop rivets, factory sealed with waterresistant sealant.
 - 3. Finish: Manufacturer's standard corrosion resistant finish.
 - 4. Air-Handling-Unit Mounting Frame: Formed galvanized-steel channel or structural channel supports, designed for low deflection, welded with integral lifting lugs.
 - 5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- B. Configuration: Horizontal unit with bottom discharge for roof-mounted installation.
- C. Cabinet: Galvanized-steel panels, formed to ensure rigidity and supported by galvanized-steel channels or structural channel supports with lifting lugs. Duct flanges at inlet and outlet. Pitched roof panels and knockouts with grommet seals for electrical and piping connections and lifting lugs.
- D. Outer Casing: 0.0598-inch- thick steel with enamel-painted finish over corrosion-resistant-treated surface in color to match fan section.
- E. Inner Casing:
 - 1. Burner Section Inner Casing: 0.0299-inch steel.
 - 2. Double-wall casing with inner wall of solid steel, for the following sections:
 - a. Blower section.
 - b. Filter section.
 - c. Mixing box.
 - d. Inlet plenum.
 - e. Discharge plenum.
 - f. Access Doors: Hinged with handles for burner and fan motor assemblies on both sides of unit.
 - 3. Internal Insulation: Fibrous-glass duct lining, neoprene coated, comply with ASTM C 1071, Type II, applied on burner and fan sections only.
 - a. Thickness: 2 inches.
 - b. Insulation Adhesive: Comply with ASTM C 916, Type I.

- c. Density: 1.5 lb/cu. ft.
- d. Mechanical Fasteners: Galvanized steel suitable for adhesive, mechanical, or welding attachment to casing without damaging liner when applied as recommended by manufacturer and without causing air leakage.
- F. Casing Internal Insulation and Adhesive:
 - 1. Materials: ASTM C 1071, Type I.
 - 2. Location and Application: Factory applied with adhesive and mechanical fasteners to the internal surface of section panels downstream from, and including, the heating-coil section.
 - a. Liner Adhesive: Comply with ASTM C 916, Type I.
 - b. Mechanical Fasteners: Galvanized steel, suitable for adhesive, mechanical, or welding attachment to duct without damaging liner when applied as recommended by manufacturer and without causing leakage in cabinet.
 - c. Liner materials applied in this location shall have airstream surface coated with a temperature-resistant coating or faced with a plain or coated fibrous mat or fabric, depending on service-air velocity.
 - 3. Location and Application: Encased between outside and inside casing.
- G. Inspection and Access Panels and Access Doors:
 - 1. Panel and Door Fabrication: Formed and reinforced, single- or double-wall and insulated panels of same materials and thicknesses as casing.
 - 2. Inspection and Access Panels:
 - a. Fasteners: Two or more camlock type for panel lift-out operation. Arrangement shall allow panels to be opened against air-pressure differential.
 - b. Gasket: Neoprene, applied around entire perimeters of panel frames.
 - c. Size: Large enough to allow inspection and maintenance of air-handling unit's internal components.
 - 3. Access Doors:
 - a. Hinges: A minimum of two ball-bearing hinges or stainless-steel piano hinge and two wedge-lever-type latches, operable from inside and outside. Arrange doors to be opened against air-pressure differential.
 - b. Gasket: Neoprene, applied around entire perimeters of panel frames.
 - c. Fabricate windows in fan section doors of double-glazed, wire-reinforced safety glass with an air space between panes and sealed with interior and exterior rubber seals.
 - d. Size: At least 24 inches wide by full height of unit casing up to a maximum height of 60 inches.
 - 4. Locations and Applications:

- a. Fan Section: Doors.
- b. Access Section: Doors.
- c. Coil Section: Inspection and access panels.
- d. Damper Section: Doors.
- e. Filter Section: Doors large enough to allow periodic removal and installation of filters.
- f. Mixing Section: Doors.
- 5. Service Light: LED 100-W vaporproof fixture with switched junction box located inside adjacent to door.
 - a. Locations: Fan section.
- H. Condensate Drain Pans:
 - 1. Fabricated with one percent slope in at least two planes to collect condensate from condensate-producing heat exchangers and to direct water toward drain connection.
 - a. Length: Extend drain pan downstream from leaving face to comply with ASHRAE 62.1.
 - b. Depth: A minimum of 2 inches deep.
 - 2. Formed sections.
 - 3. Single-wall, stainless-steel sheet.
 - 4. Drain Connection: Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on one end of pan.
 - a. Minimum Connection Size: NPS 1.
 - 5. Pan-Top Surface Coating: Asphaltic waterproofing compound.

2.4 ACCESSORIES

- A. Duplex, 115-V, ground-fault-interrupter outlet with 15-A overcurrent protection. Include transformer if required. Outlet shall be energized even if the unit main disconnect is open.
- B. Filter differential pressure switch with sensor tubing on either side of filter. Set for final filter pressure loss.

2.5 OUTDOOR-AIR INTAKE

- A. Outdoor-Air Hood: Galvanized steel with rain baffles, bird screen complying with ASHRAE 62.1-2004, and finish to match cabinet; and sized to supply maximum 30 percent outdoor air.
- B. Provide mist eliminator or internal baffles to prevent water entrainment into the unit air stream.

- C. Weather hood inlet: Provide metal panel filters with aluminum flat and serpentine-crimp mesh screen at inlet of intake hood. Filter-media frame shall be aluminum, hinged, and with pull and retaining handles fastened to the media. Metal panel filter installed in outdoor intake hood assembly.
 - 1. Use 1" thick, washable, multiple layers construction with all metal type panels consisting of expanded aluminum.
 - 2. Media nominal rating to be 300 FPM face velocity, 0.10-inch WG initial resistance, 0.35 WG recommended final resistance.
 - 3. Filter shall retain 98 grams of dust per square feet of filter area.
 - 4. Average arrestance of filter media shall be minimum 35%.
 - 5. Provide filter holding frame with corner drain holes.

2.6 ROOF CURBS

- A. Roof curbs with vibration isolators and wind or seismic restraints are specified in Section 23 05 48.13 "Vibration Controls for HVAC."
- B. Materials: Galvanized steel with corrosion-protection coating, watertight gaskets, and factory-installed wood nailer; complying with NRCA standards.
 - 1. Curb Insulation and Adhesive: Comply with NFPA 90A or NFPA 90B.
 - a. Materials: ASTM C 1071, Type I or Type II.
 - b. Thickness: 1-1/2 inches.
 - 2. Application: Factory applied with adhesive and mechanical fasteners to the internal surface of curb.
 - a. Liner Adhesive: Comply with ASTM C 916, Type I.
 - b. Mechanical Fasteners: Galvanized steel, suitable for adhesive attachment, mechanical attachment, or welding attachment to duct without damaging liner when applied as recommended by manufacturer and without causing leakage in cabinet.
 - c. Liner materials applied in this location shall have air-stream surface coated with a temperature-resistant coating or faced with a plain or coated fibrous mat or fabric depending on service air velocity.
 - d. Liner Adhesive: Comply with ASTM C 916, Type I.
- C. Curb Height: 24 inches.

2.7 SUPPLY-AIR FAN

- A. Fan Type: Centrifugal, rated according to AMCA 210; statically and dynamically balanced, galvanized steel; mounted on solid-steel shaft with heavy-duty, self-aligning, permanently lubricated ball bearings.
- B. Drive: Direct Drive with premium efficiency motor and Comply with NEMA MG 1.
- C. Mounting: Fan wheel, motor, and drives shall be mounted in fan casing with spring isolators.

- D. Fan-Shaft Lubrication Lines: Extended to a location outside the casing.
- E. Each fan and motor combination shall be capable of delivering 110% of air quantity scheduled at the scheduled static pressure.

2.8 <u>AIR FILTERS</u>

- A. Comply with NFPA 90A and NFPA 90B.
- B. Cleanable Filters: Cleanable metal mesh in hood.
 - 1. Thickness: 1 inch.
 - 2. Maximum Face Velocity: 500 fpm.
- C. Disposable Panel Filters: Factory-fabricated, flat-panel-type, disposable air filters with holding frames, with a MERV 8 according to ASHRAE 52.2.
 - 1. Thickness: 2 inches.
- D. Filter differential pressure switch with sensor tubing on either side of filter. Set for final filter pressure loss. Refer to Section 23 41 00 Particulate Air Filtration.

2.9 DAMPERS

- A. Outdoor-Air and Return-Air Damper: Galvanized-steel, opposed-blade dampers with vinyl blade seals and stainless-steel jamb seals, having a maximum leakage of 10 cfm/sq. ft. of damper area, at a differential pressure of 2-inch wg.
- B. Damper Operator: Direct coupled, electronic with spring return or fully modulating as required by the control sequence.

2.10 INDIRECT-FIRED GAS BURNER

- A. Description: Factory assembled, piped, and wired; and complying with ANSI Z21.47, "Gas-Fired Central Furnaces," and with NFPA 54, "National Fuel Gas Code."
 - 1. CSA Approval: Designed and certified by and bearing label of CSA.
 - 2. Burners: Stainless steel.
 - a. Gas Control Valve: Modulating.
 - b. Fuel: Natural gas.
 - c. Minimum Combustion Efficiency: 80 percent.
 - d. Ignition: Electronically controlled electric spark with flame sensor.
 - e. Minimum Turn-down Ratio: 4:1
- B. Venting: Power vented, with integral, motorized centrifugal fan interlocked with gas valve.
- C. Combustion-Air Intake: Separate combustion-air intake and vent terminal assembly.
- D. Heat Exchanger: Stainless steel.

- E. Heat-Exchanger Drain Pan: Stainless steel.
- F. Safety Controls:
 - 1. Vent Flow Verification: Differential pressure switch to verify open vent.
 - 2. Control Transformer: 24-V ac.
 - 3. High Limit: Thermal switch or fuse to stop burner.
 - 4. Gas Train: Regulated, redundant, 24-V ac gas valve assembly containing pilot solenoid valve, electronic-modulating temperature control valve, pilot filter, pressure regulator, pilot shutoff, and manual shutoff all in one body.
 - 5. Purge-period timer shall automatically delay burner ignition and bypass low-limit control.
 - 6. Gas Manifold: Safety switches and controls complying with ANSI standards and FM Global.
 - 7. Airflow Proving Switch: Differential pressure switch senses correct airflow before energizing pilot.
 - 8. Automatic-Reset, High-Limit Control Device: Stops burner and closes main gas valve if high-limit temperature is exceeded.
 - 9. Safety Lockout Switch: Locks out ignition sequence if burner fails to light after three tries. Controls are reset manually by turning the unit off and on.

2.11 UNIT CONTROL PANEL

- A. Unit Mounted Control Panel:
 - 1. The electric control system shall include a main control cabinet mounted on the unit and a remote-control panel. The main control cabinet shall be mounted in an appropriate NEMA rated control enclosure and shall include the following:
 - a. Red alarm light to indicate flame failure.
 - b. Green light to indicate main gas valve is open.
 - c. "Purge Cycle" light.
 - 2. Main disconnect switch, fuses, motor starter (provide auxiliary contact on motor starter for fan motor control and exhaust fan interlocking) overloads, and control relays.
- B. Factory-wired, fuse-protected control transformer, connection for power supply and fieldwired unit to remote control panel.
- C. Gas Control Panel: Surface-mounted remote panel, with engraved plastic cover and the following lights and switches:
 - 1. Heating operation indicating light.
 - 2. Safety-lockout indicating light.
 - 3. Enclosure: NEMA 250, Type 3R.

2.12 CONTROLS

A. Control equipment and sequence of operation are specified in Section 23 09 24 "Direct Digital Control (DDC) System for HVAC."

B. Comply with requirements in Section 23 09 00 "Instrumentation and Control for HVAC" and Section 23 09 93 "Sequence of Operations for HVAC Controls" for control equipment and sequence of operation.

2.13 <u>MOTORS</u>

- A. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."
- B. Motor furnished with fan shall not operate into motor service factor in any case. Drive efficiency shall be considered in motor selection according to motor manufacturer's published recommendation, or according to AMCA Publication 203, Appendix L.
- C. If unit(s) submitted have larger motor power requirements than scheduled in the drawings, the contractor shall be responsible for any additional electrical system upgrade costs.
- D. Enclosure: Open, dripproof or totally enclosed, fan cooled.

2.14 CAPACITIES AND CHARACTERISTICS:

A. Refer to Schedule on drawings.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of indirect-fired heating and ventilating units.
- B. Examine roughing-in for piping, ducts, and electrical systems to verify actual locations of connections before equipment installation.
- C. Verify cleanliness of airflow path to include inner-casing surfaces, filters, coils, turning vanes, fan wheels, and other components.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Equipment Mounting:
 - 1. Install heating and ventilating units on cast-in-place concrete equipment bases. Comply with requirements for equipment bases and foundations specified in Division 3.
 - 2. Comply with requirements for vibration isolation devices specified in Section 23 05 48.13 "Vibration Controls for HVAC."
- B. Install gas-fired units according to NFPA 54, "National Fuel Gas Code."

- C. Install controls and equipment shipped by manufacturer for field installation with indirectfired heating and ventilating units.
- D. Roof Curb: Install on roof structure, level and secure, according to AHRI Guideline B. Install units on curbs and coordinate roof penetrations and flashing with roof construction specified in Division 07. Secure units to upper curb rail, and secure curb base to roof framing or concrete base with anchor bolts.
- E. Unit Support: Install unit level on structural curbs. Coordinate wall penetrations and flashing with wall construction. Secure units to structural support with anchor bolts.
- F. Clean dust and debris from each unit as it is installed.
- G. Install units on flat surface level within 1/8" and of sufficient strength to support the units.

3.3 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
 - 1. Gas Piping: Comply with requirements in Section 23 11 23 "Facility Natural-Gas Piping." Connect gas piping with shutoff valve and union and with sufficient clearance for burner removal and service. Make final connections of gas piping to unit with corrugated, stainless-steel tubing flexible connectors complying with ANSI LC 1/CSA 6.26 equipment connections.
- B. Drain: Comply with requirements in Section 22 13 16 "Drain and Vent Piping" for traps and accessories on piping connections to condensate drain pans under condensing heat exchangers. Where installing piping adjacent to heating and ventilating units, allow space for service and maintenance.
- C. Where installing piping adjacent to heating and ventilating units, allow space for service and maintenance.
- D. Duct Connections: Connect supply and return ducts to indirect-fired heating and ventilating units with flexible duct connectors. Comply with requirements in Section 23 33 00 "Air Duct Accessories" for flexible duct connectors.
 - 1. Ensure that metal bands of connectors are parallel with minimum one-inch flex between ductwork and fan while running.
- E. Ground equipment according to Division 26.
- F. Connect wiring according to Division 26.
- G. Where inlet and outlet ductwork at any fan is changed from that shown on drawings, submit scaled layout of the change and system effect factor calculations, indicating increased static pressure requirement as described in AMCA Publication 201. The Contractor shall be responsible for any motor, drive, and/or wiring changes required as result of duct configuration changes at fan. In all cases obtain Approval before proceeding with changes to ductwork.

3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections with the assistance of a factory-authorized service representative.
- C. Units will be considered defective if they do not pass tests and inspections.
- D. Prepare test and inspection reports.

3.5 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions and perform the following:
 - 2. Inspect for visible damage to burner combustion chamber.
 - 3. Inspect casing insulation for integrity, moisture content, and adhesion.
 - 4. Verify that clearances have been provided for servicing.
 - 5. Verify that controls are connected and operable.
 - a. Verify that filters are installed.
 - b. Purge gas line.
 - c. Inspect and adjust vibration isolators.
 - d. Verify bearing lubrication.
 - e. Inspect fan-wheel rotation for movement in correct direction without vibration and binding.
 - f. Start unit according to manufacturer's written instructions.
 - 6. Complete startup sheets and attach copy with Contractor's startup report.
 - 7. Inspect and record performance of interlocks and protective devices; verify sequences.
 - 8. Operate unit for run-in period recommended by manufacturer.
 - 9. Perform the following operations for both minimum and maximum firing and adjust burner for peak efficiency:
 - a. Measure gas pressure at manifold.
 - b. Measure combustion-air temperature at inlet to combustion chamber.
 - c. Measure supply-air temperature and volume when burner is at maximum firing rate and when burner is off. Calculate useful heat to supply air.
 - 10. Calibrate thermostats.
 - 11. Adjust and inspect high-temperature limits.
 - 12. Inspect dampers, if any, for proper stroke and interlock with return-air dampers.
 - 13. Inspect controls for correct sequencing of heating, mixing dampers, refrigeration, and normal and emergency shutdown.
 - 14. Measure and record airflow. Plot fan volumes on fan curve.

- 15. Verify operation of remote panel, including pilot-operation and failure modes. Inspect the following:
 - a. High-limit heat.
 - b. Alarms.
- 16. After startup and performance testing, change filters, and verify bearing lubrication.
- 17. Verify drain-pan performance.
- 18. Verify outdoor-air and return-air damper operation.
- 3.6 ADJUSTING
- A. Adjust initial temperature set points.
- B. Set field-adjustable switches and circuit-breaker trip ranges as indicated.
- 3.7 DEMONSTRATION
- A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain heating and ventilating units.

END OF SECTION 23 73 33.16

SECTION 23 74 16.11 PACKAGED, SMALL-CAPACITY, ROOFTOP AIR-CONDITIONING UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes rooftop, indirect-fired, air conditioning units. The unit's construction shall be double wall galvanized-steel casings. The following units:
 - 1. AHU-1 (rooftop air-conditioning units (RTUs).
- B. Section includes packaged, small-capacity, rooftop air-conditioning units (RTUs) with the following components:
 - 1. Casings.
 - 2. Fans, drives, and motors.
 - 3. Rotary heat exchangers.
 - 4. Coils.
 - 5. Refrigerant circuit components.
 - 6. Air filtration.
 - 7. Gas furnaces.
 - 8. Dampers.
 - 9. Electrical power connections.
 - 10. Controls.
 - 11. Roof curbs.
 - 12. Accessories.

1.3 DEFINITIONS

A. RTU: Rooftop unit. As used in this Section, this abbreviation means packaged, smallcapacity, rooftop air-conditioning units. This abbreviation is used regardless of whether the unit is mounted on the roof or on a concrete base on ground.

1.4 ACTION SUBMITTALS

- A. Product Data: For each RTU.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 - 2. Include rated capacities, dimensions, required clearances, characteristics, and furnished specialties and accessories.
 - 3. Include unit dimensions and weight.
 - 4. Include cabinet material, metal thickness, finishes, insulation, and accessories.
 - 5. Fans:

- a. Include certified fan-performance curves with system operating conditions indicated.
- b. Include certified fan-sound power ratings.
- c. Include fan construction and accessories.
- d. Include motor ratings, electrical characteristics, and motor accessories.
- 6. Include certified coil-performance ratings with system operating conditions indicated.
- 7. Include filters with performance characteristics.
- 8. Include gas furnaces with performance characteristics.
- 9. Include dampers, including housings, linkages, and operators.
- B. Shop Drawings: For each packaged, small-capacity, rooftop air-conditioning unit.
 - 1. Include plans, elevations, sections, and mounting details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For RTUs to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Filters: One set(s) of filters for each unit.

<u>1.7</u> WARRANTY

- A. Warranty: Manufacturer agrees to repair or replace components of outdoor, semicustom, air-handling unit that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: 1.5 year(s) from date of Substantial Completion.
 - 2. Warranty Period for Heat Exchangers: Manufacturer's standard, but not less than five years from date of Substantial Completion

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
- B. NFPA Compliance: Comply with NFPA 90A for design, fabrication, and installation of RTUs and components.

- C. ASHRAE 62.1 Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
- D. ASHRAE 15 Compliance: For refrigeration system safety.
- E. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 "Heating, Ventilating, and Air-Conditioning."
- F. UL Compliance: Comply with UL 1995.

2.2 MANUFACTURERS

- A. Manufacturer Basis-of-Design Product: The design is based on the following:
 - 1. Aaon Corporation.
- B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. HTS
 - 2. Valent-Environ
 - 3. CES Group, Venmar/Ventrol Nortec Air Solution

2.3 UNIT CASINGS

- A. General Fabrication Requirements for Casings: Formed and reinforced double-wall insulated panels, fabricated to allow removal for access to internal parts and components, with joints between sections sealed.
- B. Double-Wall Construction:
 - 1. Outside Casing Wall: Galvanized steel, minimum 18 gauge thick with manufacturer's standard finish, with pitched roof panels and knockouts with grommet seals for electrical and piping connections and lifting lugs.
 - 2. Inside Casing Wall: G90-coated galvanized steel, 0.034 inch thick.
 - 3. Floor Plate: G90 galvanized steel, minimum 18 gauge thick.
 - 4. Casing Insulation:
 - a. Materials: Injected polyurethane foam insulation.
 - b. Casing Panel R-Value: Minimum 13.
 - c. Insulation Thickness: 2 inches.
 - d. Thermal Break: Provide continuity of insulation with no through-casing metal in casing walls, floors, or roof of unit.
- C. Airstream Surfaces: Surfaces in contact with airstream shall comply with requirements in ASHRAE 62.1.
- D. Static-Pressure Classifications:
 - 1. For Unit Sections Upstream of Fans: Minus 3-inch wg.
 - 2. For Unit Sections Downstream and Including Fans: 3-inch wg.

- E. Panels and Doors:
 - 1. Panels:
 - a. Fabrication: Formed and reinforced with same materials and insulation thickness as casing.
 - b. Fasteners: Two or more camlock type for panel lift-out operation. Arrangement shall allow panels to be opened against air-pressure differential.
 - c. Gasket: Neoprene, applied around entire perimeters of panel frames.
 - d. Size: Large enough to allow inspection and maintenance of air-handling unit's internal components.
 - 2. Access Doors:
 - a. Hinges: A minimum of two ball-bearing hinges or stainless-steel piano hinge and two wedge-lever-type latches, operable from inside and outside. Arrange doors to be opened against air-pressure differential.
 - b. Gasket: Neoprene, applied around entire perimeters of panel frames.
 - c. Size: Large enough to allow inspection and maintenance of air-handling unit's internal components.
 - 3. Locations and Applications:
 - a. Fan Section: Doors.
 - b. Access Section: Doors.
 - c. Coil Section: Inspection and access panels.
 - d. Damper Section: Doors.
 - e. Filter Section: Doors large enough to allow periodic removal and installation of filters.
 - f. Mixing Section: Doors.
- F. Condensate Drain Pans:
 - 1. Location: Each type of cooling coil.
 - 2. Construction:
 - a. Single-wall, stainless steel sheet.
 - 3. Drain Connection:
 - a. Located at lowest point of pan and sized to prevent overflow. Terminate with threaded nipple on one end of pan.
 - b. Minimum Connection Size: NPS 1.
 - 4. Slope: Minimum 0.125-in./ft. slope in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and from humidifiers and to direct water toward drain connection.
 - 5. Length: Extend drain pan downstream from leaving face for distance to comply with ASHRAE 62.1.
 - 6. Width: Entire width of water producing device.

- 7. Depth: A minimum of 2 inches deep.
- 8. Units with stacked coils shall have an intermediate drain pan to collect condensate from top coil.

2.4 FANS, DRIVES, AND MOTORS

- A. Fan and Drive Assemblies: Statically and dynamically balanced and designed for continuous operation at maximum-rated fan speed and motor horsepower.
- B. Supply-Air Fans: Centrifugal, rated according to AMCA 210; galvanized or painted steel; mounted on solid-steel shaft.
 - 1. Shafts: With field-adjustable alignment.
 - a. Turned, ground, and polished hot-rolled steel with keyway.
 - 2. Shaft Bearings:
 - a. Heavy-duty, self-aligning, pillow-block type with an L-50 rated life of minimum 100,000 hours according to ABMA 9.
 - 3. Housings: Formed- and reinforced-steel panels to form curved scroll housings with shaped cutoff and spun-metal inlet bell.
 - a. Bracing: Steel angle or channel supports for mounting and supporting fan scroll, wheel, motor, and accessories.
 - 4. Centrifugal Fan Wheels: Inlet flange, backplate, and shallow blades with inlet and tip curved forward in direction of airflow and mechanically fastened to flange and backplate; steel or aluminum hub swaged to backplate and fastened to shaft with setscrews.
 - 5. Mounting: For internal vibration isolation. Factory-mount fans with manufacturer's standard vibration isolation mounting devices having a minimum static deflection of 1 inch.
 - 6. Shaft Lubrication Lines: Extended to a location outside the casing.
 - 7. Flexible Connector: Factory fabricated with a fabric strip minimum 3-1/2 inches wide, attached to two strips of minimum 2-3/4-inch-wide by 0.028-inch-thick, galvanized-steel sheet.
 - a. Flexible Connector Fabric: Glass fabric, double coated with neoprene. Fabrics, coatings, and adhesives shall comply with UL 181, Class 1.
- C. Drives, Direct: Factory-mounted, direct drive.
- D. Condenser-Coil Fan: Variable-speed propeller, mounted on shaft of permanently lubricated ECM motors.
- E. Exhaust-Air Fan: Forward curved or Backward inclined, shaft mounted on permanently lubricated motor.

F. Motors:

- 1. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."
- 2. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
- 3. Enclosure Type: Open, drip proof or Totally enclosed, fan cooled.
- 4. Efficiency: Premium efficient as defined in NEMA MG 1.
- 5. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in electrical Sections.

2.5 ROTARY HEAT EXCHANGER

- A. Heat exchanger integral with unit.
- B. Casing:
 - 1. Galvanized steel, stainless steel, or aluminum with manufacturer's standard factory-painted finish.
 - 2. Integral purge section limiting carryover of exhaust air to between 0.05 percent at 1.6-inch wg and 0.20 percent at 4-inch wg differential pressure.
 - 3. Casing seals on periphery of rotor and on duct divider and purge section.
 - 4. Support vertical rotor on grease-lubricated ball bearings having extended grease fittings or permanently lubricated bearings. Support horizontal rotors on tapered roller bearing.
- C. Rotor Aluminum or Polymer: Segmented wheel, strengthened with radial spokes, with nontoxic, noncorrosive, silica-gel desiccant coating.
- D. Drive: Fractional horsepower motor and gear reducer, with speed changed by variablefrequency controller. Permanently lubricated wheel bearings with an L-10.
- E. Controls:
 - 1. Starting relay, factory mounted and wired, and manual motor starter for field wiring.
 - 2. Variable-frequency controller, factory mounted and wired, permitting input of field connected 4-20 mA or 1-10-V control signal.
 - 3. Variable-frequency controller, factory mounted and wired, with exhaust- and outdoor-air sensors, automatic changeover thermostat and set-point adjuster, to vary rotor speed and maintain exhaust temperature above freezing and air differential temperature above set point. Rotor speed shall increase to maximum when exhaust-air temperature is less than outdoor-air temperature.
 - 4. Control energy recovery to permit air economizer operation.
 - a. Bypass dampers to assist energy recovery control.
 - 5. Pilot-Light Indicator: Display rotor rotation and speed.
 - 6. Speed Settings: Adjustable settings for maximum and minimum rotor speed limits.

- 7. Defrost cycle.
- 2.6 <u>COILS</u>
- A. General Requirements for Coils:
 - 1. Comply with AHRI 410.
 - 2. Fabricate coils section to allow for removal and replacement of coil for maintenance and to allow in-place access for service and maintenance of coil(s).
 - 3. Coils shall not act as structural component of unit.
- B. Supply-Air Refrigerant Coil:
 - 1. Tubes: Copper.
 - 2. Fins:
 - a. Material: Aluminum.
 - b. Fin Spacing: Maximum 12 fins per inch.
 - 3. Fin and Tube Joints: Mechanical bond.
 - 4. Headers: Seamless-copper headers with brazed connections.
 - 5. Frames: Stainless steel.
 - 6. Coatings: None.
 - 7. Ratings: Designed, tested, and rated according to ASHRAE 33 and AHRI 410.
 - a. Working Pressure: Minimum 300 psig.
- C. Outdoor-Air Refrigerant Coil:
 - 1. Tubes: Copper.
 - 2. Fins:
 - a. Material: Aluminum.
 - b. Fin Spacing: Maximum 12 fins per inch.
 - 3. Fin and Tube Joints: Mechanical bond.
 - 4. Headers: Seamless-copper headers with brazed connections.
 - 5. Frames: Galvanized steel.
 - 6. Coatings: None.
 - 7. Ratings: Designed, tested, and rated according to ASHRAE 33 and AHRI 410.
 - a. Working Pressure: Minimum 300 psig.
- D. Hot-Gas Reheat Refrigerant Coil:
 - 1. Tubes: Copper.
 - 2. Fins:
 - a. Material: Aluminum.
 - b. Fin Spacing: Maximum 12 fins per inch.
 - 3. Fin and Tube Joints: Mechanical bond.

- 4. Headers: Seamless-copper headers with brazed connections.
- 5. Frames: Galvanized steel.
- 6. Coatings: None.
- 7. Ratings: Designed, tested, and rated according to ASHRAE 33 and AHRI 410.
 - a. Working Pressure: Minimum 300 psig.
- 8. Suction-discharge bypass valve.

2.7 REFRIGERANT CIRCUIT COMPONENTS

- A. Compressor: Hermetic, variable-speed scroll, mounted on vibration isolators; with internal overcurrent and high-temperature protection, internal pressure relief, and crankcase heater.
- B. Refrigeration Specialties:
 - 1. Refrigerant: R-410A.
 - 2. Expansion valve with replaceable thermostatic element.
 - 3. Refrigerant filter/dryer.
 - 4. Manual-reset high-pressure safety switch.
 - 5. Automatic-reset low-pressure safety switch.
 - 6. Minimum off-time relay.
 - 7. Automatic-reset compressor motor thermal overload.
 - 8. Brass service valves installed in compressor suction and liquid lines.
 - 9. Low-ambient kit high-pressure sensor.
 - 10. Hot-gas reheat solenoid valve modulating with a replaceable magnetic coil.
 - 11. Hot-gas bypass solenoid valve with a replaceable magnetic coil.
 - 12. Four-way reversing valve with a replaceable magnetic coil, thermostatic expansion valves with bypass check valves, and a suction line accumulator.
- 2.8 AIR FILTRATION
- A. Particulate air filtration is specified in Section 23 41 00 "Particulate Air Filtration."
- B. Panel Filters:
 - 1. Description: Pleated factory-fabricated, self-supported, disposable air filters with holding frames.
 - 2. Filter Unit Class: UL 900.
 - 3. Media: Interlaced glass, synthetic or cotton fibers coated with nonflammable adhesive and antimicrobial coating.
 - 4. Filter-Media Frame: Beverage board with perforated metal retainer, or metal grid, on outlet side.
- C. Adhesive, Sustainability Projects: As recommended by air-filter manufacturer and with a VOC content of 80 g/L or less.

2.9 GAS FURNACES

- A. Description: Factory assembled, piped, and wired; complying with ANSI Z21.47/CSA 2.3 and NFPA 54.
- B. CSA Approval: Designed and certified by and bearing label of CSA.
- C. Burners: Stainless steel.
 - 1. Rated Minimum Turndown Ratio: 10 to 1.
 - 2. Fuel: Natural gas.
 - 3. Ignition: Electronically controlled electric spark or hot-surface igniter with flame sensor.
 - 4. Gas Control Valve: Modulating.
 - 5. Gas Train: Single-body, regulated, redundant, 24-V ac gas valve assembly containing pilot solenoid valve, pilot filter, pressure regulator, pilot shutoff, and manual shutoff.
- D. Heat-Exchanger and Drain Pan: Stainless steel.
- E. Venting, Power: Power vented, with integral, motorized centrifugal fan interlocked with gas valve with vertical extension.
- F. Safety Controls:
 - 1. Gas Manifold: Safety switches and controls complying with ANSI standards and FM Global.

2.10 DAMPERS

- A. Dampers: Comply with requirements in Section 23 09 00 "Instrumentation and Control for HVAC."
- B. Outdoor- and Return-Air Dampers: Low-leakage, double-skin, airfoil-blade, galvanizedsteel dampers with compressible jamb seals and extruded-vinyl blade edge seals in opposed-blade arrangement with zinc-plated steel operating rods rotating in sintered bronze or nylon bearings mounted in a single galvanized-steel frame, and with operating rods connected with a common linkage. Leakage rate shall not exceed 4 cfm/sq. ft. at 1inch wg and 8 cfm/sq. ft. at 4-inch wg.
- C. Damper Operators: Comply with requirements in Section 23 09 00 " Instrumentation and Control for HVAC."
- D. Electronic Damper Operators:
 - 1. Direct-coupled type designed for minimum 60,000 full-stroke cycles at rated torque.
 - 2. Electronic damper position indicator shall have visual scale indicating percent of travel and 2- to 10-V dc, feedback signal.
 - 3. Operator Motors:

- a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."
- b. Size to operate with sufficient reserve power to provide smooth modulating action or two-position action.
- c. Permanent Split-Capacitor or Shaded-Pole Type: Gear trains completely oil immersed and sealed. Equip spring-return motors with integral spiralspring mechanism in housings designed for easy removal for service or adjustment of limit switches, auxiliary switches, or feedback potentiometer.
- 4. Non-spring-Return Motors for Dampers Larger Than 25 Sq. Ft.: Size for running torque of 150 in. x lbf and breakaway torque of 300 in. x lbf.
- 5. Spring-Return Motors for Dampers Larger Than 25 Sq. Ft.: Size for running and breakaway torque of 150 in. x lbf.
- 6. Size dampers for running torque calculated as follows:
 - a. Parallel-Blade Damper with Edge Seals: 7 inch-lb/sq. ft. of damper.
 - b. Opposed-Blade Damper with Edge Seals: 5 inch-lb/sq. ft. of damper.
 - c. Parallel-Blade Damper without Edge Seals: 4 inch-lb/sq. ft of damper.
 - d. Opposed-Blade Damper without Edge Seals: 3 inch-lb/sq. ft. of damper.
 - e. Dampers with 2- to 3-Inch wg of Pressure Drop or Face Velocities of 1000 to 2500 fpm: Increase running torque by 1.5.
- 7. Coupling: V-bolt and V-shaped, toothed cradle.
- 8. Overload Protection: Electronic overload or digital rotation-sensing circuitry.
- 9. Fail-Safe Operation: Mechanical, spring-return mechanism with external, manual gear release on non-spring-return actuators.
- 10. Power Requirements (Modulating): Maximum 10 VA at 24 V ac or 8 W at 24 V dc.
- 11. Temperature Rating: Minus 22 to plus 122 deg F.
- 12. Run Time: 12 seconds open, 5 seconds closed.

2.11 ELECTRICAL POWER CONNECTIONS

A. AHU shall have a single connection of power to unit with unit-mounted disconnect switch accessible from outside unit and control-circuit transformer with built-in overcurrent protection.

2.12 INTAKE/EXHAUST HOODS

- A. Type: Manufacturer's standard hoods for outside air inlet and exhaust air discharge.
- B. Materials: Match cabinet.
- C. Bird Screen: Comply with requirements in ASHRAE 62.1.
- D. Configuration: Designed to inhibit wind-driven rain and snow from entering unit.
- E. Weather hood inlet: Provide metal panel filters with aluminum flat and serpentine-crimp mesh screen at inlet of intake hood. Filter-media frame shall be aluminum, hinged, and
with pull and retaining handles fastened to the media. Metal panel filter installed in outdoor intake hood assembly.

- 1. Use 1" thick, washable, multiple layers construction with all metal type panels consisting of expanded aluminum.
- 2. Media nominal rating to be 300 FPM face velocity, 0.10-inch WG initial resistance, 0.35 WG recommended final resistance.
- 3. Filter shall retain 98 grams of dust per square feet of filter area.
- 4. Average arrestance of filter media shall be minimum 35%.
- 5. Provide filter holding frame with corner drain holes.

2.13 CONTROLS

A. Control equipment and sequence of operation are specified in Section 23 09 24 "Direct Digital Control (DDC) System for HVAC."

2.14 ROOF CURBS

- A. Roof curbs with vibration isolators are specified in Section 23 05 48.13 "Vibration Controls for HVAC."
- B. Materials: Galvanized steel with corrosion-protection coating, watertight gaskets, and factory-installed wood nailer; complying with NRCA standards.
 - 1. Curb Insulation and Adhesive: Comply with NFPA 90A or NFPA 90B.
 - a. Materials: ASTM C1071, Type I or II.
 - b. Thickness: 1-1/2 inches.
 - 2. Application: Factory applied with adhesive and mechanical fasteners to the internal surface of curb.
 - a. Liner Adhesive: Comply with ASTM C916, Type I.
 - b. Mechanical Fasteners: Galvanized steel, suitable for adhesive attachment, mechanical attachment, or welding attachment to duct without damaging liner when applied as recommended by manufacturer and without causing leakage in cabinet.
 - c. Liner materials applied in this location shall have airstream surface coated with a temperature-resistant coating or faced with a plain or coated fibrous mat or fabric depending on service air velocity.
 - d. Liner Adhesive: Comply with ASTM C916, Type I.
- C. Curb Dimensions: Height of 24 inches.

2.15 ACCESSORIES

A. Electric heater with integral thermostat maintains minimum 50 deg F temperature in gas burner compartment.

- B. Duplex, 115-V, ground-fault-interrupter outlet with 15-A overcurrent protection. Include transformer if required. Outlet shall be energized even if the unit main disconnect is open.
- C. Low-ambient kit using variable-speed condenser fans for operation down to 35 deg F.
- D. Filter differential pressure switch with sensor tubing on either side of filter. Set for final filter pressure loss.
- E. Remote potentiometer to adjust minimum economizer damper position.
- F. Return-air bypass damper.
- G. Safeties:
 - 1. Smoke detector.
 - 2. Condensate overflow switch.
 - 3. Phase-loss reversal protection.
 - 4. High and low pressure control.
 - 5. Gas furnace airflow-proving switch.
- H. Coil guards of painted, galvanized-steel wire.
- I. Hail guards of galvanized steel, painted to match casing.
- J. Concentric diffuser with white louvers and polished aluminum return grilles, insulated diffuser box with mounting flanges, and interior transition.
- K. Door switches to disable heating or reset set point when open.
- L. Outdoor-air intake weather hood with moisture eliminator.
- M. Oil separator.
- N. Service Lights and Switch: Factory installed in fan and coil sections with weatherproof cover. Factory wire lights to a single-point field connection.

2.16 CAPACITIES AND CHARACTERISTICS

- A. Refer to Schedule on drawings.
- 2.17 MATERIALS
- A. Steel:
 - 1. ASTM A36/A36M for carbon structural steel.
 - 2. ASTM A568/A568M for steel sheet.
- B. Stainless Steel:
 - 1. Manufacturer's standard grade for casing.

- 2. Manufacturer's standard type, ASTM A240/A240M for bare steel exposed to airstream or moisture.
- C. Galvanized Steel: ASTM A653/A653M.
- D. Aluminum: ASTM B209.
- E. Corrosion-Resistant Coating: Coat with a corrosion-resistant coating capable of withstanding a 3000-hour salt-spray test according to ASTM B117.
 - 1. Standards:
 - a. ASTM B117 for salt spray.
 - b. ASTM D2794 for minimum impact resistance of 100 in-lb.
 - c. ASTM B3359 for cross-hatch adhesion of 5B.
 - 2. Application: Spray.
 - 3. Thickness: 1 mil.
 - 4. Gloss: Minimum gloss of 60 on a 60-degree meter.

2.18 AIRBORNE DISINFECTION SYSTEMS

- A. Refer to Section 23 05 66 for Needle Point Bipoloar Ionization Systems (BPI) for supply fan inlet.
- 2.19 SOURCE QUALITY CONTROL
- A. AHRI Compliance:
 - 1. Comply with AHRI 210/240 for testing and rating energy efficiencies for RTUs.
 - 2. Comply with AHRI 340/360 for testing and rating energy efficiencies for RTUs.
 - 3. Comply with AHRI 270 for testing and rating sound performance for RTUs.
 - 4. Comply with AHRI 1060 for testing and rating performance for air-to-air exchanger.
- B. AMCA Compliance:
 - 1. Comply with AMCA 11 and bear the AMCA-Certified Ratings Seal for air and sound performance according to AMCA 211 and AMCA 311.
 - 2. Damper leakage tested according to AMCA 500-D.
 - 3. Operating Limits: Classify according to AMCA 99.

PART 3 - EXECUTION

- 3.1 EXAMINATION
- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of RTUs.

- B. Examine roughing-in for RTUs to verify actual locations of piping and duct connections before equipment installation.
- C. Examine roofs for suitable conditions where RTUs will be installed.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Roof Curb: Install on roof structure, level, and secure, according to NRCA's "NRCA Roofing Manual: Membrane Roof Systems." Install RTUs on curbs and coordinate roof penetrations and flashing with roof construction specified in Division 07. Secure RTUs to upper curb rail, and secure curb base to roof framing or concrete base with anchor bolts. Coordinate sizes and locations of roof curbs with actual equipment provided.
- B. Unit Support: Install unit level on structural curbs. Coordinate wall penetrations and flashing with wall construction. Secure RTUs to structural support with anchor bolts.
- C. Equipment Mounting:
 - 1. Comply with requirements for vibration isolation devices specified in Section 23 05 48.13 "Vibration Controls for HVAC."

3.3 PIPING CONNECTIONS

- A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Where installing piping adjacent to RTU, allow space for service and maintenance.
- C. Connect piping to unit mounted on vibration isolators with flexible connectors.
- D. Connect condensate drain pans using NPS 1-1/4, ASTM B88, Type M copper tubing. Extend to nearest equipment or roof drain. Construct deep trap at connection to drain pan and install cleanouts at changes in direction.
- E. Gas Piping: Comply with applicable requirements in Section 23 11 23 "Facility Natural-Gas Piping." Connect gas piping to burner, full size of gas train inlet, and connect with union and shutoff valve with sufficient clearance for burner removal and service.
- F. Refrigerant Piping: Comply with applicable requirements in Section 23 23 00 "Refrigerant Piping."

3.4 DUCT CONNECTIONS

- A. Comply with duct installation requirements specified in other HVAC Sections. Drawings indicate general arrangement of ducts. The following are specific connection requirements:
 - 1. Install ducts to termination at top of roof curb.
 - 2. Remove roof decking only as required for passage of ducts. Do not cut out decking under entire roof curb.

- 3. Connect supply ducts to RTUs with flexible duct connectors specified in Section 23 33 00 "Air Duct Accessories."
- 4. Install return-air duct continuously through roof structure.

3.5 ELECTRICAL CONNECTIONS

- A. Connect electrical wiring according to Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."
- B. Ground equipment according to Section 26 05 26 "Grounding and Bonding for Electrical Systems."
- C. Install electrical devices furnished by manufacturer, but not factory mounted, according to NFPA 70 and NECA 1.

3.6 CONTROL CONNECTIONS

- A. Install control and electrical power wiring to field-mounted control devices.
- B. Connect control wiring according to Division 26.
- C. Install the Needle Point Bipoloar Ionization Systems (BPI) for the supply fan inlet.

3.7 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections with the assistance of a factory-authorized service representative.
- C. Tests and Inspections:
 - 1. After installing RTUs and after electrical circuitry has been energized, test units for compliance with requirements.
 - 2. Inspect for and remove shipping bolts, blocks, and tie-down straps.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. RTU will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

3.8 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.

- 2. Inspect for visible damage to unit casing.
- 3. Inspect for visible damage to furnace combustion chamber.
- 4. Inspect for visible damage to compressor, coils, and fans.
- 5. Inspect internal insulation.
- 6. Verify that labels are clearly visible.
- 7. Verify that clearances have been provided for servicing.
- 8. Verify that controls are connected and operable.
- 9. Verify that filters are installed.
- 10. Clean condenser coil and inspect for construction debris.
- 11. Clean furnace flue and inspect for construction debris.
- 12. Connect and purge gas line.
- 13. Remove packing from vibration isolators.
- 14. Verify lubrication on fan and motor bearings.
- 15. Inspect fan-wheel rotation for movement in correct direction without vibration and binding.
- 16. Start unit according to manufacturer's written instructions.
 - a. Start refrigeration system.
 - b. Do not operate below recommended low-ambient temperature.
 - c. Complete startup sheets and attach copy with Contractor's startup report.
- 17. Inspect and record performance of interlocks and protective devices; verify sequences.
- 18. Operate unit for an initial period as recommended or required by manufacturer.
- 19. Perform the following operations for both minimum and maximum firing. Adjust burner for peak efficiency:
 - a. Measure gas pressure on manifold.
 - b. Inspect operation of power vents.
 - c. Measure combustion-air temperature at inlet to combustion chamber.
 - d. Measure flue-gas temperature at furnace discharge.
 - e. Perform flue-gas analysis. Measure and record flue-gas carbon dioxide and oxygen concentration.
 - f. Measure supply-air temperature and volume when burner is at maximum firing rate and when burner is off. Calculate useful heat to supply air.
- 20. Calibrate thermostats.
- 21. Adjust and inspect high-temperature limits.
- 22. Inspect outdoor-air dampers for proper stroke and interlock with return-air dampers.
- 23. Start refrigeration system and measure and record the following when ambient is a minimum of 15 deg F above return-air temperature:
 - a. Coil leaving-air, dry- and wet-bulb temperatures.
 - b. Coil entering-air, dry- and wet-bulb temperatures.
 - c. Outdoor-air, dry-bulb temperature.
 - d. Outdoor-air-coil, discharge-air, dry-bulb temperature.
- 24. Inspect controls for correct sequencing of heating, mixing dampers, refrigeration, and normal and emergency shutdown.

- 25. Measure and record the following minimum and maximum airflows. Plot fan volumes on fan curve.
 - a. Supply-air volume.
 - b. Return-air volume.
 - c. Relief-air volume.
 - d. Outdoor-air intake volume.
- 26. Simulate maximum cooling demand and inspect the following:
 - a. Compressor refrigerant suction and hot-gas pressures.
 - b. Short circuiting of air through condenser coil or from condenser fans to outdoor-air intake.
- 27. Verify operation of remote panel including pilot-light operation and failure modes. Inspect the following:
 - a. High-temperature limit on gas-fired heat exchanger.
 - b. Low-temperature safety operation.
 - c. Filter high-pressure differential alarm.
 - d. Economizer to minimum outdoor-air changeover.
 - e. Relief-air fan operation.
 - f. Smoke and firestat alarms.
- 28. After startup and performance testing and prior to Substantial Completion, replace existing filters with new filters.
- 3.9 ADJUSTING
- A. Adjust damper linkages for proper damper operation.
- B. Comply with requirements in Section 23 05 93 "Testing, Adjusting, and Balancing for HVAC" for air-handling system testing, adjusting, and balancing.
- C. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.10 CLEANING

A. After completing system installation and testing, adjusting, and balancing RTUs and airdistribution systems, clean RTUs internally to remove foreign material and construction dirt and dust. Clean fan wheels, cabinets, dampers, coils, and filter housings, and install new, clean filters.

3.11 FIELD QUALITY CONTROL

A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

- B. Perform tests and inspections with the assistance of a factory-authorized service representative.
- C. Tests and Inspections:
 - 1. After installing RTUs and after electrical circuitry has been energized, test units for compliance with requirements.
 - 2. Inspect for and remove shipping bolts, blocks, and tie-down straps.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. RTU will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.
- 3.12 DEMONSTRATION
- A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain RTUs.

END OF SECTION 23 74 16.11

SECTION 23 74 23.13 PACKAGED, DIRECT-FIRED, OUTDOOR, HEATING-ONLY MAKEUP-AIR UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes packaged make-up, direct-fired, outdoor heating-only makeup-air units. The unit's construction shall be double wall, painted galvanized-steel casings. The following units:
 - 1. MAU-11.

1.3 DEFINITIONS

A. BAS: Building automation system.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type and configuration of outdoor, direct-fired heating and ventilating unit.
 - 1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 - 2. Fan curves showing CFM, external and total static pressure, and RPM for operating range of 10% above and below design conditions. Clearly indicate specified operating point.
 - 3. Fan, type, bearings, and drive
 - 4. Materials of construction, including casing construction details and finishes.
- B. Shop Drawings: For each type and configuration of outdoor, direct-fired heating and ventilating unit.
 - 1. Include plans, elevations, sections, and mounting details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Detail fabrication and assembly of gas-fired heating and ventilating units, as well as procedures and diagrams.
 - 4. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and rails, and base weights.
 - 5. Include diagrams for power, signal, and control wiring.
 - a. Clearly indicate factory installed and field installed wiring.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For direct-fired heating and ventilating units to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Filters: One set(s) for each unit.

1.7 QUALITY ASSURANCE

- A. Comply with NFPA 70.
- B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
- C. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 "Heating, Ventilating, and Air-Conditioning."
- D. All materials shall meet NFPA 90A flame spread and smoke generation requirements.

1.8 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace components of direct-fired heating and ventilating units that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period for Heat Exchangers: Manufacturer's standard, but not less than 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturer Basis-of-Design Product: The design is based on the following:
 - 1. Greenheck Fan Corporation.
- B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Modine Manufacturing Company.
 - 2. Reznor/Thomas & Betts Corporation.
 - 3. Sterling HVAC Products.
 - 4. Trane Inc.

2.2 SYSTEM DESCRIPTION

- A. Factory-assembled, prewired, self-contained unit consisting of cabinet, supply fan, gas controls, filters, and direct-fired gas burner to be installed exterior to the building.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.3 UNIT CASINGS

- A. General Fabrication Requirements for Casings:
 - 1. Forming: Form walls, roofs, and floors with at least two breaks at each joint.
 - 2. Casing Joints: Sheet metal screws or pop rivets, factory sealed with waterresistant sealant.
 - 3. Finish: Manufacturer's standard corrosion resistant finish.
 - 4. Air-Handling-Unit Mounting Frame: Formed galvanized-steel channel or structural channel supports, designed for low deflection, welded with integral lifting lugs.
 - 5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- B. Configuration: Horizontal unit with bottom discharge for roof-mounted installation.
- C. Cabinet: Galvanized-steel panels, formed to ensure rigidity and supported by galvanized-steel channels or structural channel supports with lifting lugs. Duct flanges at inlet and outlet. Pitched roof panels and knockouts with grommet seals for electrical and piping connections and lifting lugs.
- D. Outer Casing: 0.0598-inch-thick steel with enamel-painted finish over corrosion-resistant-treated surface in color to match fan section.
- E. Inner Casing:
 - 1. Burner Section Inner Casing: 0.0299-inch-thick steel.
 - 2. Double-wall casing with inner wall of solid steel
 - a. Blower section.
 - b. Filter section.
 - c. Inlet plenum.
 - d. Discharge plenum.
 - e. Access Doors: Hinged with handles for burner and fan motor assemblies on both sides of unit.
 - 3. Internal Insulation: Fibrous-glass duct lining, neoprene coated, comply with ASTM C 1071, Type II, applied on burner and fan sections only.
 - a. Thickness: 2-inch.
 - b. Insulation Adhesive: Comply with ASTM C 916, Type I.
 - c. Density: 1.5 lb/cu. ft.

- d. Mechanical Fasteners: Galvanized steel suitable for adhesive, mechanical, or welding attachment to casing without damaging liner when applied as recommended by manufacturer and without causing air leakage.
- F. Casing Insulation and Adhesive:
 - 1. Materials: ASTM C 1071, Type I.
 - 2. Location and Application: Factory applied with adhesive and mechanical fasteners to the internal surface of section panels downstream from, and including, the heating-coil section.
 - a. Liner Adhesive: Comply with ASTM C 916, Type I.
 - b. Mechanical Fasteners: Galvanized steel, suitable for adhesive, mechanical, or welding attachment to duct without damaging liner when applied as recommended by manufacturer and without causing leakage in cabinet.
 - c. Liner materials applied in this location shall have airstream surface coated with a temperature-resistant coating or faced with a plain or coated fibrous mat or fabric, depending on service-air velocity.
 - 3. Location and Application: Encased between outside and inside casing.
- G. Inspection and Access Panels and Access Doors:
 - 1. Panel and Door Fabrication: Formed and reinforced, double-wall and insulated panels of same materials and thicknesses as casing.
 - 2. Inspection and Access Panels:
 - a. Fasteners: Two or more camlock type for panel lift-out operation. Arrangement shall allow panels to be opened against air-pressure differential.
 - b. Gasket: Neoprene, applied around entire perimeters of panel frames.
 - c. Size: Large enough to allow inspection and maintenance of air-handling unit's internal components.
 - 3. Access Doors:
 - a. Hinges: A minimum of two ball-bearing hinges or stainless-steel piano hinge and two wedge-lever-type latches, operable from inside and outside. Arrange doors to be opened against air-pressure differential.
 - b. Gasket: Neoprene, applied around entire perimeters of panel frames.
 - c. Fabricate windows in fan section's doors of double-glazed, wirereinforced safety glass with an air space between panes and sealed with interior and exterior rubber seals.
 - d. Size: At least 24 inches wide by full height of unit casing up to a maximum height of 60 inches.
 - 4. Locations and Applications:
 - a. Fan Section: Doors.

- b. Access Section: Doors.
- c. Coil Section: Inspection and access panels.
- d. Damper Section: Doors.
- e. Filter Section: Doors large enough to allow periodic removal and installation of filters.
- f. Burner Section: Pilot and main flame observation ports.
- 5. Service Light: LED 100-W vaporproof fixture with switched junction box located inside adjacent to door.
 - a. Locations: Fan section.

2.4 ACCESSORIES

- A. Duplex, 115-V, ground-fault-interrupter outlet with 15-A overcurrent protection. Include transformer if required. Outlet shall be energized even if the unit main disconnect is open.
- B. Filter differential pressure switch with sensor tubing on either side of filter. Set for final filter pressure loss.

2.5 OUTDOOR-AIR INTAKE HOOD

- A. Type: Manufacturer's standard hood or louver.
- B. Materials: Match cabinet.
- C. Bird Screen: Comply with requirements in ASHRAE 62.1.
- D. Configuration: Designed to inhibit wind-driven rain and snow from entering unit.
- E. Weather hood inlet: Provide metal panel filters with aluminum flat and serpentine-crimp mesh screen at inlet of intake hood. Filter-media frame shall be aluminum, hinged, and with pull and retaining handles fastened to the media. Metal panel filter installed in outdoor intake hood assembly.
 - 1. Use 1" thick, washable, multiple layers construction with all metal type panels consisting of expanded aluminum.
 - 2. Media nominal rating to be 300 FPM face velocity, 0.10-inch WG initial resistance, 0.35 WG recommended final resistance.
 - 3. Filter shall retain 98 grams of dust per square feet of filter area.
 - 4. Average arrestance of filter media shall be minimum 35%.
 - 5. Provide filter holding frame with corner drain holes.

2.6 ROOF CURBS

- A. Roof curbs with vibration isolators and wind or seismic restraints are specified in Section 23 05 48.13 "Vibration Controls for HVAC."
- B. Materials: Galvanized steel with corrosion-protection coating, watertight gaskets, and factory-installed wood nailer; complying with NRCA standards.

- 1. Curb Insulation and Adhesive: Comply with NFPA 90A or NFPA 90B.
 - a. Materials: ASTM C 1071, Type I or Type II.
 - b. Thickness: 1-1/2 inches.
- 2. Application: Factory applied with adhesive and mechanical fasteners to the internal surface of curb.
 - a. Liner Adhesive: Comply with ASTM C 916, Type I.
 - b. Mechanical Fasteners: Galvanized steel, suitable for adhesive attachment, mechanical attachment, or welding attachment to duct without damaging liner when applied as recommended by manufacturer and without causing leakage in cabinet.
 - c. Liner materials applied in this location shall have air-stream surface coated with a temperature-resistant coating or faced with a plain or coated fibrous mat or fabric depending on service air velocity.
 - d. Liner Adhesive: Comply with ASTM C 916, Type I.
- C. Curb Height: 24 inches.
- 2.7 SUPPLY-AIR FAN
- A. Fan Type: Centrifugal, rated according to AMCA 210; statically and dynamically balanced, galvanized steel; mounted on solid-steel shaft with heavy-duty, pillow-block bearings.
- B. Bearing rating:
- C. Drive: Direct Drive with premium efficiency motor and Comply with NEMA MG 1.
- D. Mounting: Fan wheel, motor, and drives shall be mounted in fan casing with spring isolators.
- E. Fan-Shaft Lubrication Lines: Extended to a location outside the casing.
- F. Each fan and motor combination shall be capable of delivering 110% of air quantity scheduled at the scheduled static pressure.
- G. Fan motor shall be located on the door side of the blower section.
- 2.8 <u>AIR FILTERS</u>
- A. Comply with NFPA 90A and NFPA 90B.
- B. Cleanable Filters: Cleanable metal mesh.
 - 1. Thickness: 1 inch.
 - 2. Maximum Face Velocity: 500 fpm.
- C. Disposable Panel Filters: Factory-fabricated, flat-panel-type, disposable air filters with holding frames, with a MERV 8 according to ASHRAE 52.2.

- 1. Thickness: 2 inches.
- D. Filter differential pressure switch with sensor tubing on either side of filter. Set for final filter pressure loss. Refer to Section 23 41 00 Particulate Air Filtration.

2.9 DAMPERS

- A. Outdoor-Air Damper: Galvanized-steel, opposed-blade dampers with vinyl blade seals and stainless-steel jamb seals, having a maximum leakage of 10 cfm/sq. ft. of damper area, at a differential pressure of 2-inch wg.
- B. Damper Operator: Direct coupled, electronic with spring return or fully modulating as required by the control sequence. Equivalent to Belimo actuator.

2.10 DIRECT-FIRED GAS BURNER

- A. Description: Factory assembled, piped, and wired; and complying with ANSI Z21.47, "Gas-Fired Central Furnaces," and with NFPA 54, "National Fuel Gas Code."
 - 1. CSA Approval: Designed and certified by and bearing label of CSA.
 - 2. Burners: Aluminized steel with stainless-steel inserts or Stainless steel.
 - a. Gas Control Valve: Modulating.
 - b. Fuel: Natural gas.
 - c. Minimum Combustion Efficiency: 95 percent.
 - d. Ignition: Electronically controlled electric spark with flame sensor.
- B. Safety Controls:
 - 1. Vent Flow Verification: Differential pressure switch to verify open vent.
 - 2. Control Transformer: 24-V ac.
 - 3. High Limit: Thermal switch or fuse to stop burner.
 - 4. Gas Train: Regulated, redundant, 24-V ac gas valve assembly containing pilot solenoid valve, electronic-modulating temperature control valve, pilot filter, pressure regulator, pilot shutoff, and manual shutoff all in one body.
 - 5. Purge-period timer shall automatically delay burner ignition and bypass low-limit control.
 - 6. Gas Manifold: Safety switches and controls complying with ANSI standards and FM Global.
 - 7. Airflow Proving Switch: Differential pressure switch senses correct airflow before energizing pilot.
 - 8. Automatic-Reset, High-Limit Control Device: Stops burner and closes main gas valve if high-limit temperature is exceeded.
 - 9. Safety Lockout Switch: Locks out ignition sequence if burner fails to light after three tries. Controls are reset manually by turning the unit off and on.

2.11 UNIT CONTROL PANEL

A. Unit Mounted Control Panel:

- 1. The electric control system shall include a main control cabinet mounted on the unit and a remote-control panel. The main control cabinet shall be mounted in an appropriate NEMA rated control enclosure and shall include the following:
 - a. Red alarm light to indicate flame failure.
 - b. Green light to indicate main gas valve is open.
 - c. "Purge Cycle" light.
- 2. Main disconnect switch, fuses, motor starter (provide auxiliary contact on motor starter for fan motor control and exhaust fan interlocking) overloads, and control relays
- B. Factory-wired, fuse-protected control transformer, connection for power supply and fieldwired unit to remote control panel.
- C. Gas Control Panel: Surface-mounted remote panel, with engraved plastic cover and the following lights and switches:
 - 1. Heating operation indicating light.
 - 2. Safety-lockout indicating light.
 - 3. Enclosure: NEMA 250, Type 3R.

2.12 CONTROLS

- A. Control equipment and sequence of operation are specified in Section 23 09 24 "Direct Digital Control (DDC) System for HVAC."
- B. Comply with requirements in Section 23 09 00 "Instrumentation and Control for HVAC" and Section 23 09 93 "Sequence of Operations for HVAC Controls" for control equipment and sequence of operation.

2.13 <u>MOTORS</u>

- A. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."
- B. Motor furnished with fan shall not operate into motor service factor in any case. Drive efficiency shall be considered in motor selection according to motor manufacturer's published recommendation, or according to AMCA Publication 203, Appendix L.
- C. If unit(s) submitted have larger motor power requirements than scheduled in the drawings, the contractor shall be responsible for any additional electrical system upgrade costs.
- D. Enclosure: Open, dripproof or totally enclosed, fan cooled.

2.14 CAPACITIES AND CHARACTERISTICS:

A. Refer to Schedule on drawings.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for piping, ducts, and electrical systems to verify actual locations of piping and electrical connections before equipment installation.
- C. Verify cleanliness of airflow path to include inner-casing surfaces, filters, coils, turning vanes, fan wheels, and other components.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Equipment Mounting:
 - 1. Install heating and ventilating units on cast-in-place concrete equipment bases. Comply with requirements for equipment bases and foundations specified in Division 3.
 - 2. Comply with requirements for vibration isolation devices specified in Section 23 05 48.13 "Vibration Controls for HVAC."
- B. Install gas-fired units according to NFPA 54, "National Fuel Gas Code."
- C. Install controls and equipment shipped by manufacturer for field installation with directfired heating and ventilating units.
- D. Roof Curb: Install on roof structure, level and secure, according to AHRI Guideline B. Install units on curbs and coordinate roof penetrations and flashing with roof construction specified in Division 07. Secure units to upper curb rail, and secure curb base to roof framing or concrete base with anchor bolts.
- E. Unit Support: Install unit level on structural curbs. Coordinate wall penetrations and flashing with wall construction. Secure units to structural support with anchor bolts.
- F. Clean dust and debris from each unit as it is installed.
- G. Install units on flat surface level within 1/8" and of sufficient strength to support the units.
- 3.3 CONNECTIONS
- A. Drawings indicate general arrangement of piping, fittings, and specialties.
 - Gas Piping: Comply with requirements in Section 23 11 23 "Facility Natural-Gas Piping." Connect gas piping with shutoff valve and union, and with sufficient clearance for burner removal and service. Make final connections of gas piping to unit with corrugated, stainless-steel tubing flexible connectors complying with ANSI LC 1/CSA 6.26 equipment connections.

- B. Where installing piping adjacent to heating and ventilating units, allow space for service and maintenance.
- C. Duct Connections: Connect supply ducts to direct-fired heating and ventilating units with flexible duct connectors. Comply with requirements in Section 23 33 00 "Air Duct Accessories" for flexible duct connectors.
 - 1. Ensure that metal bands of connectors are parallel with minimum 1-inch flex between ductwork and fan while running.
- D. Ground equipment according to Division 26.
- E. Connect wiring according to Division 26.
- F. Where inlet and outlet ductwork at any fan is changed from that shown on drawings, submit scaled layout of the change and system effect factor calculations, indicating increased static pressure requirement as described in AMCA Publication 201. The Contractor shall be responsible for any motor, drive, and/or wiring changes required as result of duct configuration changes at fan. Obtain Approval before proceeding with changes to ductwork.

3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections with the assistance of a factory-authorized service representative.
- C. Units will be considered defective if they do not pass tests and inspections.
- D. Prepare test and inspection reports.

3.5 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
- B. Complete installation and startup checks according to manufacturer's written instructions and perform the following:
 - 1. Inspect for visible damage to burner combustion chamber.
 - 2. Inspect casing insulation for integrity, moisture content, and adhesion.
 - 3. Verify that clearances have been provided for servicing.
 - 4. Verify that controls are connected and operable.
 - 5. Verify that filters are installed.
 - 6. Purge gas line.
 - 7. Inspect and adjust vibration isolators.
 - 8. Verify bearing lubrication.
 - 9. Inspect fan-wheel rotation for movement in correct direction without vibration and binding.

- C. Start unit according to manufacturer's written instructions.
 - 1. Complete startup sheets and attach copy with Contractor's startup report.
 - 2. Inspect and record performance of interlocks and protective devices; verify sequences.
 - 3. Operate unit for run-in period recommended by manufacturer.
 - 4. Perform the following operations for both minimum and maximum firing, and adjust burner for peak efficiency:
 - a. Measure gas pressure at manifold.
 - b. Measure combustion-air temperature at inlet to combustion chamber.
 - c. Measure supply-air temperature and volume when burner is at maximum firing rate and when burner is off. Calculate useful heat to supply air.
 - 5. Calibrate thermostats.
 - 6. Adjust and inspect high-temperature limits.
 - 7. Verify operation of remote panel, including pilot-operation and failure modes. Inspect the following:
 - a. High-limit heat.
 - b. Alarms.
 - 8. After startup and performance testing, change filters, and verify bearing lubrication,
 - 9. Verify drain-pan performance.
 - 10. Verify outdoor-air damper operation.
- 3.6 ADJUSTING
- A. Adjust initial temperature set points.
- B. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain heating and ventilating units.

END OF SECTION 23 74 23.13

This page intentionally left blank.

SECTION 23 81 26 SPLIT-SYSTEM AIR-CONDITIONERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Include performance data in terms of capacities, outlet velocities, static pressures, sound power characteristics, motor requirements, and electrical characteristics.
- B. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
- C. Wiring Diagrams: For power, signal, and control wiring.

1.3 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For split-system air-conditioning units to include in emergency, operation, and maintenance manuals.

1.4 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ASHRAE Compliance:
 - 1. Fabricate and label refrigeration system to comply with ASHRAE 15, "Safety Standard for Refrigeration Systems."
 - ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 4 -"Outdoor Air Quality," Section 5 - "Systems and Equipment," Section 6 - " Procedures," and Section 7 - "Construction and System Start-up."
- C. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1.
- 1.5 COORDINATION
- A. Coordinate sizes and locations of equipment supports, and wall penetrations with actual equipment provided.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Basis-of-Design Product: The design is based on the following:
 - 1. LG Air Conditioning Technologies.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Carrier Corporation; Home Comfort and HVAC Building & Industrial Systems.
 - 2. Daikin
 - 3. Mitsubishi Electric & Electronics USA, Inc.; HVAC Advanced Products Division.
 - 4. SANYO North America Corporation; SANYO Fisher Company.
 - 5. YORK; a Johnson Controls company.

2.2 INDOOR UNITS (5 TONS OR LESS)

- A. Wall-Mounted, Evaporator-Fan Components:
 - 1. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and thermal-expansion valve. Comply with ARI 206/110.
 - 2. Fan: Direct drive, centrifugal.
 - 3. Fan Motors:
 - a. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements specified in "Common Motor Requirements for HVAC Equipment."
 - b. Multitapped, multispeed with internal thermal protection and permanent lubrication.
 - c. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in electrical Sections.
 - d. Mount unit-mounted disconnect switches on exterior or interior of unit.
 - 4. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
 - 5. Condensate Drain Pans:
 - a. Fabricated with one percent slope in at least two planes to collect condensate from cooling coils (including coil piping connections, coil headers, and return bends) and to direct water toward drain connection.
 - 1) Length: Extend drain pan downstream from leaving face to comply with ASHRAE 62.1.
 - 6. Filters: Cleanable

2.3 OUTDOOR UNITS (5 TONS OR LESS)

A. Air-Cooled, Compressor-Condenser Components:

- 1. Casing: Steel, finished with baked enamel in color selected by Architect, with removable panels for access to controls, weep holes for water drainage, and mounting holes in base. Provide brass service valves, fittings, and gage ports on exterior of casing.
- 2. Compressor: Hermetically sealed with crankcase heater and mounted on vibration isolation device. Compressor motor shall have thermal- and current-sensitive overload devices, start capacitor, relay, and contactor.
 - a. Compressor Type: Scroll.
 - b. Refrigerant Charge: R-410A.
 - c. Refrigerant Coil: Copper tube, with mechanically bonded aluminum fins and liquid subcooler. Comply with ARI 206/110.
- 3. Heat-Pump Components: Reversing valve and low-temperature-air cutoff thermostat.
- 4. Fan: Aluminum-propeller type, directly connected to motor.
- 5. Motor: Permanently lubricated, with integral thermal-overload protection.
- 6. Refrigeration Components:
 - a. Refrigerant circuit components shall include brass external liquid line service valve with service gage port connections, suction line service valve with service gage connection port, service gage port connections on compressor suction and discharge lines, accumulator, pressure relief, and a full charge of refrigerant.
- 7. Controls and Safeties:
 - a. Operating controls and safeties shall be factory selected, assembled, and tested. The minimum control functions shall include the following:
 - 1) Controls:
 - a) Time delay restart to prevent compressor reverse rotation on single-phase scroll compressors.
 - b) Automatic restart on power failure.
 - c) Safety lockout if any outdoor unit safety is open.
 - d) A time delay control sequence provided through the fan coil board, thermostat, or controller.
 - e) Automatic outdoor-fan motor protection.
 - 2) Safeties:
 - a) System diagnostics.
 - b) Compressor motor current and temperature overload protection.
 - c) High pressure relief.
 - d) Outdoor fan failure protection.
- 8. Electrical Requirements:
 - a. Unit electrical power shall be a single point connection.

- b. Unit control voltage to the indoor-fan coil shall be 24 V.
- c. All power and control wiring must be installed per NEC and all local building codes.
 - 1) High- and low-voltage terminal block connections.
- d. Accessories:
 - 1) Low-Ambient Operation:
 - a) The control shall be capable of enabling unit operation and start-up with outdoor temperatures to 5 F.
 - b) Installation of kit shall not require changing the outdoor-fan motor.

2.4 ACCESSORIES

- A. Control equipment and sequence of operation are specified in Section 23 09 00 "Instrumentation and Control for HVAC" and Section 23 09 93 "Sequence and Operations for HVAC Controls."
- B. Thermostat: Low voltage with subbase to control compressor and evaporator fan.
- C. Thermostat: Wireless infrared functioning to remotely control compressor and evaporator fan, with the following features:
 - 1. Compressor time delay.
 - 2. 24-hour time control of system stop and start.
 - 3. Liquid-crystal display indicating temperature, set-point temperature, time setting, operating mode, and fan speed.
 - 4. Fan-speed selection including auto setting.
 - 5. Automatic changeover from cooling to heating modes
- D. Automatic-reset timer to prevent rapid cycling of compressor.
- E. Refrigerant Line Kits: Soft-annealed copper suction and liquid lines factory cleaned, dried, pressurized, and sealed; factory-insulated suction line with flared fittings at both ends.
 - 1. Minimum Insulation Thickness: 1 inch thick.
 - a. Refer to 23 07 13 for metal jacketing for both refrigeration lines.
 - 2. Provide precharged refrigerant lines that can be oriented to connect to the side or back of unit.
- F. Unit shall be furnished with integral wall-mounting bracket and mounting hanging hardware.
- G. Drain Hose: For condensate.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install units level and plumb.
- B. Install evaporator-fan components using manufacturer's standard mounting devices securely fastened to building structure.
- C. Equipment Mounting:
 - 1. Comply with requirements for vibration isolation devices specified in Section 23 05 48.13 "Vibration Controls for HVAC."
- D. Install and connect precharged refrigerant tubing to component's quick-connect fittings. Install tubing to allow access to unit.

3.2 EQUIPMENT SUPPORT SYSTEM

- A. The condenser stand shall be mounted free standing on suspended hanging frame in a convenient position to facilitate connection of the linesets to the condensers as well as access for maintenance.
- B. Condenser stand shall be of modular design to enable the cross members to be lineally adjusted during assembly to accept different configurations of condensers.
- C. Condenser stand shall be fabricated from square steel tubing with a minimum wall thickness of 16 gauge.
- D. For loads to a maximum of 660 lbs., cross members shall have a minimum cross section of 1.5" x 1.5".
- E. Condensers shall be secured to the cross bars with pressed steel clamps which shall be bolted to the cross members.
- F. Steel clamps shall allow sufficient space for anti-vibration pads to be fitted under the feet of the condenser.

3.3 REFRIGERANT PIPING SIZING

A. The unit manufacturer shall verify the final refrigeration pipe sizing process to ensure conformance to specific unit requirements such as maximum lengths, refrigerant velocities, unloading considerations and proper oil return. This contractor shall provide refrigeration piping drawings from the field which details the way the piping will actually be installed.

3.4 REFRIGERANT PIPING ACCESSORIES

A. Install accessories in accordance with the manufacturer's written instructions and recommendations.

3.5 CONNECTIONS

- A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Where piping is installed adjacent to unit, allow space for service and maintenance of unit.
- C. Ground equipment according to Division 26.
- D. Electrical Connections: Comply with requirements in Division 26 Sections for power wiring, switches, and motor controls.
- E. Division 26 contractor shall provide conduit for both the power and control wiring between indoor unit and outdoor unit.

3.6 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- B. Tests and Inspections:
 - 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 3. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Remove and replace malfunctioning units and retest as specified above.
- D. Prepare test and inspection reports.

3.7 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
- B. Deliver unit wireless infrared remote controller to Owner with complete set of new batteries.
- 3.8 DEMONSTRATION
- A. Train Owner's maintenance personnel to adjust, operate, and maintain split system air conditioning units.

END OF SECTION 23 81 26

SECTION 23 82 16 AIR COILS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following types of air coils that are not an integral part of airhandling units:
 - 1. Hot-water.
 - 2. Refrigerant.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each air coil. Include rated capacity and pressure drop for each air coil.
- B. Field quality-control test reports.

1.4 COORDINATION

A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which coil location and ceiling-mounted access panels are shown and coordinated with each other.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air coils to include in operation and maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. ASHRAE Compliance:
 - 1. Comply with ASHRAE 15 for refrigeration system safety.
 - 2. Comply with ASHRAE 33 for methods of testing cooling and heating coils.
 - 3. Comply with applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."

PART 2 - PRODUCTS

2.1 HEATING WATER COILS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Aerofin Corporation.
 - 2. Carrier Corporation.
 - 3. Coil Company, LLC.
 - 4. Dunham-Bush, Inc.
 - 5. Heatcraft Refrigeration Products LLC; Heat Transfer Division.
 - 6. Super Radiator Coils.
 - 7. Trane.
 - 8. USA Coil & Air.
- B. Performance Ratings: Tested and rated according to AHRI 410 and ASHRAE 33.
- C. Minimum Working-Pressure/Temperature Ratings: 200 psig, 325 deg F.
- D. Source Quality Control: Factory tested to 300 psig.
- E. Tubes: ASTM B 743 copper, minimum 0.025-inch tube wall seamless copper tubes of 5/8 inch maximum outside diameter with maximum of 8 aluminum fins per inch suitable for working pressures to 125 psig and temperatures to 250°F. Coil fins may be the continuous serpentine or plate fin type.
- F. Fins: Aluminum, minimum 0.006 inch thick.
- G. Headers: Coil headers may be constructed of cast iron, steel, or seamless copper. Where cast iron headers are used, expand tubes into the headers. Where steel or copper headers are used braze tubes to header. Provide coils with bronze spring turbulators where required to provide the capacities indicated.
- H. Frames: Galvanized-steel channel frame, minimum 0.052-inch thick for slip-in or flanged mounting.
- I. Hot-Water Coil Capacities and Characteristics: Refer to Schedule on drawings.
- J. Provide recessed terminal box when coil installed in ductwork with internally lined insulation to ensure heating elements and safety controls are in air stream.

2.2 REFRIGERANT COILS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Aerofin Corporation.
 - 2. Carrier Corporation.
 - 3. Coil Company, LLC.

- 4. Dunham-Bush, Inc.
- 5. Heatcraft Refrigeration Products LLC; Heat Transfer Division.
- 6. Lennox Industries Inc.
- 7. Super Radiator Coils.
- 8. Trane.
- 9. USA Coil & Air.
- B. Performance Ratings: Tested and rated according to AHRI 410 and ASHRAE 33.
- C. Minimum Working-Pressure Rating: 300 psig.
- D. Source Quality Control: Factory tested to 450 psig.
- E. Tubes: ASTM B 743 copper, minimum 0.020 inch thick.
- F. Fins: Aluminum, minimum 0.006 inch thick.
- G. Suction and Distributor Piping: ASTM B 88, Type L copper tube with brazed joints.
- H. Frames: ASTM A 666, Type 304 stainless steel, minimum 0.0625-inch thick for slip-in flanged or mounting.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine ducts, plenums, and casings to receive air coils for compliance with requirements for installation tolerances and other conditions affecting coil performance.
- B. Examine roughing-in for piping systems to verify actual locations of piping connections before coil installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install coils level and plumb.
- B. Install coils in metal ducts and casings constructed according to SMACNA's "HVAC Duct Construction Standards, Metal and Flexible."
- C. Install stainless-steel drain pan under each cooling coil.
 - 1. Construct drain pans with connection for drain; insulated and complying with ASHRAE 62.1.
 - 2. Construct drain pans to extend beyond coil length and width and to connect to condensate trap and drainage.
 - 3. Extend drain pan upstream and downstream from coil face.
 - 4. Extend drain pan under coil headers and exposed supply piping.
- D. Install moisture eliminators for cooling coils. Extend drain pan under moisture eliminator.

- E. Straighten bent fins on air coils.
- F. Clean coils using materials and methods recommended in writing by manufacturers, and clean inside of casings and enclosures to remove dust and debris.

3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to coils to allow service and maintenance.
- C. Connect water piping with unions and shutoff valves to allow coils to be disconnected without draining piping. Control valves are specified in Section 23 09 00 "Instrumentation and Control for HVAC," and other piping specialties are specified in Section 23 21 13 "Hydronic Piping."
- D. Connect refrigerant piping according to Section 23 23 00 "Refrigerant Piping."
- E. Install a separate air vent and drain valve for each coil header in such a manner that the vent and drain valves are located outside of air handling unit casing. Provide offsets in piping to facilitate coil removal.
- F. For Water coils:
 - 1. For drainage, pitch coils minimum 1/8 inch toward return connections. Install shims, except where coil design includes drainage feature.
 - 2. Level coils and install cleanable and drainable tube water and steam coils with 1:50 pitch.
 - 3. Support:
 - a. Support coil sections on steel channel or double angle frames and secure to casings.
 - b. Arrange supports for cooling coils to avoid piercing or short-circuiting drip pans.
 - c. Bolt casings to other section, ductwork, or unit casings.
 - d. Provide air-tight seal between coil and duct or unit cabinets.
 - 4. Water Supply:
 - a. Locate water supply at bottom of coil supply header and return water connection at top to provide self-venting and reverse return arrangement.
 - b. Provide air vents at high points complete with stop valve.
 - c. Ensure water coils are drainable and make drain connection at low points.
 - 5. Repair or replace coils following purging and tightness testing of coils and piping to eliminate leaks. Retest as specified to demonstrate leakproof performance.
 - 6. For cooling coils, provide trap with clean-out on condensate drain piping. Consult coil manufacturer for trap depth requirements.

END OF SECTION 23 82 16

SECTION 23 82 33 CONVECTORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.
- 1.2 ACTION SUBMITTALS
- A. Product Data: For each type of product.
 - 1. Include rated capacities, operating characteristics, furnished specialties, and accessories.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Color Samples for Initial Selection: For units with factory-applied color finishes.

PART 2 - PRODUCTS

2.1 HOT-WATER CONVECTORS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Engineered Air.
 - 2. Slant/Fin Corporation.
 - 3. Sterling Hydronics; a Mestek company.
 - 4. Trane Inc.
 - 5. Zehnder-Rittling.
- B. Heating Elements: Seamless copper tubing mechanically expanded into evenly spaced aluminum fins and rolled into cast-iron or brass headers with inlet/outlet and air vent; steel side plates and supports. Factory-pressure-test element at minimum 100 psig.
- C. Front and Top Panel: Minimum 0.0598-inch-thick steel with exposed corners rounded; removable front panels with tamper-resistant fasteners braced and reinforced for stiffness.
- D. Wall-Mounted Back and End Panels: Minimum 0.0428-inch-thick steel.
- E. Support Brackets: Locate at maximum 36-inch spacing to support front panel and element.
- F. Insulation: 1/2-inch-thick, fibrous glass on inside of the back of the enclosure.

- G. Finish: Baked-enamel finish in manufacturer's standard color as selected by Architect.
- H. Access Doors: Factory made, permanently hinged with tamper-resistant fastener, minimum size 6 by 7 inches, integral with enclosure.
- I. Enclosure Style: Semi-Recessed wall unit.
 - 1. Front Inlet Grille: Punched louver; painted to match enclosure.
 - 2. Front Outlet Grille: Punched louver; painted to match enclosure.
- J. Finish:
 - 1. Mill-finish aluminum.
 - 2. Anodized finish, color as selected by Architect from manufacturer's standard colors.
 - 3. Painted to match enclosure.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas to receive convectors for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for hydronic-piping connections to verify actual locations before installation of convector.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install convectors level and plumb.
- B. Install valves within reach of access door provided in enclosure.
- C. Install air-seal gasket between wall and recessed flanges or front cover of fully recessed unit.
- D. Install piping within pedestals for freestanding units.
- E. Center elements under windows. Where multiple windows occur over units, divide element into equal segments centered under each window. Install end caps where units butt against walls.
- 3.3 CONNECTIONS
- A. Piping installation requirements are specified in Section 23 21 13 "Hydronic Piping" and Section 23 21 16 Hydronic Piping Specialties." Drawings indicate general arrangement of piping, fittings, and specialties.

- B. Connect hot-water convectors and components to piping according to Section 23 21 13 "Hydronic Piping" and Section 23 21 16 Hydronic Piping Specialties."
 - 1. Install shutoff valves on inlet and outlet, and balancing valve on outlet.
- C. Install control valves as required by Section 23 09 00 "Instrumentation and Control for HVAC."
- D. Install piping adjacent to convectors to allow service and maintenance.

3.4 FIELD QUALITY CONTROL

- A. Perform the following field tests and inspections:
 - 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
- B. Convectors will be considered defective if they do not pass tests and inspections.
- C. Touch-up marred or scratched surfaces of factory-finished cabinets, using finish materials furnished by manufacturer.
- D. Clean dust and debris from each unit as it is installed. Comb out damaged fins where bent or crushed before covering elements with enclosures.

END OF SECTION 23 82 33

This page intentionally left blank.

SECTION 23 82 36 FINNED-TUBE RADIATION HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.
- 1.2 ACTION SUBMITTALS
- A. Product Data: For each type of product.
 - 1. Include rated capacities, operating characteristics, furnished specialties, and accessories.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.
 - 4. Color Samples for Initial Selection: For finned-tube radiation heaters with factoryapplied color finishes.

PART 2 - PRODUCTS

2.1 FLAT-PIPE STEEL RADIATORS (FTC)

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Runtal Radiators
 - 2. Myson
 - 3. Zehnder Rittling/Hydro-Air Components
 - 4. Vulcan Radiator
- B. Heating Elements: Steel, welded and formed into flat, square, steel header with minimum thickness of 0.109 inch. Include threaded piping and air-vent connections.
 - 1. Working Pressure: 128 psig; 0.078 inch.
- C. Mounting: Wall brackets or Floor pedestals with maximum spacing of 36 inches.
- D. Finish: Baked-enamel finish in manufacturer's custom color as selected by Architect.
- E. Accessories:
 - 1. Steel piping covers finished to match flat-pipe steel radiator finish.
- F. Capacities and Characteristics

1. Refer to Schedule on drawings.

2.2 HOT-WATER FINNED-TUBE RADIATION HEATERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Slant/Fin Corporation.
 - 2. Sterling Hydronics; a Mestek company.
 - 3. Trane Inc.
 - 4. Vulcan Radiator.
 - 5. Zehnder-Rittling.
- B. Performance Ratings: Rate finned-tube radiation heaters according to Hydronics Institute's "I=B=R Testing and Rating Standard for Finned-Tube (Commercial) Radiation."
- C. Heating Elements: Copper tubing mechanically expanded into flanged collars of evenly spaced aluminum fins resting on element supports. One end of tube shall be belled.
- D. Element Supports: Ball-bearing cradle type to permit longitudinal movement on enclosure brackets.
- E. Capacities and Characteristics
 - 1. Refer to Schedule on drawings.

PART 3 - EXECUTION

- 3.1 EXAMINATION
- A. Examine areas to receive finned-tube radiation heaters for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for hydronic-piping connections to verify actual locations before installation of finned-tube radiation heaters.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FINNED-TUBE RADIATION HEATER INSTALLATION

- A. Install units level and plumb.
- B. Install enclosure continuously around corners, using outside and inside corner fittings.
- C. Join sections with splice plates and filler pieces to provide continuous enclosure.
- D. Install access doors in concealed ceilings for access to valves.
- E. Install enclosure continuously from wall to wall.
- F. Terminate enclosures with manufacturer's end caps except where enclosures are indicated to extend to adjoining walls.
- G. Install air-seal gasket between wall and recessed flanges or front cover of fully recessed unit.
- H. Install valves and piping specialties within the above ceiling space.
- I. Center elements under windows. Where multiple windows occur over units, divide element into equal segments centered under each window. Install end caps where units butt against walls.

3.3 CONNECTIONS

- A. Piping installation requirements are specified in Section 23 21 13 "Hydronic Piping" and Section 23 21 16 Hydronic Piping Specialties." Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect flat-pipe steel radiators and components to piping according to Section 23 21 13 "Hydronic Piping" and Section 23 21 16 Hydronic Piping Specialties."
 - 1. Install shutoff valves on inlet and outlet, and balancing valve on outlet.
- C. Install control valves as required by Section 23 09 00 "Instrumentation and Control for HVAC."
- D. Install piping adjacent to finned-tube radiation heaters to allow service and maintenance.
- E. Install piping adjacent to flat-pipe steel radiators to allow service and maintenance.
- 3.4 FIELD QUALITY CONTROL
- A. Perform the following field tests and inspections:
 - 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
- B. Touch-up marred or scratched surfaces of factory-finished cabinets, using finish materials furnished by manufacturer.
- C. Clean dust and debris from each unit as it is installed. Comb out damaged fins where bent or crushed before covering elements with enclosures.
- D. Units will be considered defective if they do not pass tests and inspections.

END OF SECTION 23 82 36

This page intentionally left blank.

SECTION 23 82 39 UNIT HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 ACTION SUBMITTALS

A. Product Data: Include rated capacities, operating characteristics, furnished specialties, wiring diagrams, and accessories for each product indicated. Include color selection chart where applicable.

1.3 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For cabinet unit heaters to include in emergency, operation, and maintenance manuals.

1.4 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Cabinet Unit Heater Filters: Furnish one spare filter(s) for each filter installed.

1.5 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
- C. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 "Heating, Ventilating, and Air-Conditioning."

PART 2 - PRODUCTS

2.1 CABINET UNIT HEATERS

- A. Basis-of-Design Product: The design is based on the following:
 - 1. Sterling HVAC Products; Div. of Mestek Technology Inc.

- B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Airtherm; a Mestek Company.
 - 2. Dunham-Bush, Inc.
 - 3. McQuay International.
 - 4. Modine Mfg. Co.
 - 5. Rittling.
 - 6. Sterling.
 - 7. Trane.
 - 8. Vulcan.
- C. Description: A factory-assembled and -tested unit complying with ARI 440.
- D. Coil Section Insulation: ASTM C 1071; surfaces exposed to airstream shall be aluminum-foil facing to prevent erosion of glass fibers.
 - 1. Thickness: 1 inch.
 - 2. Thermal Conductivity (k-Value): 0.26 Btu x in./h x sq. ft. at 75 deg F mean temperature.
 - 3. Fire-Hazard Classification: Maximum flame-spread index of 25 and smokedeveloped index of 50 when tested according to ASTM E 84.
 - 4. Adhesive: Comply with ASTM C 916 and with NFPA 90A or NFPA 90B.
 - 5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- E. Cabinet: Steel with baked-enamel finish with manufacturer's standard paint, in color selected by Architect.
 - 1. Vertical Unit, Exposed Front Panels: Minimum 0.0528-inch-thick, galvanized, sheet steel, removable panels with channel-formed edges secured with tamperproof cam fasteners.
 - 2. Horizontal Unit, Exposed Bottom Panels: Minimum 0.0528-inch-thick, galvanized, sheet steel, removable panels secured with tamperproof cam fasteners and safety chain.
 - a. Furnish ceiling mounted units with a hinged front panel to allow access to all internal components.
 - 3. Recessing Flanges: Steel, finished to match cabinet.
 - 4. Control Access Door: Key operated.
 - 5. Extended Piping Compartment: 8-inch-wide piping end pocket.
 - 6. False Back: Minimum 0.0428-inch-thick steel, finished to match cabinet.
- F. Filters: Minimum arrestance according to ASHRAE 52.1 and a minimum efficiency reporting value (MERV) according to ASHRAE 52.2.
 - 1. Glass Fiber Treated with Adhesive: 80 percent arrestance and 5 MERV.
 - 2. Pleated: 90 percent arrestance and 7 MERV.

- G. Hot-Water Coil: Copper tube, with mechanically bonded aluminum fins spaced no closer than 0.1 inch and rated for a minimum working pressure of 200 psig and a maximum entering-water temperature of 220 deg F. Include manual air vent and drain.
- H. Fan and Motor Board: Removable.
 - 1. Fan: Forward curved, double width, centrifugal; directly connected to motor. Thermoplastic or painted-steel wheels, and aluminum, painted-steel, or galvanized-steel fan scrolls.
 - Motor: Permanently lubricated, multispeed; resiliently mounted on motor board. Comply with requirements in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."
 - 3. Wiring Terminations: Connect motor to chassis wiring with plug connection.
- I. Direct-Drive Units: Motor mounted in airstream, factory wired to disconnect switch. ECM motor arrangement.
- J. Motors to be 120-volt, single phase, permanently lubricated, with thermal overload protection and disconnect switch at unit.

2.2 PROPELLER UNIT HEATERS

- A. Basis-of-Design Product: The design is based on the following:
 - 1. Sterling HVAC Products; Div. of Mestek Technology Inc.
- B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Airtherm; a Mestek Company.
 - 2. Dunham Bush.
 - 3. McQuay International.
 - 4. Modine Mfg. Co.
 - 5. Rittling.
 - 6. Trane.
- C. Description: An assembly including casing, coil, fan, and motor in vertical and horizontal discharge configuration with adjustable discharge louvers.
- D. Comply with UL 2021.
- E. Cabinet: Removable panels for maintenance access to controls.
- F. Cabinet Finish: Manufacturer's standard baked enamel applied to factory-assembled and -tested propeller unit heater before shipping.
- G. Discharge Louver: Adjustable fin diffuser for horizontal units and conical diffuser for vertical units. Furnish adjustable horizontal and vertical discharge louvers for units with horizontal discharge. Provide an adjustable cone diffuser for projection units with vertical discharge.

- H. General Coil Requirements: Test and rate hot-water propeller unit heater coils according to ASHRAE 33.
- I. Hot-Water Coil: Copper tube, minimum 0.025-inch wall thickness, with mechanically bonded aluminum fins spaced no closer than 0.1 inch and rated for a minimum working pressure of 200 psig and a maximum entering-water temperature of 325 deg F, with manual air vent. Test for leaks to 350 psig underwater.
- J. Fan: Propeller type with aluminum wheel directly mounted on motor shaft in the fan venturi.
- K. Fan Motors: Comply with requirements in Section 23 05 13 "Common Motor Requirements for HVAC Equipment."
 - 1. Motor Type: Permanently lubricated, multispeed.
- L. Provide safety guard for fan/drive assembly.
- M. Provide built-in fan delay switch.
- N. Electrical Connection: Factory wire motors and controls for a single field connection with disconnect switch.

2.3 CONTROLS

- A. Control devices and operational sequences are specified in Section 23 09 00 "Instrumentation and Control for HVAC" and Section 23 09 93 "Sequence of Operations for HVAC Controls."
- 2.4 CAPACITIES AND CHARACTERISTICS
- A. Refer to Schedule on drawings.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas to receive unit heaters for compliance with requirements for installation tolerances and other conditions affecting performance.
- B. Examine roughing-in for piping and electrical connections to verify actual locations before unit heater installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install wall boxes in finished wall assembly; seal and weatherproof. Joint-sealant materials and applications are specified in Division 7 Section "Joint Sealants."
- B. Install cabinet unit heaters to comply with NFPA 90A.

- C. Install propeller unit heaters level and plumb.
- D. Suspend cabinet unit heaters from structure with elastomeric hangers. Vibration isolators are specified in Section 23 05 48.13 "Vibration Controls for HVAC Piping and Equipment."
- E. Suspend propeller unit heaters from structure with all-thread hanger rods and elastomeric hangers. Hanger rods and attachments to structure are specified in Section 23 05 29 "Hangers and Supports for HVAC Piping and Equipment." Vibration hangers are specified in Section 23 05 48.13 "Vibration Controls for HVAC Piping and Equipment."
- F. Install wall-mounting thermostats and switch controls in electrical outlet boxes at heights to match lighting controls. Verify location of thermostats and other exposed control sensors with Drawings and room details before installation.
- G. Install new filters in each fan-coil unit within two weeks of Substantial Completion.
- H. Touch-up marred or scratched surfaces of factory-finished cabinets, using finish materials furnished by manufacturer.
- I. Clean dust and debris from each unit as it is installed. Comb out damaged fins where bent or crushed before covering elements with enclosures.

3.3 CONNECTIONS

- A. Piping installation requirements are specified in Section 23 21 13 "Hydronic Piping". Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to machine to allow service and maintenance.
- C. Comply with safety requirements in UL 1995.
- D. Unless otherwise indicated, install union and ball valve on supply-water connection and union and calibrated balancing valve on return-water connection of unit heater. Hydronic specialties are specified in Section 23 21 13 "Hydronic Piping."
- E. Ground equipment according to Division 26.
- F. Connect wiring according to Division 26.

3.4 FIELD QUALITY CONTROL

- A. Contractor to inspect, test, and adjust field-assembled components and equipment installation, including connections. Report results in writing.
- B. Perform the following field tests and inspections and prepare test reports:
 - 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 2. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.

C. Remove and replace malfunctioning units and retest as specified above.

3.5 ADJUSTING

- A. Adjust initial temperature set points.
- 3.6 DEMONSTRATION
- A. Train Owner's maintenance personnel to adjust, operate, and maintain cabinet unit heaters. Refer to Division 1 for demonstration and training.

END OF SECTION 23 82 39

SECTION 23 83 16 RADIANT-HEATING HYDRONIC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes radiant-heating piping, including pipes, fittings, and piping specialties.

1.3 DEFINITIONS

- A. CWP: Cold working pressure.
- B. PEX: Crosslinked polyethylene.
- C. PEX/AL/PEX: Crosslinked polyethylene/aluminum/crosslinked polyethylene.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include data for piping, fittings, manifolds, specialties, and controls; include pressure and temperature ratings, oxygen-barrier performance, fire-performance characteristics, and water-flow and pressure-drop characteristics.
 - 2. Provide product data for control valves.
- B. Shop Drawings: Show piping layout and details drawn to scale, including valves, manifolds, controls, and support assemblies, and their attachments to building structure.
 - 1. Shop Drawing Scale: 1/8 inch = 1 foot minimum.
 - 2. Drawing(s) shall show proof of review and approval by radiant floor heating system manufacturer.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For radiant-heating piping valves and equipment to include in operation and maintenance manuals.

1.6 WARRANTY

- A. Manufacturer's standard twenty (20) year warranty on tubing.
- B. Manufacturer's standard thirty-six (36) month warranty on manifolds and other auxiliary components.

PART 2 - PRODUCTS

2.1 PEX PIPE AND FITTINGS

- A. Manufacturer Basis-of-Design Product: The design is based on the following:
 - 1. Uponor- Radiant.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. REHAU Incorporated.
 - 2. Heatlink.
 - 3. Watts Radiant, inc.; a Watts Water Technologies company.
- C. Alternate for Roth XPert S5 or DuoPex S5- Pex C or may be substituted from the manufacturers listed in the following sections provided the materials of construction equal the basis of design, and the layout and scheduled performance is maintained. Final approval of substitutions will be determined by Architect/Engineer.
 - 1. Roth XPert S5 with EVERLOC® Fitting System
 - 2. Roth DuoPex S5 or Pex C.
- D. Pipe Material: PEX plastic according to ASTM F 876, PEX A.
- E. Oxygen Barrier: Limit oxygen diffusion through the tube to maximum 0.10 mg per cu. m/day at 104 deg F according to DIN 4726.
- F. Fittings: ASTM F 1807, metal insert and copper crimp rings.
 - 1. Uponor ProPEX® Fitting System.
 - 2. Sioux Chief PowerPEX[™] F1960 Fitting System.
- G. Pressure/Temperature Rating: Minimum 100 psig and 180 deg F.
- 2.2 DISTRIBUTION MANIFOLDS
- A. Manifold: Minimum NPS 1, brass or stainless steel.
- B. Main Shutoff Valves:
 - 1. Mount on the on supply and return connections.
 - 2. Shut-off valves are specified in Section 23 05 23 "General-duty valves for HVAC Piping."
- C. Manual Air Vents:
 - 1. Mount on return connections.
 - 2. Manual air vents are specified in Section 23 21 16 "Hydronic Piping Specialties."
- D. Balancing Valves:

- 1. Mount on return connections.
- 2. Manual air vents are specified in Section 23 21 16 "Hydronic Piping Specialties."
- E. Zone Control Valves:
 - 1. Temperature-control devices and sequence of operations are specified in Section 23 09 00 "Instrumentation and Control for HVAC" and Section 23 09 93 "Sequence of Operations for HVAC Controls."
- F. Mounting Brackets: Copper, or plastic- or copper-clad steel, where in contact with manifold.
- G. Manifold Radiant Cabinets:
 - 1. Contractor to provide radiant manifold cabinets for recessed wall cabinet and surface mounted enclosures. Manufacturer's standard recessed manifold cabinets 22 gauge shall be used. For surface mounted cabinet, the contractor to provide custom cabinetry with a minimum 18 gauge. Cabinetry shall be factory painted with a custom color. Architect to select a custom color for cabinetry. Provide cabinet one or two coin/screwdriver locks per door.
 - a. Badger Sheetmetal or equivalent for fabrication the cabinetry
 - 2. Refer to the Architectural drawings for surface and recessed cabinetry location.

2.3 PIPING SPECIALTIES

- A. Cable Ties:
 - 1. Fungus-inert, self-extinguishing, one-piece, self-locking, Type 6/6 nylon cable ties.
 - 2. Minimum Width: 1/8 inch.
 - 3. Tensile Strength: 20 lb. minimum.
 - 4. Temperature Range: Minus 40 to plus 185 deg F.
- B. Floor Mounting Staples:
 - 1. Steel, with corrosion-resistant coating and smooth finish without sharp edges.
 - 2. Minimum Thickness: 3/32 inch.
 - 3. Width: Minimum, wider than tubing.
- C. Floor Mounting Clamps:
 - 1. Two bolts, steel, with corrosion-resistant coating and smooth finish without sharp edges.
 - 2. Minimum Thickness: 3/32 inch.
 - 3. Width: Minimum, wider than tubing.
- D. Floor Mounting Tracks:
 - 1. Aluminum or plastic channel track with smooth finish and no sharp edges.

- 2. Minimum Thickness: 1/16 inch.
- 3. Slot Width: Snap fit to hold tubing.
- 4. Slot Spacing: 2-inch intervals.
- 5. Rehau "Octa Rail" or equivalent

2.4 CONTROLS

A. Temperature-control devices and sequence of operations are specified in Section 23 09 00 "Instrumentation and Control for HVAC" and Section 23 09 93 "Sequence of Operations for HVAC Controls."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine surfaces and substrates to receive radiant-heating piping for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
 - 1. Ensure that surfaces and pipes in contact with radiant-heating piping are free of burrs and sharp protrusions.
 - 2. Ensure that surfaces and substrates are level and plumb.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLICATIONS

- A. Install the following types of radiant-heating piping for the applications described:
 - 1. Piping in Interior Reinforced-Concrete Floors: PEX.

3.3 PRE-INSTALLATION CONFERENCE

A. 90 days prior to beginning of the installation of radiant heating hydronic piping, the contractor shall conduct a conference with the Architect/Engineer, Owner's Project Representative, Commissioning Provider (CxP) and the mechanical system and temperature control system installing Contractors. Provide AE and CxP with a complete copy of the radiant piping system with dimensions and system piping diagrams for the project. The objective is final coordination and verification of system operation and readiness for installation procedures and scheduling procedures with the abovementioned parties. Indicate work required to be completed prior to installation and identify the party responsible for completion of that work.

3.4 INSTALLATION

- A. Engage a factory-authorized service representative to perform field inspections for installation of radiant heating hydronic piping.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicate piping locations and arrangements if such were used to size pipe and calculate friction loss, expansion, and other design considerations. Install

piping as indicated unless deviations to layout are approved on Shop Drawings or coordination drawings.

- C. Install radiant-heating piping continuous from the manifold through the heated panel and back to the manifold without piping joints in heated panels.
 - 1. If a fitting must be installed in the concrete slab it must be protected with a HDPE shrink sleeve as recommended by the manufacturer and must be approved by the engineer.
- D. Connect radiant piping to manifold in a reverse-return arrangement.
- E. Do not bend pipes in radii smaller than manufacturer's minimum bend radius dimensions.
- F. Install manifolds in accessible locations or install access panels to provide maintenance access as required in Division 08 section "Access Doors and Frames."
- G. Comply with requirements in Section 23 21 13 "Hydronic Piping" and Section 23 21 16 Hydronic Piping Specialties" for pipes and connections to hydronic systems and for glycol-solution fill requirements.
- H. Fire- and Smoke-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials according to Division 07 section "Penetration Firestopping."
- I. Piping in Interior Reinforced-Concrete Floors:
 - 1. Secure piping in concrete floors by attaching pipes to reinforcement using cable ties.
 - 2. Space cable ties a maximum of 18 inches o.c. and at center of turns or bends.
 - 3. Maintain 2-inch minimum cover.
 - 4. Install a sleeve of 3/8-inch-thick, foam-type insulation or PE pipe around tubing and extending for a minimum of 10 inches on each side of slab joints to protect the tubing passing through expansion or control joints. Anchor sleeve to slab form at control joints to provide maximum clearance for saw cut.
 - 5. Maintain minimum 40-psig pressure in piping during concrete placement and continue for 24 hours after placement.
- J. Revise locations and elevations from those indicated as required to suit field conditions and ensure integrity of piping and as approved by Architect.
- K. After system balancing has been completed, mark balancing valves to permanently indicate final position.
- L. Perform the following adjustments before operating the system:
 - 1. Open valves to fully open position.
 - 2. Check operation of automatic valves.
 - 3. Set temperature controls so all zones call for full flow.
 - 4. Purge air from piping.

- M. After concrete or plaster heating panel has cured as recommended by concrete or plaster supplier, operate radiant-heating system as follows:
 - 1. Start system heating at a maximum of 10 deg F above the ambient radiant-panel temperature and increase 10 deg F each following day until design temperature is achieved.
 - 2. For freeze protection, operate at a minimum of 60 deg F supply-water temperature.
- N. Maximum loop lengths shall be:

1.	5/8" diameter tubing:	500 ft.
-		

- 2. 3/4" diameter tubing: 500 ft.
- O. Tubing connections shall be made with compression fittings supplied by manufacturer. Fittings from other sources are not acceptable.
- P. Extend power wiring from fused disconnect to electrical junction box on unit.
 - 1. Install thermostat or sensor in indicated location, provide line or low voltage wiring from thermostat to electrical junction box on unit.
 - 2. Comply with Division 26 specifications for wiring.
- Q. All fittings shall be accessible for maintenance.
- R. Acceptable tube spacing: 6" to 12" O.C.
 - 1. When underfloor tubing is routed adjacent to an exterior wall having an excess of 30% glass area, tubing spacing shall be 6" o.c. within 12" of exterior wall.
- S. When installing the tubing the joint must be made immediately or capped with tape to seal the tube from contaminants.
- T. All circuits will be labeled and marked as supply and return. The contractor will submit a record of actual tube circuit length for final balancing purposes.

3.5 FIELD QUALITY CONTROL

- A. Prepare radiant-heating piping for testing as follows:
 - 1. Open all isolation valves and close bypass valves.
 - 2. Open and verify operation of zone control valves.
 - 3. Flush with clean water and clean strainers.
- B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Leak Test: After installation, charge system and test for leaks. Subject piping to hydrostatic test pressure that is not less than 1.5 times the design pressure but not more than 100 psig. Repair leaks and retest until no leaks exist.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

- C. Radiant-heating piping will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.
- E. Protect hydronic piping system from damage during construction.

END OF SECTION 23 83 16

This page intentionally left blank.

SECTION 26 05 00 COMMON WORK RESULTS FOR ELECTRICAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 DESCRIPTION

- A. Work to be performed under the sections of Division 26, 27 and 28 includes all labor, materials, and equipment required to install complete electrical systems as described in these specifications and as shown on the drawings. This section includes information common to two or more technical specification sections or items that are of a general nature, not conveniently fitting into other technical sections.
- B. Before submitting a bid, the Contractor shall examine the drawings and specifications, visit the work site, and be informed of local conditions, all federal, state, and local ordinances, regulations, and all other pertinent items which may affect cost, schedule, and completion of this project.
- C. Drawings accompanying these specifications are a part of these specifications. Drawings are intended to show general arrangement, design, and extent of work and are diagrammatic. Drawings are not intended to show exact locations except where dimensions are shown. Any substantial differences existing between drawings and conditions in the field shall be submitted to the Architect for consideration before proceeding with work. Electrical work is shown on plans using standard industry symbols.
- D. Before ordering materials or doing work, the Contractor shall verify all measurements pertaining to work scope and assume installation responsibility for complete and fully functional electrical systems.
- E. The electrical work included in all other divisions of this specification and related documents are the responsibility of the contractor performing the Division 26 and 27 and 28 work unless specifically noted otherwise.

1.3 REFERENCED STANDARDS

- A. Abbreviations of standards organizations referenced in this and other sections are as follows:
 - ANSI American National Standards Institute
 - ASTM American Society for Testing and Materials
 - EPA Environmental Protection Agency
 - ETL Electrical Testing Laboratories, Inc.

- IBC International Building Code
- IEEE Institute of Electrical and Electronics Engineers
- IES Illuminating Engineering Society
- ISA Instrument Society of America
- NBS National Bureau of Standards
- NEC National Electric Code
- NECA National Electrical Contractors Association
- NEMA National Electrical Manufacturers Association
- NESC National Electrical Safety Code
- NFPA National Fire Protection Association
- UL Underwriters Laboratories Inc.

1.4 QUALITY ASSURANCE

- A. Manufacturer references used herein are intended to establish a level of quality and performance requirements unless more explicit restrictions are stated to apply.
- B. Where equipment or accessories are used which differ in arrangement, configuration, dimensions, ratings, or engineering parameters from those indicated on the contract documents, the contractor is responsible for all costs involved in integrating the equipment or accessories into the system and the assigned space and for obtaining the performance from the system into which these items are placed.
- C. All materials shall be listed by and shall bear the label of an approved electrical testing laboratory. If none of the approved electrical testing laboratories has published standards for a particular item, then other national independent testing standards, subject to approval by the Engineer, shall apply and such items shall bear those labels. Where one of the approved electrical testing laboratories has an applicable system listing and label, the entire system shall be so labeled. The Contractor shall not modify new equipment in such a way as to nullify the Testing Laboratories label. All equipment and materials shall be used or installed in accordance with any instruction included in the listing by the laboratory.

1.5 DEFINITIONS

- A. ATS: Acceptance Testing Specifications.
- B. BACnet: A networking communication protocol that complies with ASHRAE 135.
- C. BAS: Building automation system.

- D. CCT: Correlated color temperature.
- E. CPT: Control power transformer.
- F. CRI: Color-rendering index.
- G. Data Bus: Two wires used to communicate with bus connected devices.
- H. Direct Buried: Duct or a duct bank that is buried in the ground, without any additional casing materials such as concrete.
- I. Duct: A single duct or multiple ducts. Duct may be either installed singly or as component of a duct bank.
- J. Duct Bank: Two or more ducts installed in parallel, with or without additional casing materials and or multiple duct bank.
- K. EMI: Electromagnetic interference.
- L. EMT: Electrical metallic tubing.
- M. Ethernet: Local area network based on IEEE 802.3 standards.
- N. Existing to Remain: Existing items of construction that are not to be removed and that are not otherwise indicated to be removed, removed, and salvaged, or removed and reinstalled.
- O. FMG: Factory Mutual Group.
- P. GFCI: Ground-Fault Circuit Interrupter.
- Q. IBC: International Building Code.
- R. ICC-ES: ICC-Evaluation Service.
- S. IGBT: Insulated-gate bipolar transistor.
- T. Illuminance: The metric most used to evaluate lighting systems. It is the density of luminous flux, or flow of light, reaching a surface divided by the area of that surface.
- 1. Horizontal Illuminance: Measurement in foot-candles (lux), on a horizontal surface 36 inches (914 mm) above ground unless otherwise indicated.
- 2. Target Illuminance: Average maintained illuminance level, calculated by multiplying initial illuminance by LLF.
- 3. Vertical Illuminance: Measurement in foot-candles (lux), in four directions on a vertical surface, at an elevation coinciding with plane height of horizontal measurements.
- U. IMC: Intermediate metal conduit.

- V. I/O: Input/output.
- W. IP: Internet protocol.
- X. IP Code: Required ingress protection to comply with IEC 60529.
- Y. Jacket: A continuous nonmetallic outer covering for conductors or cables.
- Z. KY Pulse: A term used by the metering industry to describe a method of measuring consumption of electricity that is based on a relay changing status in response to the rotation of the disk in the meter.
- AA. LAN: Local area network; sometimes plural as "LANs."
- BB. LCD: Liquid crystal display.
- CC. LED: Light-emitting diode.
- DD. Legally Required: As used in this Section, it shall have the same meaning as used in NFPA 70.
- EE. LER: Luminaire efficacy rating.
- FF. LLF: Light loss factor, which is the product of all factors that contribute to light loss in the system.
- GG. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or remote-control, signaling and power-limited circuits.
- HH. Lumen: Measured output of lamp and luminaire, or both.
- II. Luminaire: Complete lighting fixture, including ballast housing if integral.
- JJ. MCCB: Molded-case circuit breaker.
- KK. MCOV: Maximum continuous operating voltage.
- LL. Modbus TCP/IP: An open protocol for exchange of process data.
- MM. Mode(s), also Modes of Protection: The pair of electrical connections where the VPR applies.
- NN. Monitoring: Acquisition, processing, communication, and display of equipment status data, metered electrical parameter values, power quality evaluation data, event and alarm signals, tabulated reports, and event logs.
- OO. MOV: Metal-oxide varistor; an electronic component with a significant nonohmic current-voltage characteristic.
- PP. NC: Normally closed.

- QQ. NETA ATS: Acceptance Testing Specification.
- RR. NiCd: Nickel cadmium.
- SS. NO: Normally open.
- TT. OCPD: Overcurrent protective device.
- UU. One-Line Diagram: A diagram which shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used therein.
- VV. PC: Personal computer; sometimes plural as "PCs."
- WW. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
- XX. Plenum: A space forming part of the air distribution system to which one or more air ducts are connected. An air duct is a passageway, other than a plenum, for transporting air to or from heating, ventilating, or air-conditioning equipment.
- YY. Protective Device: A device that senses when an abnormal current flow exists and then removes the affected portion from the system.
- ZZ. PWM: Pulse-width modulated.
- AAA. RFI: Radio-frequency interference.
- BBB. RMC: Rigid metal conduit.
- CCC. rms: Root-mean-square value of alternating voltage, which is the square root of the mean value of the square of the voltage values during a complete cycle.
- DDD. RS-232: A TIA standard for asynchronous serial data communications between terminal devices.
- EEE. RS-485: A serial network protocol, similar to RS-232, complying with TIA-485-A
- FFF. SCR: Silicon-controlled rectifier.
- GGG. SCCR: Short-circuit current rating.
- HHH. Service: The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.
- III. Sheath: A continuous metallic covering for conductors or cables.
- JJJ. SPD: Surge protective device.
- KKK. SPDT: Single pole, double throw.

- LLL. STC: Standard Test Conditions defined in IEC 61215.
- MMM. SVR: Suppressed voltage rating.
- NNN. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.
- OOO. TDD: Total demand (harmonic current) distortion (also listed as "THD" in catalog data by manufacturers).
- PPP. THD: Total harmonic distortion.
- QQQ. THD(V): Total harmonic voltage demand.
- RRR. TVSS: Transient voltage surge suppressor.
- SSS. UG: Uniformity gradient; the rate of change of illuminance on the playing field, expressed as a ratio between the illuminances of adjacent measuring points on a uniform grid.
- TTT. UTP: Unshielded twisted pair.
- UUU. VFD Variable frequency drive or motor controller.
- VVV. Zone: A fixture or group of fixtures controlled simultaneously as a single entity. Also known as a "channel."

1.6 REGULATORY REQUIREMENTS

- A. All work and materials are to conform in every detail to applicable rules and requirements of local codes and regulations, the National Electrical Code (NFPA 70), other applicable National Fire Protection Association codes, and current manufacturing standards (including NEMA) and any additional local modifications enacted by the Local Authority Having Jurisdiction. Contractor shall be responsible to verify what if any local modifications are in place or enacted by the Local Authority Having Jurisdiction.
- B. All work shall be installed in accordance with NECA standards of installation.
- C. All work shall conform where applicable to the Williams-Steiger Occupational Safety and Health Act of 1970 (OSHA), Part 1910, "Occupational Safety and Health Standards." This shall include any local or state modifications enacted by the Authority having Jurisdiction.

1.7 OMISSIONS

A. No later than ten (10) days before bid opening, the Contractor shall call to the attention of the Architect any materials or apparatus the Contractor believes to be inadequate and to any necessary items of work omitted.

1.8 SUBMITTALS

- A. Refer to Division 01 for Submittal requirements.
- B. Submit for all equipment and systems as indicated in the respective specification sections, marking each submittal with that specification section number. Mark general catalog sheets and drawings to indicate specific items being submitted and proper identification of equipment by name or number, as indicated in the contract documents. Failure to do this may result in the submittal(s) being returned to the Contractor for correction and resubmission. Failing to follow these instructions does not relieve the Contractor from the requirement of meeting the project schedule.
- C. On request, the Contractor shall furnish additional drawings, illustrations, catalog data, performance characteristics, etc. to clarify intent of construction or operations.
- D. Submittals shall be grouped to include complete submittals of related systems, products, and accessories in a single submittal. Mark dimensions and values in units to match those specified. Include wiring diagrams of electrically powered equipment.
- E. The submittals must be approved before fabrication.

1.9 PROJECT/SITE CONDITIONS

- A. Install Work in locations shown on Drawings, unless prevented by Project conditions.
- B. Prepare drawings showing proposed rearrangement of work to meet Project conditions, including changes to work specified in other Sections. Obtain written permission of Architect before proceeding.
- C. Tools, materials, and equipment shall be confined to areas designated by the Construction Manager.

1.10 WORK SEQUENCE AND SCHEDULING

A. See the General Conditions of the Contract, Scheduling and Coordination of Work, and Time for Completion of the Project, and General Requirements, Mutual Responsibility for additional requirements.

1.11 WORK BY OTHER TRADES

- A. Every attempt has been made to indicate in this trade's specifications and drawings all work required of this Contractor. However, there may be additional specific paragraphs in other trade specifications and addenda, and additional notes on drawings for other trades which pertain to this Trade's work, and thus those additional requirements are hereby made a part of these specifications and drawings.
- B. Electrical details on drawings for equipment to be provided by others is based on preliminary design data only. This Contractor shall lay out the electrical work and shall be responsible for its correctness to match equipment provided by others.

1.12 OPERATING AND MAINTENANCE INSTRUCTIONS

A. Refer to Division 1, General Requirements, Operating and Maintenance Instructions for additional requirements.

1.13 TRAINING

- A. Instruct Owner's personnel in the proper operation and maintenance of systems and equipment provided as part of this project; video record all training sessions. Use the Operating and Maintenance manuals during this instruction. Demonstrate startup and shutdown procedures for all equipment. All training to be during normal working hours.
- B. The requirement for recording training sessions may be deleted on some projects but not the requirement for the training itself.
- C. Refer to other sections in Divisions 26, 27, and 28 for specific section and equipment training requirements.

1.14 RECORD DRAWINGS

A. Contractor shall provide drawings to document as-built conditions per Division 1.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Reference applicable sections within Divisions 26, 27 and 28.

PART 3 - EXECUTION

3.1 WORK INCLUDED

- A. The scope of work shall include all work, including all labor, materials and equipment, testing required to install a complete electrical system as indicated in the project Manual. The Project Manual consists of the bidding documents, the contract, specifications, contract drawings and all subsequent addenda and modifications. The contractor shall furnish and install all necessary materials, apparatus, and devices to complete the electrical equipment and systems installation herein specified, except such parts as are specifically exempted herein.
- B. All work items shown on the drawings is within the scope of work and shall be provided as indicated. Only items that are clearly indicated as being provided by others or under a separate contract shall be out of scope.
- C. In general, the specifications indicate the requirements and quality for products required and the executions for those products. Only items that are clearly indicated as being provided by others or under a separate contract shall be out of scope.

- D. If there is any discrepancy between the drawings and the specifications, it is the contractor's responsibility to notify the Architect for resolution, prior to procuring equipment or starting work.
- E. Coordinate and verify all equipment being supplied by equipment supplier and other trades. Verify equipment size, motor HP, dimensions, locations, etc. as all are subject to change.
- F. Contractor shall verify all door swings and the location of all cabinets, diffusers, HVAC, plumping, process and building equipment before installing electrical equipment, fixtures, outlets, and conduit.
- G. The Contractor shall provide all plywood backboards and supports for all electrical equipment as indicated on the drawings and as required or specified.
- H. All permits and inspection fees required to complete the work shall be paid for by the Contractor unless noted otherwise.
- I. All electrical equipment and fixtures shall be installed in complete accordance with the manufacturers' recommendations.
- J. Contractor shall provide all motor connections as shown on the drawings and as specified herein.

3.2 SITE WORK

A. The Contractor shall provide excavation and backfill for all electrical underground work as indicated on the drawings and as required. The Contractor shall perform this work and provide compaction as specified in Division 2. Finish grading and final restoration shall be by the General Contractor.

3.3 CONFIRMATION OF ELECTRIC SERVICE

- A. Consult with Electric Utility to verify service information specified herein and shown on drawings before submitting bid.
- B. The electrical service application shall be initiated by the Electrical Contractor. The owner shall pay for new electrical service equipment and installation. The contractor shall coordinate schedule and requirements with Owner and Utility Company.

<u>3.4</u> <u>PERMITS, FEES, TAXES, INSPECTIONS</u>

- A. Procure all applicable permits and licenses.
- B. Abide by all laws, regulations, ordinances, and other rules of the State or Political Subdivision where the work is done, or as required by any duly constituted public authority.
- C. ELECTRICAL CONTRACTOR to pay all charges for permits or licenses.
- D. Pay all fees and taxes imposed by State, Municipal, and other regulatory bodies.

- E. Pay all charges arising out of required inspections by an authorized body.
- F. Pay all charges arising out of required contract document reviews associated with the project and as initiated by the Owner or authorized agency/consultant.
- G. Where applicable, all fixtures, equipment and materials shall be listed by Underwriter's Laboratories, Inc., or a nationally recognized testing organization.

3.5 UTILITY COMPANY REQUIREMENTS

- A. Consult with Electric Utility regarding service entrance requirements and metering equipment.
- B. Install metering equipment and empty conduit for metering conductors to meet standards and requirements of Electric Utility.
- C. Refer to Specification Section 26 27 13 "Electricity Metering" for additional information.

3.6 SERVICE INSTALLATION

- A. The service installation shall comply with the latest applicable standards of the utility. Refer to the current electrical service installation manuals.
- B. The Contractor shall meet with the electric utility prior to rough-in to review and coordinate the installation of the electrical service and verify existing conditions and special requirements.

3.7 BUILDING ACCESS

A. Arrange for the necessary openings in the building to allow for admittance of all apparatus. When the building access was not previously arranged and must be provided by this contractor, restore any opening to its original condition after the apparatus has been brought into the building.

3.8 EQUIPMENT ACCESS

A. Install all piping, conduit, ductwork, and accessories to permit access to equipment for maintenance. Coordinate the exact location of wall and ceiling access panels and doors with the General Contractor, making sure that access is available for all equipment and specialties. Where access is required in plaster or drywall walls or ceilings, furnish the access doors to the General Contractor and reimburse the General Contractor for installation of those access doors.

3.9 COORDINATION

A. The Contractor shall cooperate with other trades and the Owner's construction representative in locating work in a proper manner. Should it be necessary to raise or lower or move longitudinally any part of the electrical work to better fit the general installation, such work shall be done at no extra cost, provided such decision is reached prior to actual installation. The Contractor shall check location of electrical outlets with respect to other installations before installing.

- B. The Contractor shall verify that all devices are compatible for the surfaces on which they will be used. This includes, but is not limited to, light fixtures, panelboards, devices, etc. and recessed or semi-recessed heating units installed in/on architectural surfaces.
- C. Coordinate all work with other trades prior to installation. Any installed work that is not coordinated and that interferes with another trades work shall be removed or relocated at the installing contractor's expense.

3.10 HOUSEKEEPING AND CLEAN UP

A. Refer to Division 1, General Requirements, and Cleaning for additional requirements.

END OF SECTION 26 05 00

This page intentionally left blank.

SECTION 26 05 02 ELECTRICAL DEMOLITION AND ALTERATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this section.
- B. Section 26 05 00 "Common Work Results for Electrical."
- C. NFPA 70 National Electrical Code.

1.2 COORDINATION

A. Coordinate sequencing with Owner and other Contractors. Coordinate scope of work with all other Contractors and the Owner at the project site. Schedule removal of equipment and electrical service to avoid conflicts.

1.3 SUMMARY

- A. Electrical Demolition.
- B. The drawings are intended to indicate the scope of work required and do not indicate every box, conduit, or wire that must be removed. The Contractor shall visit the site prior to submitting a bid and verify existing conditions.

1.4 CONTINUITY OF EXISTING SERVICES AND SYSTEMS

- A. No outages shall be permitted on existing systems except at the time and during the interval specified by the Owner. The Owner may require written approval. Any outage must be scheduled when the interruption causes the least interference with normal Owner schedules and business routines. No extra costs will be paid to the Contractor for such outages which must occur outside of regular weekly working hours.
- B. This Contractor shall restore any circuit interrupted as a result of this work to proper operation as soon as possible. Note that facility operations are on a seven-day week schedule.
- C. Prior to demolition or alteration of structures, the following shall be accomplished:
 - 1. Owner release of structure.
 - 2. Disconnection of electrical power to utilization equipment and circuits removed or affected by demolition work.
 - 3. Electrical services rerouted or shut off outside area of demolition.
 - 4. Survey and record condition of existing facilities to remain in place that may be affected by demolition operations. After demolition operations are completed, survey conditions again and restores existing facilities to their predemolition condition.

- 5. Notify utilities prior to razing operations to permit them to disconnect and remove or relocate equipment that served existing facilities.
- 6. Contractor shall notify Architect/Engineer of existing code violations observed during the course of performing his work. If corrective action needs to be taken that changes the scope of the work, corrective action to proceed only after approved by Architect/Engineer.
- 7. Provide temporary wiring and connections to maintain existing systems in service during construction. Assume all equipment and systems must remain operational unless specifically noted otherwise on drawings.
- 8. Existing Electrical Service: Maintain existing system in service until new system is completed and ready for service. Disable system only to make switchovers and connections. Obtain permission no fewer than seven days in advance of proposed interruption of electric service before partially or completely disabling system. Minimize outage duration. If required, make temporary connections to maintain service in areas adjacent to work area. Do not proceed with interruption of electric service without Owner's written permission.
- 9. Existing Fire Alarm System: Maintain existing system in service until new system is accepted. Disable system only to make switchovers and connections. Obtain permission and no fewer than seven days in advance of proposed interruption of Fire Alarm System before partially or completely disabling systems. Minimize outage duration. If required, make temporary connections to maintain service in areas adjacent to work area. Do not proceed with interruption without Owner's written permission.

PART 2 - PRODUCTS

- 2.1 MATERIALS AND EQUIPMENT
- A. Materials and equipment for patching and extending work as specified in the individual Sections.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that abandoned wiring and equipment serve only abandoned equipment or facilities. Extend conduit and wire to facilities and equipment that will remain in operation following demolition. Extension of conduit and wire to equipment shall be compatible with the surrounding area.

3.2 PREPARATION

- A. Where walls, ceilings, structures, etc., are indicated as being renovated and/or removed on general drawings, the Contractor shall be responsible for the removal of all electrical equipment, devices, fixtures, raceways, wiring, systems, etc., from the removed area.
- B. Where ceilings, walls, structures, etc., are temporarily removed and replaced by others, this Contractor shall be responsible for the removal, storage, and replacement of equipment, devices, fixtures, raceways, wiring, systems, etc.

3.3 DEMOLITION AND EXTENSION OF EXISTING ELECTRICAL WORK

- A. Disconnect abandoned outlets and remove devices. Remove abandoned outlets if conduit servicing them is abandoned and removed. Provide blank cover for abandoned outlets which are not removed. Patch openings created from removal of devices to match surrounding finishes.
- B. Repair adjacent construction and finishes damaged during demolition and extension work. Patch openings to match existing surrounding finishes.
- C. Maintain access to existing electrical installations which remain active. Modify installation or provide access panel as appropriate.
- D. Extend existing installations using materials and methods compatible with existing electrical installations, or as specified. This includes the extension of the circuit from the last active device to the next device in the system to be activated.
- E. Equipment removal in certain locations may require the installation of a junction box to reconnect circuits that remain in operation. Extend conduit and wiring as required to maintain power to remaining equipment.
- F. Contractor shall remove and install all ceiling tiles as required for the execution of electrical work that is outside the contract limits of construction. Contractor shall replace ceiling tiles with identical material where damaged by this Contractor.
- G. Regulatory Requirements: Comply with governing EPA notification regulations before beginning demolition. Comply with hauling and disposal regulations of authorities having jurisdiction.
- H. Ballasts in light fixtures installed prior to 1980 shall be incinerated in EPA approved incinerator or disposed of in EPA certified containers and deposited in an EPA landfill certified for PCB disposal or recycled by permitted ballast recycler. Punctured or leaking ballasts must be disposed of according to Federal Regulations under the Toxic Substance Control Act. Provide Owner and Architect/Engineer with a Certificate of Destruction to verify proper disposal.
- I. HID and fluorescent lamps, determined by the Toxicity Characteristic Leachate procedure (TCLP), to be hazardous waste shall be disposed of in a permitted hazardous waste disposal facility or by a permitted lamp recycler.
- J. Floor slabs may contain conduit systems. This Contractor is responsible for taking any measures required to ensure no conduits or other services are damaged. This includes x-ray or similar non-destructive means.
- K. Contractor is responsible for <u>all</u> costs incurred in repair, relocations, or replacement of any cables, conduits, or other services if damaged without proper investigation.

3.4 CLEANING AND REPAIR

A. Clean and repair existing materials and equipment that remain or are to be reused.

- B. Panelboards: Within the project scope. Clean exposed surfaces and check tightness of electrical connections. Replace damaged circuit breakers and provide closure plates for vacant positions. Provide typed circuit directory showing revised circuiting arrangement.
- C. Luminaries: Remove existing luminaires for cleaning. Use mild detergent to clean all exteriors and interior surface, rinse with clean water and wipe dry. Replace lamps, ballasts, and broken electrical parts. Replacement parts shall match specified components for new fixtures of same type when applicable.
- D. Electrical items (i.e., lighting fixtures, panelboard motor controllers, disconnects, switches, conduit, wire, etc.) Removed and not relocated remain the property of the owner. The contractor shall dispose of material the owner does not want.

3.5 ASBESTOS REMOVAL

A. If this Contractor shall discover the presence of asbestos material, he shall cease work immediately and notify Owner architect and Engineer of condition.

3.6 INSTALLATION

A. Install relocated materials and equipment under the provisions of Division 26 Specifications.

END OF SECTION 26 05 02

SECTION 26 05 19 LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.
- 1.2 SUMMARY
- A. Section Includes:
 - 1. Building wires and cables rated 600 V and less.
 - 2. Control Circuit Conductors.
 - 3. Connectors, splices, and terminations rated 600 V and less.
- 1.3 ACTION SUBMITTALS
- A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 CONDUCTORS AND CABLES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Alpha Wire.
 - 2. Belden Inc.
 - 3. Encore Wire Corporation.
 - 4. General Cable Technologies Corporation.
 - 5. Southwire Incorporated.
- B. Copper Conductors: Comply with NEMA WC 70/ICEA S-95-658.
- C. Conductor Insulation: Comply with NEMA WC 70/ICEA S-95-658 for Type THHN-THWN-2 or.
- D. Multiconductor Cable: Comply with NEMA WC 70/ICEA S-95-658 for Type SO with ground wire.
- E. Conductor sizes shown on drawings are based on 75 Degree C copper.
- F. All conductors shall be rated 600 volts.
- G. Branch circuit wire sizes not shown on the drawings shall be #12 AWG minimum.

- H. All NEC 700 emergency system wiring shall be installed in raceways separate from other systems.
- 2.2 CONTROL-CIRCUIT CONDUCTORS
- A. Class 1 Control Circuits: Stranded copper, Type THHN-2-THWN-2, in raceway, complying with UL 83.
- B. Class 2 Control Circuits: Stranded copper, Type THHN-2-THWN-2, in raceway, complying with UL 83.
- C. Class 3 Remote-Control and Signal Circuits: Stranded copper, Type THHN-2-THWN-2, in raceway, complying with UL 83.

2.3 CONNECTORS AND SPLICES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. AFC Cable Systems, Inc.
 - 2. Gardner Bender.
 - 3. Hubbell Power Systems, Inc.
 - 4. Ideal Industries, Inc.
 - 5. Ilsco; a branch of Bardes Corporation.
 - 6. NSi Industries LLC.
 - 7. O-Z/Gedney; a brand of the EGS Electrical Group.
 - 8. Thomas and Betts Corp.
 - 9. 3M; Electrical Markets Division.
 - 10. Tyco Electronics.
- B. Description: Factory-fabricated connectors and splices of size, ampacity rating, material, type, and class for application and service indicated.
 - 1. Split Bolt Connectors: Not acceptable.
 - 2. Solderless Pressure Connectors: High copper alloy terminal. May be used only for cable termination to equipment pads or terminals. Not approved for splicing.
 - 3. Spring Wire Connectors: Solderless spring type pressure connector with insulating covers for copper wire splices and taps. Use for conductor sizes 10 AWG and smaller.
 - 4. All wire connectors used in underground or exterior pull boxes shall be gel filled twist connectors or a connector designed for damp and wet locations.
 - 5. Mechanical Connectors: Bolted type tin-plated; high conductivity copper alloy; spacer between conductors; beveled cable entrances.
 - 6. Compression (crimp) Connectors: Long barrel; seamless, tin-plated electrolytic copper tubing; internally beveled barrel ends. Connector shall be clearly marked with the wire size and type and proper number and location of crimps.

2.4 SYSTEM DESCRIPTION

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

- A. Feeders: Copper. Solid or stranded for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
- B. Branch Circuits: Copper. Solid or stranded for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
- 3.2 <u>CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND</u> <u>WIRING METHODS</u>
- A. Service Entrance: Type THHN-THWN-2, single conductors in raceway.
- B. Exposed Feeders: Type THHN-THWN-2, single conductors in raceway.
- C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspaces: Type THHN-THWN-2, single conductors in raceway or Type XHHW-2, single conductors in raceway.
- D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN-2, single conductors in raceway or Type XHHW-2, single conductors in raceway.
- E. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN-THWN-2, single conductors in raceway.
- F. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN-THWN-2, single conductors in raceway.
- G. Cord Drops and Portable Appliance Connections: Type SO, hard service cord with stainless-steel, wire-mesh, strain relief device at terminations to suit application.
- H. VFD Output Circuits: Type XHHW-2 in metal conduit.

3.3 INSTALLATION OF FEEDERS AND BRANCH CIRCUITS

- A. Feeder and branch circuit routing is shown diagrammatically on the drawings and is approximate unless dimensioned. Route feeders and branch circuits as required to meet project conditions.
- B. All 120- and 277-volt branch circuits shall have a dedicated neutral conductor. The neutral conductor shall be considered current-carrying conductor for wire derating. The use of multi-wire branch circuits with a common neutral is **not** permitted.

- C. Use No 10 AWG conductors for 20 ampere, 120 volt branch circuit home runs longer than 75 feet, and for 20 ampere, 277 volt branch circuit home runs longer than 200 feet.
- D. All power wiring shall be installed in conduit unless specifically indicated otherwise. Low voltage cable (less than 100 volts) may be installed without conduit. Low voltage cables in ducts, plenums and other air-handling spaces shall be plenum listed.
- E. Conceal feeders and branch circuits in finished walls, ceilings, and floors, unless otherwise indicated.
- F. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.
- G. Complete raceway installation between conductor and cable termination points according to Section 26 05 33 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.
- H. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- I. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips that will not damage cables or raceway.
- J. Install exposed feeders and branch circuits parallel and perpendicular to surfaces of exposed structural members and follow surface contours where possible.
- K. Install exposed cables parallel and perpendicular to surfaces of exposed structural members and follow surface contours where possible.
- L. Support feeders and branch circuits according to Division 26 Section "Hangers and Supports for Electrical Systems."
- M. Support cables according to Division 26 Section "Hangers and Supports for Electrical Systems."

3.4 CONNECTIONS

- A. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
- B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
- C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches of slack.
- 3.5 IDENTIFICATION
- A. Identify and color-code conductors and cables according to Section 26 05 53 "Identification for Electrical Systems."
B. Identify each spare conductor at each end with identity number and location of other end of conductor and identify as spare conductor.

3.6 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors for compliance with requirements.
 - 2. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 3. Perform insulation-resistance test, with respect to ground and adjacent conductors, on each conductor of power feeders 100 amperes or greater. Applied potential shall be 1000 volts dc for 600 volt rated cable. Test duration shall be one minute. Insulating-resistance values should not be less than 50 megohms.
 - 4. Any conductors that fail the above-mentioned tests shall be replaced and those new conductors shall be tested and meet the requirements mentioned above.
- B. Test and Inspection Reports: Prepare a written report to record the following:
 - 1. Procedures used.
 - 2. Results that comply with requirements.
 - 3. Results that do not comply with requirements and corrective action taken to achieve compliance with requirements.
- C. Cables will be considered defective if they do not pass tests and inspections.

END OF SECTION 26 05 19

This page intentionally left blank.

SECTION 26 05 26 GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes grounding and bonding systems and equipment, plus the following special applications:
- 1.3 ACTION SUBMITTALS
- A. Product Data: For each type of product indicated.

1.4 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Burndy; Part of Hubbell Electrical Systems.
 - 2. ERICO International Corporation.
 - 3. ILSCO.
 - 4. O-Z/Gedney; A Brand of the EGS Electrical Group.

2.2 CONDUCTORS

- A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.
- B. Bare Copper Conductors:
 - 1. Solid Conductors: ASTM B 3.
 - 2. Stranded Conductors: ASTM B 8.

- C. Copper Bonding Conductor sizes and types below are typical. Adjust to suit project conditions and requirements.
 - 1. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
 - 2. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 - 3. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

2.3 CONNECTORS

- A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
- B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy.
- C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.
- D. Bus-Bar Connectors: Mechanical type, cast silicon bronze, solderless compression-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

2.4 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad steel;3/4 inch by 10 feet.

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Conductors: Comply with Division 26 Section 26 05 19 Low Voltage Electrical Power Conductors and Cables.
- B. Coordinate "Underground Grounding Conductors" Paragraph below with Drawings and with Section 26 05 43 "Underground Ducts and Raceways for Electrical Systems."
- C. Grounding Bus: Install in electrical equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 - 1. Install bus horizontally, on insulated spacers 2 inches minimum from wall, 6 inches above finished floor unless otherwise indicated.
- D. Conductor Terminations and Connections:
 - 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 - 2. Underground Connections: Welded connectors.
 - 3. Connections to Ground Rods at Test Wells: Bolted connectors.
 - 4. Connections to Structural Steel: Welded connectors.

3.2 GROUNDING AT THE SERVICE

A. Equipment grounding conductors and grounding electrode conductors shall be connected to the ground bus. Install a main bonding jumper between the neutral and ground buses.

3.3 GROUNDING SEPARATELY DERIVED SYSTEMS

A. Generator: Install grounding electrode(s) at the generator location. The electrode shall be connected to the equipment grounding conductor and to the frame of the generator.

3.4 EQUIPMENT GROUNDING

- A. Install insulated equipment grounding conductors with all feeders and branch circuits.
- B. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to ductmounted electrical devices operating at 120 V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.
- C. Water Heater, Heat-Tracing, and Antifrost Heating Cables: Install a separate insulated equipment grounding conductor to each electric water heater and heat-tracing cable. Bond conductor to heater units, piping, connected equipment, and components.
- D. Isolated Equipment Enclosure Circuits: For designated equipment supplied by a branch circuit or feeder, isolate equipment enclosure from supply circuit raceway with a nonmetallic raceway fitting listed for the purpose. Install fitting where raceway enters enclosure and install a separate insulated equipment grounding conductor. Isolate conductor from raceway and from panelboard grounding terminals. Terminate at equipment grounding conductor terminal of the applicable derived system or service unless otherwise indicated.

3.5 INSTALLATION

- A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
- B. Ground Rods: Drive rods until tops are 12 inches below finished floor or final grade unless otherwise indicated.
 - 1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.
 - 2. For grounding electrode system, install at least two rods spaced at least 20 feet from each other and located at least the same distance from other grounding electrodes, and connect to the service grounding electrode conductor.
- C. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except were routed through short lengths of conduit.

- 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
- 2. Bonding to Équipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
- 3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.
- D. Grounding and Bonding for Piping:
 - 1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
 - 2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
 - 3. Bond each above ground portion of gas piping system downstream from equipment shutoff valve.

3.6 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 - 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
 - 3. Test completed grounding system at each location where a maximum groundresistance level is specified, at service disconnect enclosure grounding terminal, and at individual ground rods. Make tests at ground rods before any conductors are connected.
 - a. Measure ground resistance no fewer than two full days after last trace of precipitation and without soil being moistened by any means other than natural drainage or seepage and without chemical treatment or other artificial means of reducing natural ground resistance.
 - b. Perform tests by fall-of-potential method according to IEEE 81.
- C. Grounding system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.
- E. Report measured ground resistances that exceed the following values:

- 1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.
- 2. Power Distribution Units or Panelboards Serving Electronic Equipment: 3 ohm(s).
- F. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION 26 05 26

This page intentionally left blank.

SECTION 26 05 29 HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL (Not Applicable)

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Hangers and supports for electrical equipment and systems.
 - 2. Construction requirements for concrete bases.

1.3 PERFORMANCE REQUIREMENTS

- A. Provide supports for multiple raceways capable of supporting combined weight of supported systems and its contents.
- B. Provide equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
- C. Rated Strength: Adequate in tension, shear, and pullout force to resist maximum loads calculated or imposed for this Project, with a minimum structural safety factor of two times the applied force.

1.4 COORDINATION

A. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified together with concrete Specifications.

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

- A. Steel Slotted Support Systems: Comply with MFMA-4, factory-fabricated components for field assembly.
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Allied Tube & Conduit.
 - b. Cooper B-Line, Inc.; a division of Cooper Industries.
 - c. ERICO International Corporation.
 - d. Unistrut; Tyco International, Ltd.

- e. Wesanco, Inc.
- 2. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
- 3. Channel Dimensions: Selected for applicable load criteria.
- B. Raceway and Cable Supports: As described in NECA 1 and NECA 101.
- C. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
- D. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for non-armored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be malleable iron.
- E. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
- F. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 - 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) Hilti Inc.
 - 2) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 - 3) MKT Fastening, LLC.
 - 4) Simpson Strong-Tie Co., Inc.; Masterset Fastening Systems Unit.
 - 2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete with tension, shear, and pullout capacities appropriate for supported loads and building materials in which used. Plastic type expansion anchors are unacceptable.
 - a. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) Cooper B-Line, Inc.; a division of Cooper Industries.
 - 2) Empire Tool and Manufacturing Co., Inc.
 - 3) Hilti Inc.
 - 4) ITW Ramset/Red Head; a division of Illinois Tool Works, Inc.
 - 5) MKT Fastening, LLC.

- 3. Concrete Inserts: Steel or malleable-iron, slotted support system units similar to MSS Type 18; complying with MFMA-4 or MSS SP-58.
- 4. Clamps for Attachment to Steel Structural Elements: MSS SP-58, type suitable for attached structural element.
- 5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
- 6. Toggle Bolts: All-steel springhead type.
- 7. Hanger Rods: Threaded steel.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

A. Description: Welded or bolted, structural-steel shapes, shop, or field fabricated to fit dimensions of supported equipment.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with NECA 1 and NECA 101 for application of hangers and supports for electrical equipment and systems except if requirements in this Section are stricter.
- B. Maximum Support Spacing and Minimum Hanger Rod Size for Raceway: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch in diameter.
- C. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 - 1. Secure raceways and cables to these supports with single-bolt conduit clamps.
- D. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings and for fastening raceways to trapeze supports.
- E. All supports installed outside, exposed to the weather, or inside in wet or damp areas shall utilize corrosion resistant supports, fittings, hardware, conduit clamps and all accessories.

3.2 SUPPORT INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this Article.
- B. Raceway Support Methods: In addition to methods described in NECA 1, EMT, IMC, and RMC may be supported by openings through structure members, as permitted in NFPA 70.
- C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading

limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.

- D. All electrical fixtures, devices, and equipment shall be securely mounted to building structure and shall not depend upon ceiling or wall surfaces for their support. They shall be incapable of being rotated or displaced.
- E. Do not fasten supports to piping, ductwork, mechanical equipment, cable tray, conduit, or any other surface not a part of the building structure or other structural surface.
- F. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 - 1. To Wood: Fasten with lag screws or through bolts.
 - 2. To New Concrete: Bolt to concrete inserts.
 - 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 - 4. To Existing Concrete: Expansion anchor fasteners.
 - 5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
 - 6. To Steel: Beam clamps (MSS Type 19, 21, 23, 25, or 27) complying with MSS SP-69.
 - 7. To Light Steel: Sheet metal screws.
 - 8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate.
- G. Drill holes for expansion anchors in concrete at locations and to depths that avoid reinforcing bars.
- H. Do not drill or weld structural steel members unless approved by Engineer.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

- A. Comply with installation requirements in Section 05 50 00 "Metal Fabrications" for sitefabricated metal supports.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.
- C. Field Welding: Comply with AWS D1.1/D1.1M.
- 3.4 CONCRETE BASES
- A. Construct concrete bases of dimensions indicated but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base. Minimum height 3.5 inches.

- B. Use 3000-psi, 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Section 03 30 00 "Cast-in-Place Concrete."
- C. Anchor equipment to concrete base.
 - 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.
- B. Touchup: Comply with requirements in Section 09 91 13 "Exterior Painting" Section 09 91 23 "Interior Painting" and for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.
- C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 26 05 29

This page intentionally left blank.

SECTION 26 05 33 RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal conduits and fittings.
 - 2. Nonmetallic conduits and fittings.
 - 3. Metal wireways and auxiliary gutters.
 - 4. Boxes, enclosures, and cabinets.
- B. Related Requirements:
 - 1. Division 7 for firestopping at conduit and box entrances.
 - 2. Section 26 05 43 "Underground Ducts and Raceways for Electrical Systems" for exterior ductbanks, manholes, and underground utility construction.

1.3 ACTION SUBMITTALS

- A. Product Data: For wireways and fittings, hinged-cover enclosures, and cabinets.
- 1.4 COORDINATION
- A. Coordinate layout and installation of raceways, boxes, enclosures, cabinets, and suspension system with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, fire-suppression system, and partition assemblies.

PART 2 - PRODUCTS

2.1 METAL CONDUITS AND FITTINGS

- A. Metal Conduit:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. AFC Cable Systems; a part of Atkore International.
 - b. Allied Tube & Conduit; a part of Atkore International.
 - c. Electri-Flex Company.
 - d. Republic Conduit.
 - e. Southwire Company.

- f. Thomas & Betts Corporation; A Member of the ABB Group.
- g. Western Tube and Conduit Corporation.
- h. Wheatland Tube Company.
- 2. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- 3. RMC: Comply with ANSI C80.1 and UL 6.
- 4. IMC: Comply with ANSI C80.6 and UL 1242.
- 5. EMT: Comply with ANSI C80.3 and UL 797.
- 6. FMC: Comply with UL 1; zinc-coated steel.
- 7. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.
- B. Metal Fittings:
 - 1. Comply with NEMA FB 1 and UL 514B.
 - 2. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 3. Fittings, General: Listed and labeled for type of conduit, location, and use.
 - 4. Fittings for EMT:
 - a. Material: Steel.
 - b. Type: Setscrew or compression.
 - 5. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651for PVC and type XJ for steel, rated for environmental conditions where installed, and including flexible external bonding jumper.
- C. Joint Compound for IMC, RMC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 NONMETALLIC CONDUITS AND FITTINGS

- A. Nonmetallic Conduit:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Champion Fiberglass, Inc.
 - b. Kraloy.
 - c. Lamson & Sessions; Carlon Electrical Products.
 - 2. RNC: Type EPC-40-PVC, complying with NEMA TC 2 and UL 651 unless otherwise indicated.
- B. Nonmetallic Fittings:
 - 1. Fittings, General: Listed and labeled for type of conduit, location, and use.
 - 2. Fittings for RNC: Comply with NEMA TC 3; match to conduit or tubing type and material.
 - 3. Solvents and Adhesives: As recommended by conduit manufacturer.

2.3 METAL WIREWAYS AND AUXILIARY GUTTERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. B-line, an Eaton business.
 - 2. Hoffman; a brand of Pentair Equipment Protection.
 - 3. MonoSystems, Inc.
 - 4. Square D.
- B. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1 unless otherwise indicated, and sized according to NFPA 70.
- C. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.
- D. Wireway Covers: Hinged type unless otherwise indicated.
- E. Finish: ANSI 61 Gray for steel wireways.

2.4 BOXES, ENCLOSURES, AND CABINETS

- A. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.
- B. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.
- C. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, deep-type, ferrous alloy, Type FD, with gasketed cover, threaded hubs.
- D. Nonmetallic Outlet and Device Boxes: Comply with NEMA OS 2 and UL 514C.
- E. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb. Outlet boxes designed for attachment of luminaires weighing more than 50 lb shall be listed and marked for the maximum allowable weight.
- F. Sheet Metal Pull and Junction Boxes: NEMA OS 1, galvanized steel.
- G. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, galvanized, cast iron with gasketed cover and stainless-steel cover screws.
 - 1. Flanged Type boxes shall be used where installed flush in wall.
- H. Box extensions used to accommodate new building finishes shall be of same material as recessed box.
- I. Device Box Dimensions: 4 inches square by 2-1/8 inches deep.
- J. Telecommunications and Security Device Box Dimensions: 4 11/16 inches square by 2-1/8 inches deep unless noted otherwise.

- K. Gangable boxes are prohibited.
- L. Accessories
 - 1. Fire rated Moldable pads: UL #9700, moldable sheet putty at required thickness on all five sides of back boxes. Acceptable manufacturers: Kinetics Noise Control, IsoBacker Pad, SSP Putty and Pads or equal.
 - 2. Sound Barrier Insulation Pads: Mastic, non-harding, sheet material, and minimum 1/8" thickness applied to all five sides of the back boxes. Acceptable manufacturers: Kinetics Noise Control, SealTight Backer Pad and L.H. Dottie Co., #68 or equal.

PART 3 - EXECUTION

3.1 RACEWAY SIZING

- A. Size conduit as shown on the drawings and specifications. Where not indicated in the contract documents, conduit size shall be according to NEC. (Latest Edition). Conduit and conductor sizing shall be coordinated to limit conductor fill to less than 40%, maintain conductor ampere capacity as required by the National Electrical Code (to include enlarged conductor's due to temperature and quantity derating values) and to prevent excessive voltage drop and pulling tension due to long conduit/conductor lengths.
- B. Minimum (Unless noted otherwise) Raceway Size 3/4-inch trade size. The use of ½ inch would be allowed for installation of conduit to individual light switches, individual receptacles, and individual fixture whips from junction boxes.
- C. Minimum Raceway Size Control Conduit: 1/2-inch, unless noted otherwise in documents.
- D. Minimum Raceway Size Telecommunication and Security Conduit: 1 inch, unless noted otherwise in documents.
- E. Minimum Raceway Size; Below Grade 5'-0" or less from Building Foundation: 1 inch, unless noted otherwise in documents.
- F. Minimum Raceway Size; Below Grade more than 5'-0" from Building Foundation: 1-inch, unless noted otherwise in documents.
- G. Conduit sizes shall change only at the entrance or exit to a junction box, unless specifically noted on the drawings.

3.2 RACEWAY APPLICATION

- A. Outdoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed Conduit: RMC.
 - 2. Concealed Conduit, Aboveground: RMC IMC EMT.
 - 3. Underground Conduit: Refer to Section 26 05 43.

- 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
- 5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.
- B. Indoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed, Not Subject to Physical Damage: EMT.
 - 2. Exposed, Not Subject to Severe Physical Damage: EMT.
 - 3. Exposed and Subject to Physical Damage: RMC. Raceway locations include the following:
 - a. Loading dock and Receiving.
 - b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units below 8'-0" AFF.
 - c. Vehicle Circulation Area, below 8'-0" AFF.
 - d. Vehicle Maintenance Bays, below 8'-0" AFF.
 - e. Mechanical service Bays 1309 below, 8'-0" AFF.
 - 4. In or under slabs on grade: RNC, Type EPC-40-PVC.
 - 5. Concealed in Ceilings and Interior Walls and Partitions: EMT.
 - 6. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
 - 7. Flexible Metal Conduit (FMC) ³/₄ inch, unless otherwise noted. Lighting branch circuit wiring to an individual luminaire. Flexible metal conduit may be a manufactured, UL listed 3/8-inch flexible metal conduit and fittings with #14 AWG THHN conductors and an insulated ground wire. Maximum length of 3/8 inch FMC shall be six (6) feet.
 - 8. Damp or Wet Locations: RMC.
- C. Raceway Fittings: Compatible with raceways and suitable for use and location.
 - 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
 - 2. EMT: Use setscrew or compression, steel fittings. Comply with NEMA FB 2.10.
 - 3. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.

3.3 BOXES AND ENCLOSURES APPLICATIONS

- A. Boxes and Enclosures:
 - 1. NEMA 250, Type 1, except use NEMA 250, Type 4 power coated steel in institutional and commercial kitchens and damp or wet locations.
 - 2. Dirty locations: NEMA 250, Type 12, powder coated steel.

3.4 INSTALLATION

A. Comply with requirements in Section 26 05 29 "Hangers and Supports for Electrical Systems" for hangers and supports.

- B. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.
- C. In general, conduits shall be installed concealed in walls, in finished spaces and where possible or practical, or as noted otherwise. In unfinished spaces, mechanical and utility areas, conduit may run either concealed or exposed as conditions dictate and as practical unless noted otherwise on drawings. Installation shall maintain headroom in exposed vicinities of pedestrian or vehicular traffic.
- D. Route conduit through roof openings provided for piping and ductwork where possible. If not provided or routing through provided openings is not possible, rough through jack with pitch pocket. Coordinate roof penetrations with others.
- E. Conduit runs shall be routed as shown on the large-scale drawings. Conduit routing on drawings scaled ¼" =1'-0" or less shall be considered diagrammatic, unless noted otherwise. The correct routing, when shown diagrammatically shall be chosen by the Contractor based on information provided in the contract documents, in accordance with manufacturer's written instructions, applicable coded, NECA 1 and NECA 101 and coordinated with other contractors.
- F. Do not install raceways or electrical items on any "explosion-relief" walls or rotating equipment.
- G. Do not fasten conduits onto the bottom side of a metal deck roof.
- H. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.
- I. Complete raceway installation before starting conductor installation.
- J. Install temporary closures to prevent foreign matter from entering raceways.
- K. Unused openings in boxes and fittings shall be plugged with suitable devices rated for the proper environment.
- L. Make bends and offsets so ID is not reduced. Keep legs of bends in the same plane and keep straight legs of offsets parallel, unless otherwise indicated.
- M. Arrange stub-ups so curved portions of bends are not visible above finished slab. Where rigid non-metallic conduit (RNC) conduit is used below grade, in slab, below slab, etc., a transition to rigid galvanized steel or PVC-coated steel conduit shall be installed before conduit exits the earth. The metallic conduit shall extend a minimum of 6" into the surface concealing the non-metallic conduit.
- N. Stub-Ups to Above Recessed Ceilings:
 - 1. Use EMT or RMC for raceways.
 - 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.

- O. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inches of changes in direction and within 12 inches of enclosures to which attached to.
- P. Make bends in raceway using large-radius preformed ells. Field bending shall be according to NFPA 70 minimum radii requirements. Use only equipment specifically designed for material and size involved.
- Q. Conceal conduit within finished walls, and ceilings, unless otherwise indicated. Install conduits parallel or perpendicular to building lines. Conduit runs installed above suspended ceilings shall be properly supported. In no case shall conduit rest on the suspended ceiling construction, nor utilize ceiling support system for conduit supports.
- R. Install exposed raceways parallel or at right angles to nearby surfaces or structural members and follow surface contours as much as possible.
 - 1. Run parallel or banked raceways together on common supports.
 - 2. Make parallel bends in parallel or banked runs. Use factory elbows only where elbows can be installed parallel; otherwise, provide field bends for parallel raceways.
- S. Install concealed raceways with a minimum of bends in the shortest practical distance, considering type of building construction and obstructions, unless otherwise indicated.
- T. Telecommunication Conduits:
 - 1. Conduits that protrude through the structural floor shall be installed 1 to 3" above finished floor (AFF).
 - 2. Conduits that enter into Telecommunications rooms below the finished ceiling shall terminate a minimum of 4-inches below ceiling and as close to the wall as possible
 - 3. Conduits that are below grade and enter the building shall terminate a minimum of 4-inches above finished floor (AFF) and as close to the wall as possible.
 - 4. Condit terminations shall have nylon bushings installed on each end of every conduit run.
 - 5. Telecommunication conduits shall have no more than two (2) 90-degree bends between pull points and contain no continuous sections longer than 100 feet. Insert pull points or pull boxes for conduits exceeding 100 feet in length. A third bend is acceptable if: The total run is no longer than (33) feet.
 - 6. The conduit size is increased to the next trade size.
 - 7. Telecommunications pull boxes shall not be used in lieu of a bend. Align conduits that enter into the pull box from the opposite ends with each other. Pull box size shall be twelve (12) times the diameter of the largest conduit. Slip sleeves or gutters can be used in place of a pull box.
 - 8. Conduit bend radius shall be six (6) times the diameter for conduits under 2inches and ten (10) times the diameter for conduits over 2-inches.
- U. Contractor shall be responsible for all openings required in masonry or exterior walls under this division. A qualified mason at the expense of this contractor shall repair all openings to match existing conditions.

3.5 CONDUIT TERMINATIONS

- A. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.
- B. Coat field-cut threads on PVC-coated raceway with a corrosion-preventing conductive compound prior to assembly.
- C. Join raceways with fittings designed and approved for that purpose and make joints tight.
- D. When raceways are terminated with locknuts and bushings, align raceways to enter squarely and install locknuts with dished part against box. Use two locknuts, one inside and one outside box.
- E. Where raceways are terminated with threaded hubs, screw raceways or fittings tightly into hub so end bears against wire protection shoulder. Where chase nipples are used, align raceways so coupling is square to box; tighten chase nipple so no threads are exposed.
- F. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.
- G. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.
- H. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.
- I. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.
- J. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.
- K. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.
- L. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.
- M. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:

- 1. Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
- 2. Where an underground service raceway enters a building or structure.
- 3. Conduit extending from interior to exterior of building.
- 4. Conduit extending into pressurized duct and equipment.
- 5. Conduit extending into pressurized zones that are automatically controlled to maintain different pressure set points.
- 6. Where otherwise required by NFPA 70.
- N. Comply with manufacturer's written instructions for solvent welding RNC and fittings.
- O. Expansion fittings shall be installed across expansion joints in structures and concrete construction where such joints are shown on the architectural and structural drawings.
- P. Expansion-Joint Fittings:
 - 1. Install in each run of above ground RNC that is located where environmental temperature change may exceed 30 deg F and that has straight-run length that exceeds 25 feet. Install in each run of above ground RMC and EMT conduit that is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 100 feet.
 - 2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 - a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.
 - b. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F temperature change.
 - 3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.
 - 4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
 - 5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.
- Q. Stub-up Connections: Extend conduits through concrete floor for connection to freestanding equipment. Install with an adjustable top or coupling threaded inside for plugs set flush with finished floor. Extend conductors to equipment with rigid steel conduit; FMC may be used 6 inches above the floor. Install screwdriver-operated, threaded plugs flush with floor for future equipment connections.
- R. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches of flexible conduit for recessed and semi-recessed luminaires, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 - 1. Use LFMC in damp or wet locations subject to severe physical damage.

2. Use LFMC in damp or wet locations not subject to severe physical damage.

3.6 BOX INSTALLATION

- A. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.
- B. Recessed Boxes in Masonry Walls: Saw-cut opening for box in corner of cell of masonry block and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.
- C. Locate and install boxes to allow access to them. Where installation is inaccessible, coordinate locations and provide 18 inch by 24 inch access doors.
- D. No back-to-back outlet boxes shall be installed.
 - 1. Provide a minimum horizontal separation of 6 inches between boxes installed on opposite sides of non-rated stud walls. When the minimum separation cannot be maintained, install sound insulation pads on all five sides of the back box in accordance with the manufacturer's instructions.
 - 2. Provide a minimum horizontal separation of 24 inches between boxes installed on opposite sides of fire-rated stud walls. When the minimum separation cannot be maintained, the box is greater than 16 square inches of the total box area (all trades) per 100 square feet is greater than or equal to 100 square inches, install fire-rated moldable pads on all five sides of the back box to maintain the fire rating of the wall. Install moldable pads in accordance with UL listing for the specific product. Sound insulation pads are not acceptable for use in fire-rated wall applications unless the product carries the necessary fire rating.
- E. Electrical box locations shown on drawings are approximate unless dimensioned. Verify location of floor boxes and outlets in offices and work areas prior to rough-in.
- F. No outlet shall be located where it will be obstructed by other equipment, piping, lockers, benches, counters, etc.
- G. It shall be the Contractor's responsibility to study drawings pertaining to other trades, to discuss location of outlets with workmen installing other piping and equipment and to fit all electrical outlets to job conditions.
- H. The proper location of each outlet is considered a part of this contract and no additional compensation will be paid to the Contractor for moving outlets which were improperly located.
- I. Coordinate mounting heights and locations of outlets mounted above counters, benches, and backsplashes.
- J. Horizontally separate boxes mounted on opposite sides of walls, so they are not in the same vertical channel.
- K. Locate boxes so that cover or plate will not span different building finishes.

- L. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.
- M. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.
- N. Install hinged-cover enclosures and cabinets plumb. Support at each corner.

3.7 PROTECTION

- A. Protect coatings, finishes, and cabinets from damage and deterioration.
 - 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 - 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 26 05 33

This page intentionally left blank.

SECTION 26 05 43 UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal conduits and fittings, including RMC.
 - 2. Rigid nonmetallic duct.
 - 3. Duct accessories.

PART 2 - PRODUCTS

- 2.1 METAL CONDUIT AND FITTINGS
- A. RMC: Comply with ANSI C80.1 and UL 6.
- 2.2 RIGID NONMETALLIC DUCT
- A. Underground Plastic Utilities Duct: Type EPC-80-PVC and Type EPC-40-PVC RNC, complying with NEMA TC 2 and UL 651, with matching fittings complying with NEMA TC 3 by same manufacturer as duct.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Allied Tube and Conduit; a part of Atkore International.
 - 2. CANTEX INC.
 - 3. Kraloy.
 - 4. Lamson & Sessions; Carlon Electrical Products.
 - 5. Thomas & Betts Corporation; A Member of the ABB GRoup.
- C. Solvents and Adhesives: As recommended by conduit manufacturer.
- 2.3 DUCT ACCESSORIES
- A. Duct Spacers: Factory-fabricated, rigid, PVC interlocking spacers; sized for type and size of duct with which used and selected to provide minimum duct spacing indicated while supporting duct during concreting or backfilling.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Coordinate layout and installation of duct, duct bank and boxes with final arrangement of other utilities, site grading, and surface features as determined in the field. Notify Architect if there is a conflict between areas of excavation and existing structures or archaeological sites to remain.
- B. Coordinate elevations of duct and duct-bank entrances into boxes with final locations and profiles of duct and duct banks, as determined by coordination with other utilities, underground obstructions, and surface features. Revise locations and elevations as required to suit field conditions and to ensure that duct and duct bank will drain to manholes and handholes, and as approved by Architect.

3.2 UNDERGROUND DUCT APPLICATION

- A. Duct for Electrical Feeders 600 V and Less: Type EPC-40-PVC RNC, direct-buried unless otherwise indicated.
- B. Duct for Electrical Branch Circuits: Type EPC-40-PVC RNC, direct-buried unless otherwise indicated.

3.3 EARTHWORK

- A. Excavation and Backfill: Comply with Section 31 20 00 "Earth Moving," but do not use heavy-duty, hydraulic-operated, compaction equipment.
- B. Restoration: Replace area after construction vehicle traffic in immediate area is complete.
- 3.4 DUCT AND DUCT-BANK INSTALLATION
- A. Where indicated on Drawings, install duct, spacers, and accessories into the duct-bank configuration shown. Duct installation requirements in this Section also apply to duct bank.
- B. Install duct according to NEMA TCB 2.
- C. Slope: Pitch duct a minimum slope of 1:300 down toward manholes and handholes and away from buildings and equipment. Slope duct from a high point between two manholes, to drain in both directions.
- D. Curves and Bends: Use 5-degree angle couplings for small changes in direction. Use manufactured long sweep bends with a minimum radius of 48 inches, both horizontally and vertically, at other locations unless otherwise indicated.
 - 1. Duct shall have maximum of two 90-degree bends or the total of all bends shall be no more 180 degrees between pull points.
- E. Joints: Use solvent-cemented joints in duct and fittings and make watertight according to manufacturer's written instructions. Stagger couplings so those of adjacent duct do not lie in same plane.

- F. Building Wall Penetrations: Make a transition from underground duct to RMC at least 5 feet outside the building wall, without reducing duct line slope away from the building and without forming a trap in the line. Use fittings manufactured for RNC-to-RMC transition. Install RMC penetrations of building walls as specified in Section 26 05 44 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."
- G. Sealing: Provide temporary closure at terminations of duct with pulled cables. Seal spare duct at terminations. Use sealing compound and plugs to withstand at least 15-psig hydrostatic pressure.
- H. Pulling Cord: Install 200-lbf- test nylon cord in empty ducts.
- I. Direct-Buried Duct and Duct Bank:
 - 1. Excavate trench bottom to provide firm and uniform support for duct. Comply with requirements in Section 31 20 00 "Earth Moving" for preparation of trench bottoms for pipes less than 6 inches in nominal diameter.
 - 2. Width: Excavate trench 12 inches wider than duct on each side.
 - 3. Width: Excavate trench 3 inches wider than duct on each side.
 - 4. Depth: Install top of duct at least 36 inches below finished grade unless otherwise indicated.
 - 5. Set elevation of bottom of duct bank below frost line.
 - 6. Install duct with a minimum of 3 inches between ducts for like services and 6 inches between power and communications duct.
 - 7. Elbows: Install manufactured duct elbows for stub-ups, at building entrances, and at changes of direction in duct direction unless otherwise indicated. Encase elbows for stub-up ducts throughout length of elbow.
 - 8. After installing first tier of duct, backfill and compact. Start at tie-in point and work toward end of duct run, leaving ducts at end of run free to move with expansion and contraction as temperature changes during this process. Repeat procedure after placing each tier. After placing last tier, hand place backfill to 4 inches over duct and hand tamp. Firmly tamp backfill around ducts to provide maximum supporting strength. Use hand tamper only. After placing controlled backfill over final tier, make final duct connections at end of run and complete backfilling with normal compaction. Comply with requirements in Section 31 20 00 "Earth Moving" for installation of backfill materials.
 - a. Place minimum 3 inches of sand as a bed for duct. Place sand to a minimum of 6 inches above top level of duct.
 - b. Place minimum 6 inches of engineered fill above concrete encasement of duct.

3.5 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Demonstrate capability and compliance with requirements on completion of installation of underground duct, duct bank, and utility structures.
 - 2. Pull solid aluminum or wood test mandrel through duct to prove joint integrity and adequate bend radii, and test for out-of-round duct. Provide a minimum 12-inch-

long mandrel equal to duct size minus 1/4 inch. If obstructions are indicated, remove obstructions and retest.

- B. Correct deficiencies and retest as specified above to demonstrate compliance.
- C. Pull leather-washer-type duct cleaner, with graduated washer sizes, through full length of duct until duct cleaner indicates that duct is clear of dirt and debris. Follow with rubber duct swab for final cleaning and to assist in spreading lubricant throughout ducts.

END OF SECTION 26 05 43

SECTION 26 05 44 SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
 - 2. Grout.
 - 3. Silicone sealants.
- B. Related Requirements:
 - 1. Division 7 "Penetration Firestopping" for penetration firestopping installed in fireresistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.3 SLEEVES

- A. Wall Sleeves:
 - 1. Steel Pipe Sleeves: ASTM A53/A53M, Type E, Grade B, Schedule 40, zinc coated, plain ends.
- B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.
- C. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.
- D. Sleeves for Rectangular Openings:
 - 1. Material: Galvanized sheet steel.
 - 2. Minimum Metal Thickness:
 - a. For sleeve cross-section rectangle perimeter less than 50 inches and with no side larger than 16 inches, thickness shall be 0.052 inch.
 - b. For sleeve cross-section rectangle perimeter 50 inches or more and one or more sides larger than 16 inches, thickness shall be 0.138 inch.

<u>1.4</u> <u>GROUT</u>

- A. Description: Nonshrink; recommended for interior and exterior sealing openings in nonfire-rated walls or floors.
- B. Standard: ASTM C1107/C1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

1.5 SILICONE SEALANTS

- A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.
 - 1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.
- B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, nonshrinking foam.

PART 2 - EXECUTION

2.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS

- A. Comply with NECA 1.
- B. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:
 - 1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 - a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 07 92 00 "Joint Sealants."
 - b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall, so no voids remain. Tool exposed surfaces smooth; protect material while curing.
 - 2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
 - 3. Size pipe sleeves to provide 1/4-inch annular clear space between sleeve and raceway or cable.
 - 4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.
 - 5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inches above finished floor level. Install sleeves during erection of floors.

- C. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
 - 1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.
 - 2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.
- D. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.
- E. Aboveground, Exterior-Wall Penetrations: Seal penetrations using cast-iron pipe sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals.
- F. Underground, Exterior-Wall and Floor Penetrations: Install cast-iron pipe sleeves. Size sleeves to allow for 1-inch annular clear space between raceway or cable and sleeve for installing sleeve-seal system.

END OF SECTION 26 05 44

This page intentionally left blank.

SECTION 26 05 53 IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Identification of power and control cables.
 - 2. Identification for conductors.
 - 3. Warning labels and signs.
 - 4. Instruction signs.
 - 5. Equipment identification labels.

1.3 QUALITY ASSURANCE

- A. Comply with ANSI A13.1.
- B. Comply with NFPA 70.
- C. Comply with 29 CFR 1910.144 and 29 CFR 1910.145.
- D. Comply with ANSI Z535.4 for safety signs and labels.
- E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

1.4 COORDINATION

- A. Coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and the Operation and Maintenance Manual; and with those required by codes, standards, and 29 CFR 1910.145. Use consistent designations throughout Project.
- B. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- C. Coordinate installation of identifying devices with location of access panels and doors.
- D. Install identifying devices before installing acoustical ceilings and similar concealment.

PART 2 - PRODUCTS

2.1 POWER AND CONTROL CABLE IDENTIFICATION MATERIALS

- A. Comply with ANSI A13.1 for minimum size of letters for legend and for minimum length of color field for each cable size.
- B. Vinyl Labels: Preprinted, flexible label laminated with a clear, weather- and chemicalresistant coating and matching wraparound clear adhesive tape for securing ends of legend label.
- C. Self-Adhesive, Self-Laminating Polyester Labels: Preprinted, 3-mil- thick flexible label with acrylic pressure-sensitive adhesive that provides a clear, weather- and chemical-resistant, self-laminating, protective shield over the legend. Labels sized to fit the cable diameter such that the clear shield overlaps the entire printed legend.
- D. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch, with stamped legend, punched for use with self-locking cable tie fastener.

2.2 CONDUCTOR IDENTIFICATION MATERIALS

- A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils thick by 1 to 2 inches wide.
- B. Self-Adhesive, Self-Laminating Polyester Labels: Preprinted, 3-mil- thick flexible label with acrylic pressure-sensitive adhesive that provides a clear, weather- and chemical-resistant, self-laminating, protective shield over the legend. Labels sized to fit the conductor diameter such that the clear shield overlaps the entire printed legend.
- C. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.

2.3 WARNING LABELS AND SIGNS

- A. Comply with NFPA 70 and 29 CFR 1910.145.
- B. Self-Adhesive Warning Labels: Factory-printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment unless otherwise indicated.
- C. Baked-Enamel Warning Signs:
 - 1. Preprinted aluminum signs punched or drilled for fasteners, with colors, legend, and size required for application.
 - 2. 1/4-inch grommets in corners for mounting.
- D. Metal-Backed, Butyrate Warning Signs:
 - 1. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs with 0.0396-inch galvanized-steel backing; and with colors, legend, and size required for application.
 - 2. 1/4-inch grommets in corners for mounting.
- E. Warning label and sign shall include, but are not limited to, the following legends:
 - 1. Multiple Power Source Warning: "DANGER ELECTRICAL SHOCK HAZARD -EQUIPMENT HAS MULTIPLE POWER SOURCES."

2.4 INSTRUCTION SIGNS

- A. Engraved, laminated acrylic or melamine plastic, minimum 1/16 inch thick for signs up to 20 sq. inches and 1/8 inch thick for larger sizes.
 - 1. Engraved legend with black letters on white face.
 - 2. Punched or drilled for mechanical fasteners.
 - 3. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.5 EQUIPMENT IDENTIFICATION LABELS

A. Engraved, Laminated Acrylic or Melamine Label: Punched or drilled for screw mounting. White letters on a dark-gray background. Minimum letter height shall be 3/8 inch.

2.6 CABLE TIES

- A. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, Type 6/6 nylon.
 - 1. Minimum Width: 3/16 inch.
 - 2. Tensile Strength at 73 deg F, According to ASTM D 638: 12,000 psi.
 - 3. Temperature Range: Minus 40 to plus 185 deg F.
 - 4. Color: Black except were used for color-coding.
- B. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self-extinguishing, one piece, self-locking, Type 6/6 nylon.
 - 1. Minimum Width: 3/16 inch.
 - 2. Tensile Strength at 73 deg F, According to ASTM D 638: 12,000 psi.
 - 3. Temperature Range: Minus 40 to plus 185 deg F.
 - 4. Color: Black.
- C. Plenum-Rated Cable Ties: Self-extinguishing, UV stabilized, one piece, self-locking.
 - 1. Minimum Width: 3/16 inch.
 - 2. Tensile Strength at 73 deg F, According to ASTM D 638: 7000 psi.
 - 3. UL 94 Flame Rating: 94V-0.
 - 4. Temperature Range: Minus 50 to plus 284 deg F.
 - 5. Color: Black.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Verify identity of each item before installing identification products.

- B. Apply identification devices to surfaces that require finish after completing finish work.
- C. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
- D. System Identification Color-Coding Bands for Raceways and Cables: Each color-coding band shall completely encircle cable or conduit. Place adjacent bands of two-color markings in contact, side by side. Locate bands at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.
- E. Aluminum Wraparound Marker Labels and Metal Tags: Secure tight to surface of conductor or cable at a location with high visibility and accessibility.
- F. Cable Ties: For attaching tags. Use general-purpose type, except as listed below:
 - 1. Outdoors: UV-stabilized nylon.
 - 2. In Spaces Handling Environmental Air: Plenum rated.

3.2 SWITCH AND RECEPTACLE COVER PLATES

- A. Provide identification on all switch and receptacle cover plates. Identification shall indicate source and circuit number serving the device (i.e. "1RNL1#24").
- B. Identification material to be a clear, 3/8-inch Kroy tape or Brother self-laminating vinyl label with black letters in normal size "Swiss 721 Bold" font. Letter and number size to 3/16-inch high. Embossed Dymo-Tape labels are not acceptable. Permanently affix identification label to cover plates, centered above the receptacle openings.
- C. Provide identification inside all switch and receptacle backboxes. Identification shall be neatly handwritten in permanent magic marker and shall indicate source and circuit number serving the device (i.e. "1RNL1#24").

3.3 IDENTIFICATION SCHEDULE

- A. Accessible Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive vinyl labels with the wiring system legend and system voltage. System legends shall be as follows:
 - 1. Emergency Power.
 - 2. Lighting and Power.
 - 3. Fire Alarm.
- B. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use color-coding conductor tape to identify the phase.
 - 1. Color-Coding for Phase and Voltage Level Identification, 600 V or Less: Use colors listed below for ungrounded feeder and branch-circuit conductors.

- a. Color shall be factory applied or field applied for sizes larger than No. 8 AWG, if authorities having jurisdiction permit.
- b. Colors for 208/120-V Circuits:
 - 1) Phase A: Black.
 - 2) Phase B: Red.
 - 3) Phase C: Blue.
- c. Colors for 480/277-V Circuits:
 - 1) Phase A: Brown.
 - 2) Phase B: Orange.
 - 3) Phase C: Yellow.
- d. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.
- C. Install instructional sign including the color-code for grounded and ungrounded conductors using adhesive-film-type labels.
- D. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes, manholes, and handholes, use self-adhesive, self-laminating polyester labels with the conductor or cable designation, origin, and destination.
- E. Control-Circuit Conductor Termination Identification: For identification at terminations provide self-adhesive, self-laminating polyester labels with the conductor designation.
- F. Auxiliary Electrical Systems Conductor Identification: Identify field-installed alarm, control, and signal connections.
 - 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
 - 2. Use system of marker tape designations that is uniform and consistent with system used by manufacturer for factory-installed connections.
 - 3. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and the Operation and Maintenance Manual.
- G. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Self-adhesive warning labels.
 - 1. Comply with 29 CFR 1910.145.
 - 2. Identify system voltage with black letters on an orange background.
 - 3. Apply to exterior of door, cover, or other access.
 - 4. For equipment with multiple power or control sources, apply to door or cover of equipment including, but not limited to, the following:
 - a. Power transfer switches.
 - b. Controls with external control power connections.

- H. Operating Instruction Signs: Install instruction signs to facilitate proper operation and maintenance of electrical systems and items to which they connect. Install instruction signs with approved legend where instructions are needed for system or equipment operation.
- I. Emergency Operating Instruction Signs: Install instruction signs with white legend on a red background with minimum 3/8-inch- high letters for emergency instructions at equipment used for power transfer.
- J. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and the Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification.
 - 1. Labeling Instructions:
 - a. Indoor Equipment: Engraved, laminated acrylic or melamine label. Unless otherwise indicated, provide a single line of text with 1/2-inch- high letters on 1-1/2-inch- high label; where two lines of text are required, use labels 2 inches high.
 - b. Outdoor Equipment: Engraved, laminated acrylic or melamine label.
 - c. Elevated Components: Increase sizes of labels and letters to those appropriate for viewing from the floor.
 - d. Unless provided with self-adhesive means of attachment, fasten labels with appropriate mechanical fasteners that do not change the NEMA or NRTL rating of the enclosure.
 - 2. Equipment to Be Labeled:
 - a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be engraved, laminated acrylic or melamine label. Existing panelboards shall have their existing panel schedules typed, with all circuit changes, additions or deletions also typed on the panel schedules. A copy of all panel schedules for the project shall be turned over as part of the O&M Manuals.
 - b. Distribution Panels:
 - 1) Equipment type and contract documents designation of equipment.
 - 2) Voltage of the equipment.
 - 3) Name of the upstream equipment and location of the upstream equipment if it is not located within sight.
 - 4) Rating and type of the overcurrent protection device serving the equipment if it is not located within sight ("FED BY 400A/3P BREAKER").

DISTRIBUTION PANEL 1DNH1		
480Y/277V		
FED FROM SWITCHBOARD "SB-1" (LOCAT		
IN MAIN ELECTRIC ROOM)		

- c. Transformers:
 - 1) Label that includes tag designation shown on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.
 - 2) Name of the upstream equipment.
 - 3) Voltage and rating of the equipment.

4) Location of the upstream equipment if it is not located within sight.

TRANSFORMER XFMR TG		
480V: 208Y/120V 15KVA		
FED FROM SWITCHBOARD "SB-1"		
(LOCATED IN MAIN ELECTRIC ROOM)		

- d. Enclosed circuit breakers, Enclosed Controllers, Variable Speed Controllers:
 - 1) Equipment type and contract documents designation of equipment being served.
 - 2) Location of equipment being served if it is not located within sight.
 - 3) Voltage and phase of circuit(s).
 - 4) Panel and circuit number(s) serving the equipment.
 - 5) Method of automatic control, if included ("AUTO CONTROL BY FCMS").

EXHAUST FAN EF-1(LOCATED ON ROOF)	
480V, 3 PHASE	
FED FROM "1RNL1-1	

- e. Emergency system boxes and enclosures.
- f. Push-button stations.
- g. Power transfer equipment.
- h. Remote-controlled switches, dimmer modules, and control devices.
- i. Monitoring and control equipment.
- j. Enclosures and electrical cabinets.
- k. Access doors and panels for concealed electrical items.
- I. Switchboards.
- m. Enclosures and electrical cabinets.

END OF SECTION 26 05 53

This page intentionally left blank.

SECTION 26 05 73.13 SHORT-CIRCUIT STUDIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes a computer-based, fault-current study to determine the minimum interrupting capacity of circuit protective devices.

1.3 ACTION SUBMITTALS

- A. Product Data:
 - 1. For computer software program to be used for studies.
 - 2. Submit the following after the approval of system protective devices submittals. Submittals shall be in digital form.
 - a. Short-circuit study input data, including completed computer program input data sheets.
 - b. Short-circuit study and equipment evaluation report; signed, dated, and sealed by a qualified professional engineer.
 - Submit study report for action prior to receiving final approval of distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that selection of devices and associated characteristics is satisfactory.
 - 2) Revised one-line diagram, reflecting field investigation results and results of short-circuit study.

1.4 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data:
 - 1. For overcurrent protective devices to include in emergency, operation, and maintenance manuals.
 - 2. The following are from the Short-Circuit Study Report:
 - a. Final one-line diagram.
 - b. Final Short-Circuit Study Report.
 - c. Short-circuit study data files.

1.5 QUALITY ASSURANCE

- A. Study shall be performed using commercially developed and distributed software designed specifically for power system analysis.
- B. Software algorithms shall comply with requirements of standards and guides specified in this Section.
- C. Manual calculations are unacceptable.
 - 1. Power System Analysis Software Qualifications: Computer program shall be designed to perform short-circuit studies or have a function, component, or add-on module designed to perform short-circuit studies.
 - 2. Computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.
- D. Power Systems Analysis Specialist Qualifications: Professional engineer licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.
- E. Short-Circuit Study Certification: Short-Circuit Study Report shall be signed and sealed by Power Systems Analysis Specialist.
- F. Field Adjusting Agency Qualifications:
 - 1. Employer of a NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification responsible for all field adjusting of the Work.
 - 2. A member company of NETA.

PART 2 - PRODUCTS

2.1 POWER SYSTEM ANALYSIS SOFTWARE DEVELOPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. ESA Inc.
 - 2. SKM Systems Analysis, Inc.
- B. Comply with IEEE 399 and IEEE 551.
 - 1. Analytical features of power systems analysis software program shall have capability to calculate "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.
- C. Computer software program shall be capable of plotting and diagramming time-currentcharacteristic curves as part of its output.

2.2 SHORT-CIRCUIT STUDY REPORT CONTENTS

- A. Executive summary of study findings.
- B. Study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpretation of results.
- C. One-line diagram of modeled power system, showing the following:
 - 1. Protective device designations and ampere ratings.
 - 2. Conductor types, sizes, and lengths.
 - 3. Transformer kilovolt ampere (kVA) and voltage ratings.
 - 4. Motor and generator designations and kVA ratings.
 - 5. Switchgear, switchboard, motor-control center, and panelboard designations and ratings.
 - 6. Derating factors and environmental conditions.
 - 7. Any revisions to electrical equipment required by the study.
- D. Comments and recommendations for system improvements or revisions in a written document, separate from one-line diagram.
- E. Protective Device Evaluation:
 - 1. Evaluate equipment and protective devices and compare to available short-circuit currents. Verify that equipment withstands ratings exceed available short-circuit current at equipment installation locations.
 - 2. Tabulations of circuit breaker, fuse, and other protective device ratings versus calculated short-circuit duties.
 - 3. For 600-V overcurrent protective devices, ensure that interrupting ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.
 - 4. For devices and equipment rated for asymmetrical fault current, apply multiplication factors listed in standards to 1/2-cycle symmetrical fault current.
 - 5. Verify adequacy of phase conductors at maximum three-phase bolted fault currents; verify adequacy of equipment grounding conductors and grounding electrode conductors at maximum ground-fault currents. Ensure that short-circuit withstand ratings are equal to or higher than calculated 1/2-cycle symmetrical fault current.
- F. Short-Circuit Study Input Data:
 - 1. One-line diagram of system being studied.
 - 2. Power sources available.
 - 3. Manufacturer, model, and interrupting rating of protective devices.
 - 4. Conductors.
 - 5. Transformer data.
- G. Short-Circuit Study Output Reports:
 - 1. Low-Voltage Fault Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:

- a. Voltage.
- b. Calculated fault-current magnitude and angle.
- c. Fault-point X/R ratio.
- d. Equivalent impedance.
- 2. Momentary Duty Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 - a. Voltage.
 - b. Calculated symmetrical fault-current magnitude and angle.
 - c. Fault-point X/R ratio.
 - d. Calculated asymmetrical fault currents:
 - 1) Based on fault-point X/R ratio.
 - 2) Based on calculated symmetrical value multiplied by 1.6.
 - 3) Based on calculated symmetrical value multiplied by 2.7.
- 3. Interrupting Duty Report: Three-phase and unbalanced fault calculations, showing the following for each overcurrent device location:
 - a. Voltage.
 - b. Calculated symmetrical fault-current magnitude and angle.
 - c. Fault-point X/R ratio.
 - d. No AC Decrement (NACD) ratio.
 - e. Equivalent impedance.
 - f. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a symmetrical basis.
 - g. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a total basis.

PART 3 - EXECUTION

- 3.1 POWER SYSTEM DATA
- A. Obtain all data necessary for conduct of the study.
 - 1. Verify completeness of data supplied on one-line diagram. Call any discrepancies to Architect's attention.
 - 2. For equipment included as Work of this Project, use characteristics submitted under provisions of action submittals and information submittals for this Project.
 - 3. For relocated equipment and that which is existing to remain, obtain required electrical distribution system data by field investigation and surveys, conducted by qualified technicians and engineers. Qualifications of technicians and engineers shall be as defined by NFPA 70E.
- B. Gather and tabulate the required input data to support the short-circuit study. Comply with requirements in Section 01 78 39 "As-Built Drawings" for recording circuit protective device characteristics. Record data on a Record Document copy of one-line diagram. Comply with recommendations in IEEE 551 as to the amount of detail that is required to be acquired in the field. Field data gathering shall be under direct supervision and

control of the engineer in charge of performing the study and shall be by the engineer or its representative who holds NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification. Data include, but are not limited to, the following:

- 1. Product Data for Project's overcurrent protective devices involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
- 2. Obtain electrical power utility impedance at the service.
- 3. Power sources and ties.
- 4. For transformers, include kVA, primary and secondary voltages, connection type, impedance, X/R ratio, taps measured in percent, and phase shift.
- 5. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip, SCCR, current rating, and breaker settings.
- 6. Generators short-circuit current contribution data, including short-circuit reactance, rated kVA, rated voltage, and X/R ratio.
- 7. Busway manufacturer and model designation, current rating, impedance, lengths, and conductor material.
- 8. Motor horsepower and NEMA MG 1 code letter designation.
- 9. Conductor sizes, lengths, number, conductor material and conduit material (magnetic or nonmagnetic).
- 10. Derating factors.

3.2 SHORT-CIRCUIT STUDY

- A. Perform study following the general study procedures contained in IEEE 399.
- B. Calculate short-circuit currents according to IEEE 551.
- C. Base study on device characteristics supplied by device manufacturer.
- D. Extent of electrical power system to be studied is indicated on Drawings.
- E. Begin short-circuit current analysis at the service, extending down to system overcurrent protective devices as follows:
 - 1. To normal system low-voltage load buses where fault current is 10 kA or less.
- F. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Study all cases of system-switching configurations and alternate operations that could result in maximum fault conditions.
- G. Include the ac fault-current decay from induction motors, synchronous motors, and asynchronous generators and apply to low- and medium-voltage, three-phase ac systems. Also account for the fault-current dc decrement to address asymmetrical requirements of interrupting equipment.
- H. Calculate short-circuit momentary and interrupting duties for a three-phase bolted fault and a single line-to-ground fault at each equipment indicated on one-line diagram.

- 1. For grounded systems, provide a bolted line-to-ground fault-current study for areas as defined for the three-phase bolted fault short-circuit study.
- I. Include in the report identification of any protective device applied outside its capacity.

END OF SECTION 26 05 73.13

SECTION 26 05 73.16 COORDINATION STUDIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes computer-based, overcurrent protective device coordination studies to determine overcurrent protective devices and to determine overcurrent protective device settings for selective tripping.
 - 1. Study results shall be used to determine coordination of series-rated devices.

1.3 DEFINITIONS

- A. Field Adjusting Agency: An independent electrical testing agency with full-time employees and the capability to adjust devices and conduct testing indicated and that is a member company of NETA.
- B. One-Line Diagram: A diagram that shows, by means of single lines and graphic symbols, the course of an electric circuit or system of circuits and the component devices or parts used therein.
- C. Power System Analysis Software Developer: An entity that commercially develops, maintains, and distributes computer software used for power system studies.
- D. Power System Analysis Specialist: Professional engineer in charge of performing the study and documenting recommendations, licensed in the state where Project is located.
- E. Protective Device: A device that senses when an abnormal current flow exists and then removes the affected portion of the circuit from the system.
- F. Service: The conductors and equipment for delivering electric energy from the serving utility to the wiring system of the premises served.

<u>1.4</u> <u>ACTION SUBMITTALS</u>

- A. Product Data:
 - 1. For computer software program to be used for studies.
 - 2. Submit the following after the approval of system protective devices submittals. Submittals shall be in digital form.
 - a. Coordination-study input data, including completed computer program input data sheets.
 - b. Study and equipment evaluation reports.

- 3. Overcurrent protective device coordination study report; signed, dated, and sealed by a qualified professional engineer.
 - a. Submit study report for action prior to receiving final approval of distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that selection of devices and associated characteristics is satisfactory.
- B. Qualification Data:
 - 1. For Power System Analysis Software Developer.
 - 2. For Power Systems Analysis Specialist.
 - 3. For Field Adjusting Agency.
- 1.5 CLOSEOUT SUBMITTALS
- A. Operation and Maintenance Data: For overcurrent protective devices to include in emergency, operation, and maintenance manuals.
 - 1. The following are from the Coordination Study Report:
 - a. Final one-line diagram.
 - b. Final protective device coordination study.
 - c. Coordination study data files.
 - d. List of all protective device settings.
 - e. Time-current coordination curves.

1.6 QUALITY ASSURANCE

- A. Studies shall be performed using commercially developed and distributed software designed specifically for power system analysis.
- B. Software algorithms shall comply with requirements of standards and guides specified in this Section.
- C. Manual calculations are unacceptable.
- D. Power System Analysis Software Qualifications:
 - 1. Computer program shall be designed to perform coordination studies or have a function, component, or add-on module designed to perform coordination studies.
 - 2. Computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.
- E. Power Systems Analysis Specialist Qualifications: Professional engineer licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.

- F. Field Adjusting Agency Qualifications:
 - 1. Employer of a NETA ETT-Certified Technician Level III responsible for all field adjusting of the Work.
 - 2. A member company of NETA.
 - 3. Acceptable to authorities having jurisdiction.

PART 2 - PRODUCTS

2.1 POWER SYSTEM ANALYSIS SOFTWARE DEVELOPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. ESA Inc.
 - 2. SKM Systems Analysis, Inc.
- B. Comply with IEEE 242 and IEEE 399.
- C. Analytical features of device coordination study computer software program shall have the capability to calculate "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.
- D. Computer software program shall be capable of plotting and diagramming time-currentcharacteristic curves as part of its output. Computer software program shall report device settings and ratings of all overcurrent protective devices and shall demonstrate selective coordination by computer-generated, time-current coordination plots.
 - 1. Optional Features:
 - a. Arcing faults.
 - b. Simultaneous faults.
 - c. Explicit negative sequence.
 - d. Mutual coupling in zero sequence.

2.2 COORDINATION STUDY REPORT CONTENTS

- A. Executive summary of study findings.
- B. Study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpretation of results.
- C. One-line diagram of modeled power system, showing the following:
 - 1. Protective device designations and ampere ratings.
 - 2. Conductor types, sizes, and lengths.
 - 3. Transformer kilovolt ampere (kVA) and voltage ratings.
 - 4. Motor and generator designations and kVA ratings.
 - 5. Switchgear, switchboard, motor-control center, and panelboard designations.
 - 6. Any revisions to electrical equipment required by the study.
 - 7. Study Input Data: As described in "Power System Data" Article.

- a. Short-Circuit Study Output: As specified in "Short-Circuit Study Output Reports" Paragraph in "Short-Circuit Study Report Contents" Article in Section 26 05 73.13 "Short-Circuit Studies."
- D. Protective Device Coordination Study:
 - 1. Report recommended settings of protective devices, ready to be applied in the field. Use manufacturer's data sheets for recording the recommended setting of overcurrent protective devices when available.
 - a. Phase and Ground Relays:
 - 1) Device tag.
 - 2) Relay current transformer ratio and tap, time dial, and instantaneous pickup value.
 - 3) Recommendations on improved relaying systems, if applicable.
 - b. Circuit Breakers:
 - 1) Adjustable pickups and time delays (long time, short time, and ground).
 - 2) Adjustable time-current characteristic.
 - 3) Adjustable instantaneous pickup.
 - 4) Recommendations on improved trip systems, if applicable.
 - c. Fuses: Show current rating, voltage, and class.
- E. Time-Current Coordination Curves: Determine settings of overcurrent protective devices to achieve selective coordination. Graphically illustrate that adequate time separation exists between devices installed in series. Prepare separate sets of curves for the switching schemes and for emergency periods where the power source is local generation. Show the following information:
 - 1. Device tag and title, one-line diagram with legend identifying the portion of the system covered.
 - 2. Terminate device characteristic curves at a point reflecting maximum symmetrical or asymmetrical fault current to which the device is exposed.
 - 3. Identify the device associated with each curve by manufacturer type, function, and, if applicable, tap, time delay, and instantaneous settings recommended.
 - 4. Plot the following listed characteristic curves, as applicable:
 - a. Medium- and low-voltage fuses including manufacturer's minimum melt, total clearing, tolerance, and damage bands.
 - b. Low-voltage equipment circuit-breaker trip devices, including manufacturer's tolerance bands.
 - c. Transformer full-load current, magnetizing inrush current, and ANSI through-fault protection curves.
 - d. Cables and conductors damage curves.
 - e. Ground-fault protective devices.
 - f. Motor-starting characteristics and motor damage points.
 - g. Generator short-circuit decrement curve and generator damage point.

- h. The largest feeder circuit breaker in each motor-control center and panelboard.
- 5. Maintain selectivity for tripping currents caused by overloads.
- 6. Provide adequate time margins between device characteristics such that selective operation is achieved.
- 7. Comments and recommendations for system improvements.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine Project overcurrent protective device submittals for compliance with electrical distribution system coordination requirements and other conditions affecting performance of the Work. Devices to be coordinated are indicated on Drawings.
 - 1. Proceed with coordination study only after relevant equipment submittals have been assembled. Overcurrent protective devices that have not been submitted and approved prior to coordination study may not be used in study.

3.2 POWER SYSTEM DATA

- A. Obtain all data necessary for conduct of the overcurrent protective device study.
 - 1. Verify completeness of data supplied in one-line diagram on Drawings. Call any discrepancies to Architect's attention.
 - 2. For equipment included as Work of this Project, use characteristics submitted under provisions of action submittals and information submittals for this Project.
 - 3. For relocated equipment and that which is existing to remain, obtain required electrical distribution system data by field investigation and surveys, conducted by qualified technicians and engineers. Qualifications of technicians and engineers shall be as defined by NFPA 70E.
- B. Gather and tabulate all required input data to support the coordination study. List below is a guide. Comply with recommendations in IEEE 551 for the amount of detail required to be acquired in the field. Field data gathering shall be under direct supervision and control of the engineer in charge of performing the study and shall be by the engineer or its representative who holds NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification. Data include, but are not limited to, the following:
 - 1. Product Data for overcurrent protective devices specified in other Sections and involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
 - 2. Electrical power utility impedance at the service.
 - 3. Power sources and ties.
 - 4. Short-circuit current at each system bus (three phase and line to ground).
 - 5. Full-load current of all loads.
 - 6. Voltage level at each bus.

- 7. For transformers, include kVA, primary and secondary voltages, connection type, impedance, X/R ratio, taps measured in percent, and phase shift.
- 8. For reactors, provide manufacturer and model designation, voltage rating, and impedance.
- 9. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip and available range of settings, SCCR, current rating, and breaker settings.
- 10. Generator short-circuit current contribution data, including short-circuit reactance, rated kVA, rated voltage, and X/R ratio.
- 11. Maximum demands from service meters.
- 12. Busway manufacturer and model designation, current rating, impedance, lengths, size, and conductor material.
- 13. Motor horsepower and NEMA MG 1 code letter designation.
- 14. Low-voltage cable sizes, lengths, number, conductor material, and conduit material (magnetic or nonmagnetic).
- 15. Data sheets to supplement electrical distribution system one-line diagram, crossreferenced with tag numbers on diagram, showing the following:
 - a. Special load considerations, including starting inrush currents and frequent starting and stopping.
 - b. Transformer characteristics, including primary protective device, magnetic inrush current, and overload capability.
 - c. Motor full-load current, locked rotor current, service factor, starting time, type of start, and thermal-damage curve.
 - d. Generator thermal-damage curve.
 - e. Ratings, types, and settings of utility company's overcurrent protective devices.
 - f. Special overcurrent protective device settings or types stipulated by utility company.
 - g. Time-current-characteristic curves of devices indicated to be coordinated.
 - h. Manufacturer, frame size, interrupting rating in amperes root mean square (rms) symmetrical, ampere or current sensor rating, long-time adjustment range, short-time adjustment range, and instantaneous adjustment range for circuit breakers.
 - i. Manufacturer and type, ampere-tap adjustment range, time-delay adjustment range, instantaneous attachment adjustment range, and current transformer ratio for overcurrent relays.
 - j. Switchgear, switchboards, motor-control centers, and panelboards ampacity, and SCCR in amperes rms symmetrical.
 - k. Identify series-rated interrupting devices for a condition where the available fault current is greater than the interrupting rating of downstream equipment. Obtain device data details to allow verification that series application of these devices complies with NFPA 70 and UL 489 requirements.

3.3 COORDINATION STUDY

- A. Comply with IEEE 242 for calculating short-circuit currents and determining coordination time intervals.
- B. Comply with IEEE 399 for general study procedures.

- C. Base study on device characteristics supplied by device manufacturer.
- D. Extent of electrical power system to be studied is indicated on Drawings.
- E. Begin analysis at the service, extending down to system overcurrent protective devices as follows:
 - 1. To normal system low-voltage load buses where fault current is 10 kA or less.
- F. Study electrical distribution system from normal and alternate power sources throughout electrical distribution system for Project. Study all cases of system-switching configurations and alternate operations that could result in maximum fault conditions.
- G. Transformer Primary Overcurrent Protective Devices:
 - 1. Device shall not operate in response to the following:
 - a. Inrush current when first energized.
 - b. Self-cooled, full-load current or forced-air-cooled, full-load current, whichever is specified for that transformer.
 - c. Permissible transformer overloads according to IEEE C57.96 if required by unusual loading or emergency conditions.
 - 2. Device settings shall protect transformers according to IEEE C57.12.00, for fault currents.
- H. Conductor Protection: Protect cables against damage from fault currents according to ICEA P-32-382, ICEA P-45-482, and protection recommendations in IEEE 242. Demonstrate that equipment withstands the maximum short-circuit current for a time equivalent to the tripping time of the primary relay protection or total clearing time of the fuse. To determine temperatures that damage insulation, use curves from cable manufacturers or from listed standards indicating conductor size and short-circuit current.
- I. Generator Protection: Select protection according to manufacturer's written instructions and to IEEE 242.
- J. Include the ac fault-current decay from induction motors, synchronous motors, and asynchronous generators and apply to low- and medium-voltage, three-phase ac systems. Also account for fault-current dc decrement, to address asymmetrical requirements of interrupting equipment.
- K. Calculate short-circuit momentary and interrupting duties for a three-phase bolted fault and a single line-to-ground fault at each equipment indicated on one-line diagram.
 - 1. For grounded systems, provide a bolted line-to-ground fault-current study for areas as defined for the three-phase bolted fault short-circuit study.
- L. Protective Device Evaluation:
 - 1. Evaluate equipment and protective devices and compare to short-circuit ratings.

- 2. Adequacy of switchgear, motor-control centers, and panelboard bus bars to withstand short-circuit stresses.
- 3. Include in the report identification of any protective device applied outside its capacity.

3.4 FIELD ADJUSTING

- A. Adjust relay and protective device settings according to recommended settings provided by the coordination study. Field adjustments shall be completed by the engineering service division of equipment manufacturer under the "Startup and Acceptance Testing" contract portion.
- B. Make minor modifications to equipment as required to accomplish compliance with short-circuit and protective device coordination studies.
- C. Testing and adjusting shall be by a full-time employee of the Field Adjusting Agency, who holds NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification.
 - 1. Perform each visual and mechanical inspection and electrical test stated in NETA ATS. Certify compliance with test parameters. Perform NETA tests and inspections for all adjustable overcurrent protective devices.

3.5 DEMONSTRATION

- A. Engage Power Systems Analysis Specialist to train Owner's maintenance personnel in the following:
 - 1. Acquaint personnel in fundamentals of operating the power system in normal and emergency modes.
 - 2. Hand-out and explain the coordination study objectives, study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpreting time-current coordination curves.
 - 3. For Owner's maintenance staff certified as NETA ETT-Certified Technicians Level III or NICET Electrical Power Testing Level III Technicians, teach how to adjust, operate, and maintain overcurrent protective device settings.

END OF SECTION 26 05 73.16

SECTION 26 05 73.19 ARC-FLASH HAZARD ANALYSIS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes a computer-based, arc-flash study to determine the arc-flash hazard distance and the incident energy to which personnel could be exposed during work on or near electrical equipment.

1.3 ACTION SUBMITTALS

- A. Product Data: For computer software program to be used for studies.
- B. Study Submittals: Submit the following submittals after the approval of system protective devices submittals. Submittals shall be in digital form:
 - 1. Arc-flash study input data, including completed computer program input data sheets.
 - 2. Arc-flash study report; signed, dated, and sealed by Power Systems Analysis Specialist.
 - 3. Submit study report for action prior to receiving final approval of distribution equipment submittals. If formal completion of studies will cause delay in equipment manufacturing, obtain approval from Architect for preliminary submittal of sufficient study data to ensure that selection of devices and associated characteristics is satisfactory.

1.4 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data:
 - 1. Provide maintenance procedures in equipment manuals according to requirements in NFPA 70E.
 - 2. Operation and Maintenance Procedures: In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," provide maintenance procedures for use by Owner's personnel that comply with requirements in NFPA 70E.

1.5 QUALITY ASSURANCE

- A. Study shall be performed using commercially developed and distributed software designed specifically for power system analysis.
- B. Software algorithms shall comply with requirements of standards and guides specified in this Section.

- C. Manual calculations are unacceptable.
- D. Power System Analysis Software Qualifications: An entity that owns and markets computer software used for studies, having performed successful studies of similar magnitude on electrical distribution systems using similar devices.
 - 1. Computer program shall be designed to perform arc-flash analysis or have a function, component, or add-on module designed to perform arc-flash analysis.
 - 2. Computer program shall be developed under the charge of a licensed professional engineer who holds IEEE Computer Society's Certified Software Development Professional certification.
- E. Power Systems Analysis Specialist Qualifications: Professional engineer in charge of performing the arc-flash study, analyzing the arc flash, and documenting recommendations, licensed in the state where Project is located. All elements of the study shall be performed under the direct supervision and control of this professional engineer.
- F. Arc-Flash Study Certification: Arc-Flash Study Report shall be signed and sealed by Power Systems Analysis Specialist.
- G. Field Adjusting Agency Qualifications:
 - 1. Employer of a NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification responsible for all field adjusting of the Work.
 - 2. A member company of NETA.

PART 2 - PRODUCTS

2.1 COMPUTER SOFTWARE DEVELOPERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. ESA Inc.
 - 2. SKM Systems Analysis, Inc.
- B. Comply with IEEE 1584 and NFPA 70E.
- C. Analytical features of device coordination study computer software program shall have the capability to calculate "mandatory," "very desirable," and "desirable" features as listed in IEEE 399.

2.2 ARC-FLASH STUDY REPORT CONTENT

- A. Executive summary of study findings.
- B. Study descriptions, purpose, basis, and scope. Include case descriptions, definition of terms, and guide for interpretation of results.
- C. One-line diagram, showing the following:

- 1. Protective device designations and ampere ratings.
- 2. Conductor types, sizes, and lengths.
- 3. Transformer kilovolt ampere (kVA) and voltage ratings, including derating factors and environmental conditions.
- 4. Motor and generator designations and kVA ratings.
- 5. Switchgear, switchboard, motor-control center, panelboard designations, and ratings.
- D. Study Input Data: As described in "Power System Data" Article.
- E. Short-Circuit Study Output Data: As specified in "Short-Circuit Study Output Reports" Paragraph in "Short-Circuit Study Report Contents" Article in Section 26 05 73.13 "Short-Circuit Studies."
- F. Protective Device Coordination Study Report Contents: As specified in "Coordination Study Report Contents" Article in Section 26 05 73.16 "Coordination Studies."
- G. Arc-Flash Study Output Reports:
 - 1. Interrupting Duty Report: Three-phase and unbalanced fault calculations, showing the following for each equipment location included in the report:
 - a. Voltage.
 - b. Calculated symmetrical fault-current magnitude and angle.
 - c. Fault-point X/R ratio.
 - d. No AC Decrement (NACD) ratio.
 - e. Equivalent impedance.
 - f. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a symmetrical basis.
 - g. Multiplying factors for 2-, 3-, 5-, and 8-cycle circuit breakers rated on a total basis.
- H. Incident Energy and Flash Protection Boundary Calculations:
 - 1. Arcing fault magnitude.
 - 2. Protective device clearing time.
 - 3. Duration of arc.
 - 4. Arc-flash boundary.
 - 5. Restricted approach boundary.
 - 6. Limited approach boundary.
 - 7. Working distance.
 - 8. Incident energy.
 - 9. Hazard risk category.
 - 10. Recommendations for arc-flash energy reduction.
- I. Fault study input data, case descriptions, and fault-current calculations including a definition of terms and guide for interpretation of computer printout.

2.3 ARC-FLASH WARNING LABELS

- A. Comply with requirements in Section 26 05 53 "Identification for Electrical Systems" for self-adhesive equipment labels. Produce a 3.5-by-5-inch (76-by-127-mm) self-adhesive equipment label for each work location included in the analysis.
- B. Label shall have an orange header with the wording, "WARNING, ARC-FLASH HAZARD," and shall include the following information taken directly from the arc-flash hazard analysis:
 - 1. Location designation.
 - 2. Nominal voltage.
 - 3. Protection boundaries.
 - a. Arc-flash boundary.
 - b. Restricted approach boundary.
 - c. Limited approach boundary.
 - 4. Arc flash PPE category.
 - 5. Required minimum arc rating of PPE in Cal/cm squared.
 - 6. Available incident energy.
 - 7. Working distance.
 - 8. Engineering report number, revision number, and issue date.
- C. Labels shall be machine printed, with no field-applied markings.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine Project overcurrent protective device submittals. Proceed with arc-flash study only after relevant equipment submittals have been assembled. Overcurrent protective devices that have not been submitted and approved prior to arc-flash study may not be used in study.
- 3.2 ARC-FLASH HAZARD ANALYSIS
- A. Comply with NFPA 70E and its Annex D for hazard analysis study.
- B. Preparatory Studies: Perform the Short-Circuit] and Protective Device Coordination study prior to starting the Arc-Flash Hazard Analysis.
 - Short-Circuit Study Output: As specified in "Short-Circuit Study Output Reports" Paragraph in "Short-Circuit Study Report Contents" Article in Section 26 05 73.13 "Short-Circuit Studies."
 - 2. Coordination Study Report Contents: As specified in "Coordination Study Report Contents" Article in Section 26 05 73.16 "Coordination Studies."
- C. Calculate maximum and minimum contributions of fault-current size.

- 1. Maximum calculation shall assume a maximum contribution from the utility and shall assume motors to be operating under full-load conditions.
- 2. Calculate arc-flash energy at 85 percent of maximum short-circuit current according to IEEE 1584 recommendations.
- D. Calculate the arc-flash protection boundary and incident energy at locations in electrical distribution system where personnel could perform work on energized parts.
- E. Include medium- and low-voltage equipment locations, except equipment rated 240 V ac or less fed from transformers less than 125 kVA.
- F. Calculate the limited, restricted, and prohibited approach boundaries for each location.
- G. Incident energy calculations shall consider the accumulation of energy over time when performing arc-flash calculations on buses with multiple sources. Iterative calculations shall take into account the changing current contributions, as the sources are interrupted or decremented with time. Fault contribution from motors and generators shall be decremented as follows:
 - 1. Fault contribution from induction motors shall not be considered beyond three to five cycles.
 - 2. Fault contribution from synchronous motors and generators shall be decayed to match the actual decrement of each as closely as possible (for example, contributions from permanent magnet generators will typically decay from 10 per unit to three per unit after 10 cycles).
- H. Arc-flash energy shall generally be reported for the maximum of line or load side of a circuit breaker. However, arc-flash computation shall be performed and reported for both line and load side of a circuit breaker as follows:
 - 1. When the circuit breaker is in a separate enclosure.
 - 2. When the line terminals of the circuit breaker are separate from the work location.
- I. Base arc-flash calculations on actual overcurrent protective device clearing time. Cap maximum clearing time at two seconds based on IEEE 1584, Section B.1.2.

3.3 POWER SYSTEM DATA

- A. Obtain all data necessary for conduct of the arc-flash hazard analysis.
 - 1. Verify completeness of data supplied on one-line diagram on Drawings. Call discrepancies to Architect's attention.
 - 2. For new equipment, use characteristics from approved submittals under provisions of action submittals and information submittals for this Project.
 - 3. For existing equipment, whether or not relocated, obtain required electrical distribution system data by field investigation and surveys conducted by qualified technicians and engineers.
- B. Electrical Survey Data: Gather and tabulate the following input data to support study. Comply with recommendations in IEEE 1584 and NFPA 70E as to the amount of detail

that is required to be acquired in the field. Field data gathering shall be under the direct supervision and control of the engineer in charge of performing the study and shall be by the engineer or its representative who holds NETA ETT-Certified Technician Level III or NICET Electrical Power Testing Level III certification. Data include, but are not limited to, the following:

- 1. Product Data for overcurrent protective devices specified in other Sections and involved in overcurrent protective device coordination studies. Use equipment designation tags that are consistent with electrical distribution system diagrams, overcurrent protective device submittals, input and output data, and recommended device settings.
- 2. Obtain electrical power utility impedance or available short circuit current at the service.
- 3. Power sources and ties.
- 4. Short-circuit current at each system bus (three phase and line to ground).
- 5. Full-load current of all loads.
- 6. Voltage level at each bus.
- 7. For transformers, include kVA, primary and secondary voltages, connection type, impedance, X/R ratio, taps measured in percent, and phase shift.
- 8. For circuit breakers and fuses, provide manufacturer and model designation. List type of breaker, type of trip and available range of settings, SCCR, current rating, and breaker settings.
- 9. Generator short-circuit current contribution data, including short-circuit reactance, rated kVA, rated voltage, and X/R ratio.
- 10. Busway manufacturer and model designation, current rating, impedance, lengths, size, and conductor material.
- 11. Motor horsepower and NEMA MG 1 code letter designation.
- 12. Low-voltage conductor sizes, lengths, number, conductor material and conduit material (magnetic or nonmagnetic).

3.4 LABELING

- A. Apply one arc-flash label on the front cover of each section of the equipment for each equipment included in the study. Base arc-flash label data on highest values calculated at each location.
- B. Each piece of equipment listed below shall have an arc-flash label applied to it:
 - 1. Low-voltage switchboard.
 - 2. Low voltage transformers.
 - 3. Panelboard and safety switch over 250 V.
 - 4. Applicable panelboard and safety switch under 250 V.
 - 5. Control panel.
 - 6. Transfer Switches.
 - 7. Indicate arc-flash energy.
 - 8. Indicate protection level required.
- C. Install arc-flash warning labels under the direct supervision and control of Power System Analysis Specialist.

3.5 DEMONSTRATION

- A. Engage Power Systems Analysis Specialist to train Owner's maintenance personnel in potential arc-flash hazards associated with working on energized equipment and the significance of arc-flash warning labels.
- B. Provide four hours of Owner training.

END OF SECTION 26 05 73.19

This page intentionally left blank.

SECTION 26 09 23 LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Photoelectric switches.
 - 2. Indoor occupancy sensors.
 - 3. Emergency shunt relays.
- B. Related Requirements:
 - 1. Section 26 27 26 "Wiring Devices" for wall-box dimmers, wall-switch occupancy sensors, and manual light switches.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Show installation details for occupancy and light-level sensors.
 - 1. Interconnection diagrams showing field-installed wiring.
 - 2. Include diagrams for power, signal, and control wiring.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each type of lighting control device to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 OUTDOOR PHOTOELECTRIC SWITCHES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Cooper Industries, Inc.
 - 2. Hubbell Building Automation, Inc.
 - 3. Leviton Mfg. Company Inc.
 - 4. Lithonia Lighting; Acuity Lighting Group, Inc.
 - 5. Lutron Electronics Co., Inc.

- 6. Sensor Switch, Inc.
- 7. Watt Stopper.
- B. Description: Solid state, with SPST dry contacts rated for 1800-VA tungsten or 1000-VA inductive at either 12/24V, to match supply voltage, to operate connected relay, contactor coils, or microprocessor input; complying with UL 773A.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Light-Level Monitoring Range: 0 fc (min) to 50-750 fc (max), with an adjustment for turn-on and turn-off levels within that range, and a directional lens in front of the photocell to prevent fixed light sources from causing turn-off.
 - 3. Time Delay: Fifteen second minimum, to prevent false operation.
 - 4. Surge Protection: Metal-oxide varistor.
 - 5. Mounting: Twist lock complies with NEMA C136.10, with base-and-stem mounting or stem-and-swivel mounting accessories as required to direct sensor to the north sky exposure.
 - 6. Mounting: Fixed base for conduit mounting and capable of being wall mounted.

2.2 INDOOR OCCUPANCY SENSORS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Cooper Industries, Inc.
 - 2. Hubbell Building Automation, Inc.
 - 3. Leviton Mfg. Company Inc.
 - 4. Lithonia Lighting; Acuity Lighting Group, Inc.
 - 5. Lutron Electronics Co., Inc.
 - 6. Sensor Switch, Inc.
 - 7. Watt Stopper.
- B. General Requirements for Sensors: Wall- or ceiling-mounted, solid-state indoor occupancy sensors with a separate power pack.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Operation: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn them off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
 - 3. Sensor Output: Contacts rated to operate the connected relay, complying with UL 773A. Sensor is powered from the power pack.
 - 4. Power Pack: Dry contacts rated for 20-A ballast load at 120- and 277-V ac, for 13-A tungsten at 120-V ac, and for 1 hp at 120-V ac. Sensor has 24-V dc, 150-mA, Class 2 power source, as defined by NFPA 70.
 - 5. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.

- b. Relay: Externally mounted through a 1/2-inch knockout in a standard electrical enclosure.
- c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
- 6. Indicator: Digital display, to show when motion is detected during testing and normal operation of sensor.
- 7. Bypass Switch: Override the "on" function in case of sensor failure.
- 8. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc; turn lights off when selected lighting level is present.
- C. PIR Type: Ceiling mounted; detect occupants in coverage area by their heat and movement.
 - 1. Detector Sensitivity: Detect occurrences of 6-inch- minimum movement of any portion of a human body that presents a target of not less than 36 sq. in.
 - 2. Detection Coverage (Room): Detect occupancy anywhere in a circular area of 1000 sq. ft. when mounted on a 96-inch- high ceiling.
 - 3. Detection Coverage (Corridor): Detect occupancy as indicated on drawings and schedules.
- D. Dual-Technology Type: Ceiling mounted; detect occupants in coverage area using PIR and ultrasonic detection methods. The particular technology or combination of technologies that control on-off functions is selectable in the field by operating controls on unit.
 - 1. Sensitivity Adjustment: Separate for each sensing technology.
 - 2. Detector Sensitivity: Detect occurrences of 6-inch- minimum movement of any portion of a human body that presents a target of not less than 36 sq. in., and detect a person of average size and weight moving not less than 12 inches in either a horizontal or a vertical manner at an approximate speed of 12 inches/s.
 - 3. Detection Coverage (Standard Room): Detect occupancy as indicated on drawings and schedules.

2.3 SWITCHBOX-MOUNTED OCCUPANCY SENSORS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Cooper Industries, Inc.
 - 2. Hubbell Building Automation, Inc.
 - 3. Leviton Mfg. Company Inc.
 - 4. Lithonia Lighting; Acuity Lighting Group, Inc.
 - 5. Lutron Electronics Co., Inc.
 - 6. Sensor Switch, Inc.
 - 7. Watt Stopper.
- B. General Requirements for Sensors: Automatic-wall-switch occupancy sensor, suitable for mounting in a single gang switchbox.

- 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- 2. Operating Ambient Conditions: Dry interior conditions, 32 to 120 deg F.
- 3. Switch Rating: Not less than 800-VA fluorescent at 120 V, 1200-VA fluorescent at 277 V, and 800-W incandescent.
- C. Wall-Switch Sensor: OS1, VS1
 - 1. Standard Range: 180-degree field of view, field adjustable from 180 to 40 degrees; with a minimum coverage area of 900 sq. ft.
 - 2. Sensing Technology: Dual technology PIR and ultrasonic.
 - 3. Switch Type: SP, field selectable automatic "on," or manual "on" automatic "off."
 - 4. Voltage: Dual voltage, 120 and 277 V; dual-technology type.
 - 5. Ambient-Light Override: Concealed, field-adjustable, light-level sensor from 10 to 150 fc. The switch prevents the lights from turning on when the light level is higher than the set point of the sensor.
 - 6. Concealed, field-adjustable, "off" time-delay selector at up to 30 minutes.
 - 7. Concealed "off" time-delay selector at 30 seconds, and 5, 10, and 20 minutes.
 - 8. Adaptive Technology: Self-adjusting circuitry detects and memorizes usage patterns of the space and helps eliminate false "off" switching.

2.4 EMERGENCY SHUNT RELAY

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Lighting Control and Design; Acuity Lighting Group, Inc.
 - 2. Watt Stopper.
 - 3. Intelligent Lighting Controls. Inc.
 - 4. LVS, Inc.
 - 5. Leviton, Inc.
- B. Description: Normally closed, electrically held relay, arranged for wiring in parallel with manual or automatic switching contacts; complying with UL 924.
 - 1. Coil Rating: 277 V.

2.5 CONDUCTORS AND CABLES

- A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."
- B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 18 AWG. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."
- C. Class 1 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 14 AWG. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

3.1 SENSOR INSTALLATION

- A. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression systems, and partition assemblies.
- B. Install and aim sensors in locations to achieve not less than 90 percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.
- C. All lighting control units shall be installed in an appropriate enclosure for the type of environment encountered. No exposed wiring shall be permitted inside of the building or pedestal mounted enclosure in which this equipment is installed.
- D. Photoelectric switches shall be oriented to the north or east with only eye visible from the exterior of the enclosure.
- E. The location and quantities of sensors shown on the drawings are diagrammatic and indicate only the rooms which are to be provided with sensors. The contractor shall provide additional sensors if required to properly and completely cover the respective room.

3.2 WIRING INSTALLATION

- A. Wiring Method: Comply with Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables." Minimum conduit size is 1/2 inch.
- B. Wiring within Enclosures: Comply with NECA 1. Separate power-limited and nonpowerlimited conductors according to conductor manufacturer's written instructions.
- C. Size conductors according to lighting control device manufacturer's written instructions unless otherwise indicated.
- D. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

3.3 IDENTIFICATION

- A. Identify components and power and control wiring according to Section 26 05 53 "Identification for Electrical Systems."
 - 1. Identify controlled circuits in lighting contactors.
 - 2. Identify circuits or luminaires controlled by photoelectric and occupancy sensors at each sensor.
- B. Label time switches and contactors with a unique designation.

3.4 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to evaluate lighting control devices and perform tests and inspections.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- C. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Operational Test: After installing time switches and sensors, and after electrical circuitry has been energized, start units to confirm proper unit operation.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Lighting control devices will be considered defective if they do not pass tests and inspections.
- E. Remove and replace lighting control devices where test results indicate that they do not comply with specified requirements.
- F. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain lighting control devices.

END OF SECTION 26 09 23

SECTION 26 09 43.23 RELAY-BASED/DISTRIBUTED LIGHTING CONTROL SYSTEM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes: Lighting control panels using mechanically held relays for switching.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for control modules, power distribution components, relays, manual switches and plates, and conductors and cables.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 - 3. Sound data including results of operational tests of central dimming controls.
 - 4. Operational documentation for software and firmware.
- B. Shop Drawings: For each relay panel and related equipment.
 - 1. Include dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings.
 - 2. Detail enclosure types and details for types other than NEMA 250, Type 1.
 - 3. Detail wiring partition configuration, current, and voltage ratings.
 - 4. Short-circuit current rating of relays.
 - 5. Wire Termination Diagrams and Schedules: Coordinate nomenclature and presentation with Drawings and block diagram. Differentiate between manufacturer-installed and field-installed wiring.
 - 6. Block Diagram: Show interconnections between components specified in this Section and devices furnished with power distribution system components. Indicate data communication paths and identify networks, data buses, data gateways, concentrators, and other devices to be used. Describe characteristics of network and other data communication lines.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For lighting controls to include in emergency, operation, and maintenance manuals.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Handle and prepare panels for installation according to NECA 407.

<u>1.6</u> WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace components of standalone multipreset modular dimming controls that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Damage from transient voltage surges.
 - 2. Warranty Period: Cost to repair or replace any parts for two years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Sequence of Operations: Input signal from field-mounted manual switches, or digital signal sources, shall open or close one or more lighting control relays in the lighting control panels. Any combination of inputs shall be programmable to any number of control relays.
- B. This specification section and the accompanying lighting design documents describe the minimum material quality, required features. And operational requirements of the lighting control system. These documents do not convey every wire that must be installed and every equipment connection that must be made. Based on the performance required of the system, as indicated in these documents, the Contractor and system manufacturer/vendor are solely responsible for determining all equipment, wiring, and programming required for a complete and operational system.
- C. Surge Protective Device: Factory installed as an integral part of control components or field-mounted surge suppressors complying with UL 1449, SPD Type 2.
- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- E. Comply with 47 CFR 15, Subparts A and B, for Class A digital devices.
- F. Comply with UL 916.

2.2 NETWORKED LIGHTING CONTROL PANELS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Acuity Brands Lighting, Inc.
 - 2. Intelligent Lighting Controls.
 - 3. Lutron Electronics Co., Inc.
 - 4. Watt Stopper/Legrand.
- 5. Creston Lighting.
- 6. Douglas Lighting Controls.
- B. Description: Lighting control panels using mechanically latched relays to control lighting and appliances. The panels shall be capable of being interconnected with digital communications to appear to the operator as a single lighting control system.
- C. Lighting Control Panels:
 - 1. A single enclosure with incoming lighting branch circuits, control circuits, switching relays, and on-board timing and control unit.
 - 2. A vertical barrier separating branch circuits from control wiring.
- D. Main Control Unit: Installed in the main lighting control panel only; powered from the branch circuit of the standard control unit.
 - 1. Ethernet Communications: Comply with TCP/IP protocol. The main control unit shall provide for programming of all control functions of the main and all networked slave lighting control panels including timing, sequencing, and overriding.
 - 2. Compliance with ASHRAE 135: Controllers shall support serial MS/TP and Ethernet IP communications, and shall be able to communicate directly via DDC system for HVAC RS-485 serial networks and Ethernet 10Base-T networks as a native device.
 - 3. Web Server: Display information listed below over a standard Web-enabled server for displaying information over a standard browser.
 - a. A secure, password-protected login screen for modifying operational parameters, accessible to authorized users via Web page interface.
 - b. Panel summary showing the master and slave panels connected to the controller.
 - c. Controller diagnostic information.
 - d. Show front panel mimic screens for setting up controller parameters, input types, zones, and operating schedules. These mimic screens shall also allow direct breaker control and zone overrides.
 - 4. Timing Unit:
 - a. 365-day calendar, astronomical clock, and automatic adjustments for daylight savings and leap year.
 - b. Clock configurable for 12-hour (A.M./P.M.) or 24-hour format.
 - c. Four independent schedules, each having 24 time periods.
 - d. Schedule periods settable to the minute.
 - e. Day-of-week, day-of-month, day-of-year with one-time or repeating capability.
 - f. 16 special date periods.
 - 5. Time Synchronization: The timing unit shall be updated not less than every TWO (2) hour(s) with the network time server.
 - 6. Sequencing Control with Override:

- a. Automatic sequenced on and off switching of selected relays at times set at the timing unit, allowing timed overrides from external switches.
- b. Sequencing control shall operate relays one at a time, completing the operation of all connected relays in not more than 10 seconds.
- c. Override control shall allow any relay connected to it to be switched on or off by a field-deployed manual switch or by an automatic switch, such as an occupancy sensor.
- d. Override control "blinking warning" shall warn occupants approximately five minutes before actuating the off sequence.
- e. Activity log, storing previous relay operation, including the time and cause of the change of status.
- f. Download firmware to the latest version offered by manufacturer.
- E. Standard Control Unit, Installed in All Lighting Control Panels: Contain electronic controls for programming the operation of the relays in the control panel, contain the status of relays, and contain communications link to enable the digital functions of the main control unit. Comply with UL 916.
 - 1. Electronic control for operating and monitoring individual relays, and display relay on-time.
 - 2. Nonvolatile memory shall retain all setup configurations. After a power failure, the controller shall automatically reboot and return to normal system operation.
 - 3. Integral keypad and digital-display front panel for local setup, including the following:
 - a. Blink notice, time adjustable from software.
 - b. Ability to log and display relay on-time.
 - c. Capability for accepting downloadable firmware so that the latest production features may be added in the future without replacing the module.
- F. Relays: Electrically operated, mechanically held single-pole switch, rated at 20 A at 277 V. Short-circuit current rating shall be not less than 5 kA. Control shall be digital control network.
- G. Power Supply: NFPA 70, Class 2, UL listed, sized for connected equipment, plus not less than 20 percent spare capacity. Powered from a dedicated branch circuit of the panelboard that supplies power to the line side of the relays, sized to provide control power for the local panel-mounted relays, bus system, low-voltage inputs, field-installed occupancy sensors, and low-voltage photo sensors.
- H. Operator Interface: At the main control unit, provide interface for a tethered connection of a portable PC running MS Windows for configuring all networked lighting control panels using setup software designed for the specified operating system. Include one portable device for initial programming of the system and training of Owner's personnel. That device shall remain the property of Owner.
- I. Software:
 - 1. Menu-driven data entry.
 - 2. Online and offline programming and editing.

- 3. Provide for entry of the room or space designation for the load side of each relay.
- 4. Monitor and control all relays, showing actual relay state and the name of the automatic actuating control, if any.
- 5. Size the software appropriate to the system.

2.3 DISTRIBUTED LIGHTING CONTROL

- A. System Description: The lighting control system shall be a network of remote modules. System includes all associated wiring, relay modules, photocells, switches, dimmers, time clock, occupancy sensors. System shall utilize distributed relay modules, allowing these relay modules to be located above accessible ceilings in or adjacent to rooms they are controlling.
- B. Control Devices: All occupancy sensors Comply with Section 26 09 23 "Lighting Control Devices shall be provided with system and designed to operate on system network. Supplemental power packs shall be provided as required for multiple control devices.
- C. Relay Modules: Mounted in NEMA enclosure with physically separate 120/277 volt wiring compartment from low voltage control wiring. Provide low voltage digital communication to control devices as shown on drawings and schedules. Supplemental power packs shall be provided as required for multiple control devices. Dimmable relay modules shall be provided where indicated. Relay modules shall contain up to four (4) relays. Relay modules shall be labeled with room number that relays control lighting within.
- D. Single-Pole Relays: Mechanically held, unless noted otherwise, split-coil, momentarypulsed type, rated 20A, 125 volts ac for tungsten filaments and 20A, 277 volts ac for electronic ballasts, 50,000 cycles at rated capacity.

2.4 MANUAL SWITCHES AND PLATES

- A. Push-Button Switches: Modular, momentary contact, three wire, for operating one or more relays and to override automatic controls.
 - 1. Match color and style specified in Section 26 27 26 "Wiring Devices."
 - 2. Integral green LED pilot light to indicate when circuit is on.
 - 3. Internal white LED locator light to illuminate when circuit is off.
- B. Wall Plates: Single and multigang plates as specified in Section 26 27 26 "Wiring Devices."
- C. Legend: Engraved or permanently silk-screened on wall plate where indicated. Use designations indicated on Drawings.

2.5 FIELD-MOUNTED SIGNAL SOURCES

A. Daylight Harvesting Switching Controls: Comply with Section 26 09 23 "Lighting Control Devices." Control power may be taken from the lighting control panel, and signal shall be compatible with the relays.

- B. Indoor Occupancy Sensors: Comply with Section 26 09 23 "Lighting Control Devices." Control power may be taken from the lighting control panel, and signal shall be compatible with the relays.
- C. Outdoor Photoelectric Switches: Comply with Section 26 09 23 "Lighting Control Devices." Control power may be taken from the lighting control panel, and signal shall be compatible with the relays.

2.6 CONDUCTORS AND CABLES

- A. Power Wiring to Supply Side of Class 2 Power Source: Not smaller than No. 12 AWG. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."
- B. Classes 2 and 3 Control Cables: Multiconductor cable with copper conductors not smaller than No. 18 AWG. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."
- C. Class 1 Control Cables: Multiconductor cable with copper conductors not smaller than No. 14 AWG. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."
- D. Twisted-Pair Data Cable: As required by manufacturer.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Receive, inspect, handle, and store panels according to NECA 407.
- B. Examine panels before installation. Reject panels that are damaged or rusted or have been subjected to water saturation.
- C. Examine elements and surfaces to receive panels for compliance with installation tolerances and other conditions affecting performance of the Work.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 WIRING INSTALLATION

- A. Comply with NECA 1.
- B. Wiring Method: Install cables in raceways except within cabinets, and in accessible ceiling spaces. Conceal raceway and cables except in unfinished spaces.
 - 1. Install plenum cable in environmental airspaces, including plenum ceilings.
 - 2. Comply with requirements for raceways and boxes specified in Section 26 05 33 "Raceways and Boxes for Electrical Systems."
- C. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.

- D. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.
- 3.3 PANEL INSTALLATION
- A. Comply with NECA 1.
- B. Install panels and accessories according to NECA 407.
- C. Mount top of trim 90 inches (2286 mm) above finished floor unless otherwise indicated.
- D. Mount panel cabinet plumb and rigid without distortion of box.
- E. Install filler plates in unused spaces.

3.4 IDENTIFICATION

- A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."
- B. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with Section 26 05 53 "Identification for Electrical Systems."
- C. Create a directory to indicate loads served by each relay; incorporate Owner's final room designations. Obtain approval before installing. Use a PC or typewriter to create directory; handwritten directories are unacceptable.
- D. Lighting Control Panel Nameplates: Label each panel with a nameplate complying with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections with the assistance of a factory-authorized service representative.
- C. Tests and Inspections:
 - 1. Test for circuit continuity.
 - 2. Verify that the control module features are operational.
 - 3. Check operation of local override controls.
 - 4. Test system diagnostics by simulating improper operation of several components selected by Architect.
 - 5. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.

D. Prepare test and inspection reports, including a certified report that identifies lighting control panels and describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations made after remedial action.

3.6 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Confirm correct communications wiring, initiate communications between panels, and program the lighting control system according to approved configuration schedules, time-of-day schedules, and input override assignments.

<u>3.7</u> <u>ADJUSTING</u>

A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.8 SOFTWARE SERVICE AGREEMENT

- A. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.
- B. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.
 - 1. Upgrade Notice: At least 30 days to allow Owner to schedule and access the system and to upgrade computer equipment if necessary.

3.9 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain the control unit and operator interface.

END OF SECTION 26 09 43.23

SECTION 26 22 13 LOW-VOLTAGE DISTRIBUTION TRANSFORMERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Refer to Transformer Schedule on drawings.

1.2 SUMMARY

A. Section includes distribution, dry-type transformers with a nominal primary and secondary rating of 600 V and less, with capacities up to 1500 kVA.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type and size of transformer.
 - 2. Include rated nameplate data, capacities, weights, dimensions, minimum clearances, installed devices and features, and performance for each type and size of transformer.
 - 3. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For transformers to include in emergency, operation, and maintenance manuals.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Inspection: On receipt, inspect for and note any shipping damage to packaging and transformer.
 - 1. If manufacturer packaging is removed for inspection, and transformer will be stored after inspection, re-package transformer using original or new packaging materials that provide protection equivalent to manufacturer's packaging.
- B. Storage: Store in a warm, dry, and temperature-stable location in original shipping packaging.
- C. Temporary Heating: Apply temporary heat according to manufacturer's written instructions within the enclosure of each ventilated-type unit, throughout periods during which equipment is not energized and when transformer is not in a space that is continuously under normal control of temperature and humidity.

D. Handling: Follow manufacturer's instructions for lifting and transporting transformers.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Eaton.
 - 2. Hammond Power Solutions Inc.
 - 3. GE ABB (Electrifications Products Division).
 - 4. Schneider Electric USA (Square D).
- B. Source Limitations: Obtain each transformer type from single source from single manufacturer.

2.2 GENERAL TRANSFORMER REQUIREMENTS

- A. Description: Factory-assembled and -tested, air-cooled units for 60-Hz service.
- B. Comply with NFPA 70.
 - 1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
- C. Transformers Rated 15 kVA and Larger:
 - 1. Comply with 10 CFR 431 (DOE 2016) efficiency levels.
 - 2. Marked as compliant with DOE 2016 efficiency levels by an NRTL.

2.3 DISTRIBUTION TRANSFORMERS

- A. Comply with NFPA 70.
- B. Cores: Electrical grade, non-aging silicon steel with high permeability and low hysteresis losses.
 - 1. One leg per phase.
 - 2. Grounded to enclosure.
- C. Coils: Continuous windings without splices except for taps.
 - 1. Coil Material: Aluminum.
 - 2. Internal Coil Connections: Brazed or pressure type.
 - 3. Terminal Connections: Welded.
 - 4. NEMA 250, Type 2: Core and coil shall be encapsulated within resin compound to seal out moisture and air.
 - 5. KVA Ratings: Based on convection cooling only and not relying on auxiliary fans.
 - 6. Wiring Compartment: Sized for conduit entry and wiring installation.

- D. Taps for Transformers 3 kVA and Smaller: None.
- E. Taps for Transformers 7.5 to 24 kVA: Two 5 percent taps below rated voltage.
- F. Taps for Transformers 25 kVA and Larger: Two 2.5 percent taps above, and two 2.5 percent taps below normal full capacity.
- G. Insulation Class, Smaller Than 30 kVA: 180 deg C, UL-component-recognized insulation system with a maximum of 115 deg C rise above 40 deg C ambient temperature. As indicated on drawings.
- H. Insulation Class, 30 kVA and Larger: 220 deg C, UL-component-recognized insulation system with a maximum of 150 rise above 40 deg C ambient temperature as indicated on drawings.
- I. Grounding: Provide ground-bar kit or a ground bar installed on the inside of the transformer enclosure.
- J. Low-Sound-Level Requirements: Maximum sound levels when factory tested according to IEEE C57.12.91, as follows:
 - 1. 9.01 to 30.00 kVA: 45 dBA.
 - 2. 30.01 to 50.00 kVA: 50 dBA.
 - 3. 50.01 to 150.00 kVA: 55 dBA.
 - 4. 150.01 to 300.00 kVA: 55 dBA.

2.4 IDENTIFICATION

A. Nameplates: Engraved, laminated-acrylic or melamine plastic signs for each distribution transformer, mounted with corrosion-resistant screws. Nameplates and label products are specified in Section 26 05 53 "Identification for Electrical Systems."

2.5 SOURCE QUALITY CONTROL

- A. Test and inspect transformers according to IEEE C57.12.01 and IEEE C57.12.91.
 - 1. Resistance measurements of all windings at rated voltage connections and at all tap connections.
 - 2. Ratio tests at rated voltage connections and at all tap connections.
 - 3. Phase relation and polarity tests at rated voltage connections.
 - 4. No load losses, and excitation current and rated voltage at rated voltage connections.
 - 5. Impedance and load losses at rated current and rated frequency at rated voltage connections.
 - 6. Applied and induced tensile tests.
 - 7. Regulation and efficiency at rated load and voltage.
 - 8. Insulation-Resistance Tests:
 - a. High-voltage to ground.
 - b. Low-voltage to ground.
 - c. High-voltage to low-voltage.

9. Temperature tests.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine conditions for compliance with enclosure- and ambient-temperature requirements for each transformer.
- B. Verify that field measurements are as needed to maintain working clearances required by NFPA 70 and manufacturer's written instructions.
- C. Examine walls, floors, roofs, and concrete bases for suitable mounting conditions where transformers will be installed.
- D. Verify that ground connections are in place and requirements in Section 26 05 26 "Grounding and Bonding for Electrical Systems" have been met.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Construct concrete bases according to Section 03 30 00 "Cast-in-Place Concrete" and anchor floor-mounted transformers according to manufacturer's written instructions and requirements in Section 26 05 29 "Hangers and Supports for Electrical Systems."
 - 1. Coordinate size and location of concrete bases with actual transformer provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.
- B. Secure transformer to concrete base according to manufacturer's written instructions.
- C. Secure covers to enclosure and tighten all bolts to manufacturer-recommended torques to reduce noise generation.
- D. Remove shipping bolts, blocking, and wedges.
- E. Mount transformers on four 3" x 3" $\frac{1}{2}$ " thick, 50 durometer rubber vibration isolating pads, suitable for isolating the transformer noise from the building structure.

3.3 CONNECTIONS

- A. Ground equipment according to Section 26 05 26 "Grounding and Bonding for Electrical Systems."
- B. Connect wiring according to Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."
- C. Tighten electrical connectors and terminals according to manufacturer's published torque-tightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.

D. Provide flexible connections at all conduit and conductor terminations and supports to eliminate sound and vibration transmission to the building structure.

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Small (Up to 167-kVA Single-Phase or 500-kVA Three-Phase) Dry-Type Transformer Field Tests:
 - 1. Visual and Mechanical Inspection.
 - a. Inspect physical and mechanical condition.
 - b. Inspect anchorage, alignment, and grounding.
 - c. Verify that resilient mounts are free and that any shipping brackets have been removed.
 - d. Verify the unit is clean.
 - e. Perform specific inspections and mechanical tests recommended by manufacturer.
 - f. Verify that as-left tap connections are as specified.
 - g. Verify the presence of surge arresters and that their ratings are as specified.
 - 2. Electrical Tests:
 - a. Measure resistance at each winding, tap, and bolted connection.
 - b. Perform insulation-resistance tests winding-to-winding and each windingto-ground. Apply voltage according to manufacturer's published data. In the absence of manufacturer's published data, comply with NETA ATS, Table 100.5. Calculate polarization index: the value of the index shall not be less than 1.0.
 - c. Perform turns-ratio tests at all tap positions. Test results shall not deviate by more than one-half percent from either the adjacent coils or the calculated ratio. If test fails, replace the transformer.
 - d. Verify correct secondary voltage, phase-to-phase and phase-to-neutral, after energization and prior to loading.
- C. Remove and replace units that do not pass tests or inspections and retest as specified above.
- D. Test Labeling: On completion of satisfactory testing of each unit, attach a dated and signed "Satisfactory Test" label to tested component.

3.5 ADJUSTING

A. Record transformer secondary voltage at each unit for at least 48 hours of typical occupancy period. Adjust transformer taps to provide optimum voltage conditions at secondary terminals. Optimum is defined as not exceeding nameplate voltage plus 5 percent and not being lower than nameplate voltage minus 3 percent at maximum load conditions. Submit recording and tap settings as test results.

B. Output Settings Report: Prepare a written report recording output voltages and tap settings.

3.6 CLEANING

A. Vacuum dirt and debris; do not use compressed air to assist in cleaning.

END OF SECTION 26 22 13

SECTION 26 24 13 SWITCHBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Service and distribution switchboards rated 600 V and less.
 - 2. Disconnecting and overcurrent protective devices.
 - 3. Instrumentation.
 - 4. Identification.
- B. Related Requirements
 - 1. Section 26 05 73.19 "Arc-Flash Hazard Analysis" for arc-flash analysis and arcflash label requirements.

1.3 ACTION SUBMITTALS

- A. Product Data: For each switchboard, overcurrent protective device, surge protection device, ground-fault protector, accessory, and component.
 - 1. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
- B. Shop Drawings: For each switchboard and related equipment.
 - 1. Include dimensioned plans, elevations, sections, and details, including required clearances and service space around equipment. Show tabulations of installed devices, equipment features, and ratings.
 - 2. Detail enclosure types for types other than NEMA 250, Type 1.
 - 3. Detail bus configuration, current, and voltage ratings.
 - 4. Detail short-circuit current rating of switchboards and overcurrent protective devices.
 - 5. Include descriptive documentation of optional barriers specified for electrical insulation and isolation.
 - 6. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 - 7. Include schematic and wiring diagrams for power, signal, and control wiring.
- C. Samples: Representative portion of mimic bus with specified material and finish, for color selection.
- D. Delegated Design Submittal:

- 1. For arc-flash hazard analysis.
- 2. For arc-flash labels.

1.4 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For switchboards and components to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," include the following:
 - a. Routine maintenance requirements for switchboards and all installed components.
 - b. Manufacturer's written instructions for testing and adjusting overcurrent protective devices.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: An employer of workers qualified as defined in NEMA PB 2.1 and trained in electrical safety as required by NFPA 70E.
- B. Testing Agency Qualifications: Accredited by NETA.
 - 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.
- 1.6 DELIVERY, STORAGE, AND HANDLING
- A. Deliver switchboards in sections or lengths that can be moved past obstructions in delivery path.
- B. Handle and prepare switchboards for installation according to NEMA PB 2.1.
- 1.7 FIELD CONDITIONS
- A. Environmental Limitations:
 - 1. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - a. Ambient Temperature: Not exceeding 104 deg F.
 - b. Altitude: Not exceeding 1000 feet.

1.8 COORDINATION

A. Coordinate layout and installation of switchboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

<u>1.9</u> WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace switchboard enclosures, buswork, overcurrent protective devices, accessories, and factory installed interconnection wiring that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Three years from date of Substantial Completion.
- B. Manufacturer's Warranty: Manufacturer's agrees to repair or replace surge protection devices that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SWITCHBOARDS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - 2. General Electric Company; GE Consumer & Industrial Electrical Distribution.
 - 3. Square D; a brand of Schneider Electric.
- B. Source Limitations: Obtain switchboards, overcurrent protective devices, components, and accessories from single source from single manufacturer.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. Comply with NEMA PB 2.
- E. Comply with NFPA 70.
- F. Comply with UL 891.
- G. Front-Connected, Front-Accessible Switchboards:
 - 1. Main Devices: Fixed, individually mounted.
 - 2. Branch Devices: Panel mounted.
 - 3. Sections front and rear aligned.
- H. Nominal System Voltage: As indicated on drawings.

- I. Main-Bus Continuous: As indicated drawings.
- J. Indoor Enclosures: Steel, NEMA 250, Type 1.
- K. Enclosure Finish for Indoor Units: Factory-applied finish in manufacturer's standard gray finish over a rust-inhibiting primer on treated metal surface.
- L. Customer Metering Compartment: A separate customer metering compartment and section with front hinged door, for indicated metering, and current transformers for each meter. Current transformer secondary wiring shall be terminated on shorting-type terminal blocks.
- M. Bus Transition and Incoming Pull Sections: Matched and aligned with basic switchboard.
- N. Hinged Front Panels: Allow access to circuit breaker, metering, accessory, and blank compartments.
- O. Buses and Connections: Three phase, four wire unless otherwise indicated.
 - 1. Provide phase bus arrangement A, B, C from front to back, top to bottom, and left to right when viewed from the front of the switchboard.
 - 2. Phase- and Neutral-Bus Material: Hard-drawn copper of 98 percent conductivity, silver-plated.
 - 3. Tin-plated aluminum feeder circuit-breaker line connections.
 - 4. Load Terminals: Insulated, rigidly braced, runback bus extensions, of same material as through buses, equipped with mechanical connectors for outgoing circuit conductors. Provide load terminals for future circuit-breaker positions at full-ampere rating of circuit-breaker position.
 - 5. Ground Bus: 1/4-by-2-inch- hard-drawn copper of 98 percent conductivity, equipped with mechanical connectors for feeder and branch-circuit ground conductors.
 - 6. Main-Phase Buses and Equipment-Ground Buses: Uniform capacity for entire length of switchboard's main and distribution sections. Provide for future extensions from both ends.
 - 7. Disconnect Links:
 - a. Isolate neutral bus from incoming neutral conductors.
 - b. Bond neutral bus to equipment-ground bus for switchboards utilized as service equipment or separately derived systems.
 - 8. Neutral Buses: 100 percent of the ampacity of phase buses unless otherwise indicated, equipped with mechanical connectors for outgoing circuit neutral cables. Brace bus extensions for busway feeder neutral bus.
- P. Future Devices: Equip compartments with mounting brackets, supports, bus connections, and appurtenances at full rating of circuit-breaker compartment.

2.2 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

A. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with interrupting capacity to meet available fault currents.

- 1. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
- 2. Electronic trip circuit breakers with rms sensing; field-replaceable rating plug or field-replicable electronic trip; and the following field-adjustable settings:
 - a. Instantaneous trip.
 - b. Long- and short-time pickup levels.
 - c. Long- and short-time adjustments.
 - d. Ground-fault pickup level, time delay, and I squared t response.
- 3. MCCB Features and Accessories:
 - a. Standard frame sizes, trip ratings, and number of poles.
 - b. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor material.
 - c. Application Listing: Appropriate for application; Type SWD for switching fluorescent lighting loads; Type HID for feeding fluorescent and high-intensity discharge (HID) lighting circuits.
 - d. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.

2.3 INSTRUMENTATION

- A. Multifunction Digital-Metering Monitor: Microprocessor-based unit suitable for three- or four-wire systems and with the following features:
 - 1. Switch-selectable digital display of the following values with maximum accuracy tolerances as indicated:
 - a. Phase Currents, Each Phase: Plus or minus 0.5 percent.
 - b. Phase-to-Phase Voltages, Three Phase: Plus or minus 0.5 percent.
 - c. Phase-to-Neutral Voltages, Three Phase: Plus or minus 0.5 percent.
 - d. Megawatts: Plus or minus 1 percent.
 - e. Megavars: Plus or minus 1 percent.
 - f. Power Factor: Plus or minus 1 percent.
 - g. Frequency: Plus or minus 0.1 percent.
 - h. Accumulated Energy, Megawatt Hours: Plus or minus 1 percent; accumulated values unaffected by power outages up to 72 hours.
 - i. Megawatt Demand: Plus or minus 1 percent; demand interval programmable from five to 60 minutes.
 - 2. Mounting: Display and control unit flush or semi flush mounted in instrument compartment door.
- B. Energy Reduction Maintenance Switch

2.4 IDENTIFICATION

A. Service Equipment Label: NRTL labeled for use as service equipment for switchboards with one or more service disconnecting and overcurrent protective devices.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Receive, inspect, handle, and store switchboards according to NEMA PB 2.1.
 - 1. Lift or move panelboards with spreader bars and manufacturer-supplied lifting straps following manufacturer's instructions.
 - 2. Use rollers, slings, or other manufacturer-approved methods if lifting straps are not furnished.
 - 3. Protect from moisture, dust, dirt, and debris during storage and installation.
 - 4. Install temporary heating during storage per manufacturer's instructions.
- B. Examine switchboards before installation. Reject switchboards that are moisture damaged or physically damaged.
- C. Examine elements and surfaces to receive switchboards for compliance with installation tolerances and other conditions affecting performance of the Work or that affect the performance of the equipment.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install switchboards and accessories according to NEMA PB 2.1.
- B. Equipment Mounting: Install switchboards on concrete base, 4-inch nominal thickness. Comply with requirements for concrete base specified in Section 03 30 00 "Cast-in-Place Concrete."
 - 1. Install conduits entering underneath the switchboard, entering under the vertical section where the conductors will terminate. Install with couplings flush with the concrete base. Extend 2 inches above concrete base after switchboard is anchored in place.
 - 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
 - 3. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 - 4. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 5. Install anchor bolts to elevations required for proper attachment to switchboards.
 - 6. Anchor switchboard to building structure at the top of the switchboard if required or recommended by the manufacturer.

- C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, straps and brackets, and temporary blocking of moving parts from switchboard units and components.
- D. Install filler plates in unused spaces of panel-mounted sections.
- E. Install overcurrent protective devices, surge protection devices, and instrumentation.
 - 1. Set field-adjustable switches and circuit-breaker trip ranges.
- F. Comply with NECA 1.

3.3 CONNECTIONS

- A. Bond conduits entering underneath the switchboard to the equipment ground bus with a bonding conductor sized per NFPA 70.
- B. Support and secure conductors within the switchboard according to NFPA 70.

3.4 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs comply with NFPA 70 and 29 CFR 1910.145. Self-Adhesive Warning Labels: Factory-printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment unless otherwise indicated.
- B. Switchboard Nameplates: Label each switchboard compartment with a nameplate. Indoor Equipment: Self-adhesive, engraved, laminated acrylic or melamine label. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high label; where two lines of text are required, use labels 2 inches high.
- C. Outdoor Equipment: Engraved, laminated acrylic or melamine label.
- D. Device Nameplates: Label each disconnecting, and overcurrent protective device and each meter and control device mounted in compartment doors with Self-Adhesive, Engraved, Laminated Acrylic or Melamine Label: Adhesive backed, with white letters on a dark-gray background. Minimum letter height shall be 3/8 inch.
- E. Warning label and sign shall include, but are not limited to, the following legends:
 - 1. Multiple Power Source Warning: "DANGER ELECTRICAL SHOCK HAZARD -EQUIPMENT HAS MULTIPLE POWER SOURCES."

3.5 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections with the assistance of a factory-authorized service representative.

- C. Tests and Inspections:
 - 1. Acceptance Testing:
 - a. Test insulation resistance for each switchboard bus, component, connecting supply, feeder, and control circuit. Open control and metering circuits within the switchboard and remove neutral connection to surge protection and other electronic devices prior to insulation test. Reconnect after test.
 - b. Test continuity of each circuit.
 - 2. Test ground-fault protection of equipment for service equipment per NFPA 70.
 - 3. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 4. Correct malfunctioning units on-site where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
 - 5. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Switchboard will be considered defective if it does not pass tests and inspections.

3.6 ADJUSTING

- A. Adjust moving parts and operable components to function smoothly and lubricate as recommended by manufacturer.
- B. Set field-adjustable circuit-breaker trip ranges as specified in Section 26 05 73.16 "Coordination Studies."

3.7 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain switchboards, overcurrent protective devices, instrumentation, and accessories.

END OF SECTION 26 24 13

SECTION 26 24 16 PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Distribution panelboards.
 - 2. Lighting and appliance branch-circuit panelboards.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of panelboard.
 - 1. Include materials, switching and overcurrent protective devices, SPDs, accessories, and components indicated.
 - 2. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each panelboard and related equipment.
 - 1. Include dimensioned plans, elevations, sections, and details.
 - 2. Show tabulations of installed devices with nameplates, conductor termination sizes, equipment features, and ratings.
 - 3. Detail enclosure types including mounting and anchorage, environmental protection, knockouts, corner treatments, covers and doors, gaskets, hinges, and locks.
 - 4. Detail bus configuration, current, and voltage ratings.
 - 5. Short-circuit current rating of panelboards and overcurrent protective devices.
 - 6. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
 - 7. Component List.
 - 8. Cable terminal sizes.
 - 9. Break layout drawings with dimensions indicated and nameplate designations.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For panelboards and components to include in emergency, operation, and maintenance manuals. Refer to Division 1 "Operation and Maintenance Data" for additional requirements.

1.5 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Keys: Two spares for each type of panelboard cabinet lock.

1.6 QUALITY ASSURANCE

- A. Manufacturer Qualifications: ISO 9001 or 9002 certified.
- B. Source Limitations: Obtain panelboards, overcurrent protective devices, components, and accessories from single source from single manufacturer.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.
- B. Handle and prepare panelboards for installation according to NEMA PB 1.

1.8 FIELD CONDITIONS

- A. Environmental Limitations:
 - 1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 - 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - a. Ambient Temperature: Not exceeding minus 22 deg F to plus 104 deg F.
 - b. Altitude: Not exceeding 6600 feet.
- B. Service Conditions: NEMA PB 1, usual service conditions, as follows:
 - 1. Ambient temperatures within limits specified.
 - 2. Altitude not exceeding 6600 feet.

<u>1.9</u> WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace panelboards that fail in materials or workmanship within specified warranty period.
 - 1. Panelboard Warranty Period: 18 months from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PANELBOARDS COMMON REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NEMA PB 1.
- C. Comply with NFPA 70.
- D. Enclosures: Flush or Surface-mounted (as indicated on Panel Schedules), dead-front cabinets.
 - 1. Rated for environmental conditions at installed location.
 - a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 - b. Outdoor Locations: NEMA 250, Type 3R.
 - c. Areas: Other Wet or Damp Indoor Locations: NEMA 250, Type 4.
 - d. Indoor Locations: Where noted on drawings and Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.
 - 2. Height: 84 inches maximum.
 - 3. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions; for flush-mounted fronts, overlap box. Trims shall cover all live parts and shall have no exposed hardware.
 - 4. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover. Trims shall cover all live parts and shall have no exposed hardware.
 - 5. Finishes:
 - a. Panels and Trim: Steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 - b. Back Boxes: Galvanized steel.
 - 6. All multi-section panelboards shall have the same dimensional back box and cabinet front size.
- E. Incoming Mains: Contractor to Determine Location.
- F. Phase, Neutral, and Ground Buses:
 - 1. Material: Hard-drawn copper, 98 percent conductivity.
 - a. Plating shall run entire length of bus.
 - b. Bus shall be fully rated the entire length.
 - 2. Interiors shall be factory assembled into a unit. Replacing switching and protective devices shall not disturb adjacent units or require removing the main bus connectors.

- 3. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
- 4. Full-Sized Neutral: Equipped with full-capacity bonding strap for service entrance applications. Mount electrically isolated from enclosure. Do not mount neutral bus in gutter.
- G. Conductor Connectors: Suitable for use with conductor material and sizes.
 - 1. Material: Hard-drawn copper, 98 percent conductivity.
 - 2. Terminations shall allow use of 75 deg C rated conductors without derating.
 - 3. Size: Lugs suitable for indicated conductor sizes, with additional gutter space, if required, for larger conductors.
 - 4. Main and Neutral Lugs: Mechanical type, with a lug on the neutral bar for each pole in the panelboard.
 - 5. Ground Lugs and Bus-Configured Terminators: Mechanical type, with a lug on the bar for each pole in the panelboard.
 - 6. Feed-Through Lugs: Mechanical type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
 - 7. Sub-feed (Double) Lugs: Mechanical type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
- H. NRTL Label: Panelboards shall be labeled by an NRTL acceptable to authority having jurisdiction for use as service equipment with one or more main service disconnecting and overcurrent protective devices. Panelboards or load centers shall have meter enclosures, wiring, connections, and other provisions for utility metering. Coordinate with utility company for exact requirements.
- I. Future Devices: Panelboards or load centers shall have mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.
 - 1. Percentage of Future Space Capacity: As indicated on drawings percent.
- J. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals. Assembly listed by an NRTL for 100 percent interrupting capacity.
 - 1. Panelboards and overcurrent protective devices rated 240 V or less shall have short-circuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
 - 2. Panelboards and overcurrent protective devices rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.

2.2 DISTRIBUTION PANELBOARDS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Eaton.

- 2. General Electric Company; GE Energy Management Electrical Distribution.
- 3. Square D; by Schneider Électric.
- B. Panelboards: NEMA PB 1, distribution type.
- C. Doors: Secured with vault-type latch with tumbler lock; keyed alike.
 - 1. For doors more than 36 inches high, provide two latches, keyed alike.
- D. Mains: Refer to Panel Schedule.
- E. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes 125 A and Smaller: Bolt-on circuit breakers.
- F. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers.

2.3 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Eaton.
 - 2. General Electric Company; GE Energy Management Electrical Distribution.
 - 3. Square D; by Schneider Electric.
- B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.
- C. Mains: Refer to Panel Schedules.
- D. Branch Overcurrent Protective Devices: Plug-in circuit breakers, replaceable without disturbing adjacent units.
- E. Doors: Concealed hinges; secured with flush latch with tumbler lock; keyed alike.
- F. Doors: Door-in-door construction with concealed hinges; secured with multipoint latch with tumbler lock; keyed alike. Outer door shall permit full access to the panel interior. Inner door shall permit access to breaker operating handles and labeling, but current carrying terminals and bus shall remain concealed.

2.4 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

- A. MCCB: Comply with UL 489, with interrupting capacity to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers:
 - a. Inverse time-current element for low-level overloads.
 - b. Instantaneous magnetic trip element for short circuits.
 - c. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.

- 2. Electronic Trip Circuit Breakers:
 - a. RMS sensing.
 - b. Field-replaceable rating plug or electronic trip.
 - c. Digital display of settings, trip targets, and indicated metering displays.
 - d. Multi-button keypad to access programmable functions and monitored data.
 - e. Ten-event, trip-history log. Each trip event shall be recorded with type, phase, and magnitude of fault that caused the trip.
 - f. Integral test jack for connection to portable test set or laptop computer.
 - g. Field-Adjustable Settings:
 - 1) Instantaneous trip.
 - 2) Long- and short-time pickup levels.
 - 3) Long- and short-time adjustments.
 - 4) Ground-fault pickup level, time delay, and I squared T response.
- 3. GFCI Circuit Breakers: Single- and double-pole configurations with Class A ground-fault protection (6-mA trip).
- 4. Sub-feed Circuit Breakers: Vertically mounted.
- 5. MCCB Features and Accessories:
 - a. Standard frame sizes, trip ratings, and number of poles.
 - b. Breaker handle indicates tripped status.
 - c. UL listed for reverse connection without restrictive line or load ratings.
 - d. Lugs: Mechanical style, suitable for number, size, trip ratings, and conductor materials.
 - e. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 - f. Multipole units enclosed in a single housing with a single handle.
 - g. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off position.

2.5 IDENTIFICATION

- A. Panelboard Label: Manufacturer's name and trademark, voltage, amperage, number of phases, and number of poles shall be located on the interior of the panelboard door.
- B. Breaker Labels: Faceplate shall list current rating, UL and IEC certification standards, and AIC rating.
- C. Circuit Directory: Directory card inside panelboard door, mounted in metal frame with transparent protective cover.
 - 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify actual conditions with field measurements prior to ordering panelboards to verify that equipment fits in allocated space in, and comply with, minimum required clearances specified in NFPA 70.
- B. Receive, inspect, handle, and store panelboards according to NEMA PB 1.1.
- C. Examine panelboards before installation. Reject panelboards that are damaged, rusted, or have been subjected to water saturation.
- D. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Comply with NECA 1.
- C. Install panelboards and accessories according to NEMA PB 1.1.
- D. Equipment Mounting:
 - 1. Install panelboards on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 03 30 00 "Cast-in-Place Concrete."
 - 2. Attach panelboard to the vertical finished or structural surface behind the panelboard.
- E. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.
- F. Mount top of panelboard so that the top-most switch or circuit breaker is not higher than 78"(6'-6") above finished floor or grade.
- G. Mount panelboard cabinet plumb and rigid without distortion of box.
- H. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.
- I. Mount surface-mounted panelboards to steel slotted supports 5/8 inch in depth. Orient steel slotted supports vertically.
- J. Install overcurrent protective devices and controllers not already factory installed.

- 1. Set field-adjustable, circuit-breaker trip ranges.
- 2. Tighten bolted connections and circuit breaker connections using calibrated torque wrench or torque screwdriver per manufacturer's written instructions.
- K. Make grounding connections and bond neutral for services and separately derived systems to ground. Make connections to grounding electrodes, separate grounds for isolated ground bars, and connections to separate ground bars.
- L. Install filler plates in unused spaces.
- M. Stub four 1-inch empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future.
- N. Arrange conductors in gutters into groups and bundle and wrap with wire ties.

3.3 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; install warning signs complying with requirements in Section 26 05 53 "Identification for Electrical Systems."
- B. Create a directory to indicate installed circuit loads; incorporate Owner's final room designations. Obtain approval before installing. Handwritten directories are not acceptable. Install directory inside panelboard door.
- C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."
- D. Device Nameplates: Label each branch circuit device in power panelboards with a nameplate complying with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Acceptance Testing Preparation:
 - 1. Test insulation resistance for each panelboard bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
- C. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test for low-voltage air circuit breakers stated in NETA ATS, Paragraph 7.6 Circuit Breakers. Certify compliance with test parameters.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- D. Panelboards will be considered defective if they do not pass tests and inspections.

3.5 ADJUSTING

- A. Adjust moving parts and operable components to function smoothly and lubricate as recommended by manufacturer.
- B. Set field-adjustable circuit-breaker trip ranges as specified in Section 26 05 73.16 "Coordination Studies."
- C. Load Balancing: After Substantial Completion, but not more than 60 days after Final Acceptance, measure load balancing and make circuit changes. Prior to making circuit changes to achieve load balancing, inform Architect of effect on phase color coding.
 - 1. Measure loads during period of normal facility operations.
 - 2. Perform circuit changes to achieve load balancing outside normal facility operation schedule or at times directed by the Architect. Avoid disrupting services such as fax machines and on-line data processing, computing, transmitting, and receiving equipment.
 - 3. After changing circuits to achieve load balancing, recheck loads during normal facility operations. Record load readings before and after changing circuits to achieve load balancing.
 - 4. Tolerance: Maximum difference between phase loads, within a panelboard, shall not exceed 20 percent.

END OF SECTION 26 24 16

This page intentionally left blank.

SECTION 26 27 13 ELECTRICITY METERING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes work to accommodate utility company revenue meters, and Owner's electricity meters used to manage the electrical power system.
- 1.3 ACTION SUBMITTALS
- A. Product Data:
 - 1. For each type of meter.
 - 2. For metering infrastructure components.
- B. Shop Drawings: For electricity-metering equipment.
 - 1. Include elevation views of front panels of control and indicating devices and control stations.
 - 2. Include series-combination rating data for modular meter centers with main disconnect device.
- 1.4 QUALITY ASSURANCE
- 1.5 WARRANTY
 - 1. Warranty Period: Cost to repair or replace any parts for two years from date of Substantial Completion.
- 1.6 COORDINATION
- A. Electrical Service Connections:
 - 1. Coordinate with utility companies and utility-furnished components.
 - a. Comply with requirements of utility providing electrical power services.
 - b. Coordinate installation and connection of utilities and services, including provision for electricity-metering components.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with UL 916.
- 2.2 UTILITY METERING INFRASTRUCTURE
- A. Install metering accessories furnished by the utility company, complying with its requirements.
- B. Meter Sockets:
 - 1. Comply with requirements of electrical-power utility company.
 - a. Comply with UL 67.
 - 2. Housing: NEMA 250, Type 1 enclosure.
 - 3. Meter Socket Rating: Coordinated with connected feeder circuit rating.
 - 4. Minimum Short-Circuit Rating: 65,000 A symmetrical at rated voltage.
 - 5. Steady-state and short-circuit current ratings shall have ratings that match connected circuit ratings.

PART 3 - EXECUTION

- 3.1 INSTALLATION
- A. Comply with equipment installation requirements in NECA 1.
- B. Install meters furnished by utility company. Install raceways and equipment according to utility company's written instructions. Provide empty conduits for metering leads and extend grounding connections as required by utility company.
- C. Wiring Method:
 - 1. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

3.2 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Visual and Mechanical Inspection: Inspect for physical damage, proper alignment, anchorage, and grounding. Check proper installation and tightness of connections for circuit breakers.

END OF SECTION 26 27 13

SECTION 26 27 26 WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Standard-grade receptacles, 125 V, 20 A.
 - 2. USB receptacles
 - 3. GFCI receptacles, 125 V, 20 A.
 - 4. Twist-locking receptacles.
 - 5. Pendant cord-connector devices.
 - 6. Cord and plug sets.
 - 7. Digital timer light switches.
 - 8. Toggle switches, 120/277 V, 20 A.
 - 9. Wall plates.
 - 10. Media/Audio-Visual Wall Box

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing-label warnings and instruction manuals that include labeling conditions.

PART 2 - PRODUCTS

2.1 GENERAL WIRING-DEVICE REQUIREMENTS

- A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
- B. Comply with NFPA 70.
- C. RoHS compliant.
- D. Comply with NEMA WD 1.

- E. Devices that are manufactured for use with modular plug-in connectors may be substituted under the following conditions:
 - 1. Connectors shall comply with UL 2459 and shall be made with stranding building wire.
 - 2. Devices shall comply with requirements in this Section.
- F. Devices for Owner-Furnished Equipment:
 - 1. Receptacles: Match plug configurations.
 - 2. Cord and Plug Sets: Match equipment requirements.
- G. Device Color:
 - 1. Wiring Devices Connected to Normal Power System: As selected by Architect unless otherwise indicated or required by NFPA 70 or device listing.
 - 2. Devices that are shaded on the drawings shall be: Red.
- H. Wall Plate Color: For plastic covers, match device color.
- I. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 STANDARD-GRADE RECEPTACLES, 125 V, 20 A

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Hubbell Incorporated; Wiring Device-Kellems Hubbell Pro Series 5352A.
 - 2. Leviton Manufacturing Co., Inc-M5362-S.
 - 3. Pass & Seymour/Legrand (Pass & Seymour)- 5352A Series.
- B. Duplex Receptacles, 125 V, 20 A:
 - 1. Description: Two pole, three wire, and self-grounding.
 - 2. Configuration: NEMA WD 6, Configuration 5-20R.
 - 3. Standards: Comply with UL 498 and FS W-C-596.
- C. Weather-Resistant Duplex Receptacle, 125 V, 20 A:
 - 1. Description: Two pole, three wire, and self-grounding. Integral shutters that operate only when a plug is inserted in the receptacle. Square face.
 - 2. Configuration: NEMA WD 6, Configuration 5-20R.
 - 3. Standards: Comply with UL 498.
 - 4. Marking: Listed and labeled as complying with NFPA 70, "Receptacles in Damp or Wet Locations" Article.
- D. Tamper- and Weather-Resistant Duplex Receptacles, 125 V, 20 A:
 - 1. Description: Two pole, three wire, and self-grounding. Integral shutters that operate only when a plug is inserted in the receptacle. Square face.
 - 2. Configuration: NEMA WD 6, Configuration 5-20R.

- 3. Standards: Comply with UL 498.
- 4. Marking: Listed and labeled as complying with NFPA 70, "Tamper-Resistant Receptacles" and "Receptacles in Damp or Wet Locations" articles.

2.3 USB RECEPTACLES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Hubbell Incorporated; Wiring Device-Kellems.
 - 2. Leviton Manufacturing Co., Inc.
 - 3. Pass & Seymour/Legrand (Pass & Seymour).
- B. Tamper-Resistant Duplex and USB Charging Receptacles:
 - 1. Description: Single-piece, rivetless, nickel-plated, all-brass grounding system. Nickel-plated, brass mounting strap. Integral shutters that operate only when a plug is inserted in the line voltage receptacle.
 - 2. Line Voltage Receptacles: Two pole, three wire, and self-grounding; NEMA WD 6, Configuration 5-20R.
 - 3. USB Receptacles: Dual USB Type A, 5 V dc, and 3.1 A per receptacle (minimum).
 - 4. Standards: Comply with UL 498, UL 1310, USB 3.0 devices, and FS W-C-596.
 - 5. Marking: Listed and labeled as complying with NFPA 70, "Tamper-Resistant Receptacles" Article.
- <u>2.4</u> <u>GFCI RECEPTACLES, 125 V, 20 A</u>
- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Hubbell Incorporated; Wiring Device-Kellems-GF20L.
 - 2. Leviton Manufacturing Co., Inc-GFNT2.
 - 3. Pass & Seymour/Legrand (Pass & Seymour)-2097.
- B. Duplex GFCI Receptacles, 125 V, 20 A:
 - 1. Description: Integral GFCI with "Test" and "Reset" buttons and LED indicator light. Two pole, three wire, and self-grounding.
 - 2. Configuration: NEMA WD 6, Configuration 5-20R.
 - 3. Type: Non-feed through.
 - 4. Standards: Comply with UL 498, UL 943 Class A, and FS W-C-596.
- C. Tamper- and Weather-Resistant, GFCI Duplex Receptacles, 125 V, 20 A:
 - 1. Description: Integral GFCI with "Test" and "Reset" buttons and LED indicator light. Two pole, three wire, and self-grounding. Integral shutters that operate only when a plug is inserted in the receptacle. Square face.
 - 2. Configuration: NEMA WD 6, Configuration 5-15R.
 - 3. Type: Non-feed through.
 - 4. Standards: Comply with UL 498 and UL 943 Class A.

5. Marking: Listed and labeled as complying with NFPA 70, "Tamper-Resistant Receptacles" and "Receptacles in Damp or Wet Locations" articles.

2.5 TWIST-LOCKING RECEPTACLES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Hubbell Incorporated; Wiring Device-Kellems.
 - 2. Leviton Manufacturing Co., Inc.
 - 3. Pass & Seymour/Legrand (Pass & Seymour).
- B. Twist-Lock, Single Receptacles, 250 V, 30 A:
 - 1. Configuration: NEMA WD 6, Configuration L6-30R.
 - 2. Standards: Comply with UL 498.

2.6 PENDANT CORD-CONNECTOR DEVICES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Hubbell Premise Wiring.
 - 2. Leviton Manufacturing Co., Inc.
 - 3. Pass & Seymour/Legrand (Pass & Seymour).
- B. Description: Matching, locking type plug and receptacle body connector, heavy-duty grade.
- C. Configuration: As indicated on drawings.
- D. Body: Nylon, with screw-open, cable-gripping jaws and provision for attaching external cable grip.
- E. External Cable Grip: Woven wire-mesh type made of high-strength, galvanized-steel wire strand, matched to cable diameter, and with attachment provision designed for corresponding connector.
- F. Standards: Comply with FS W-C-596.

2.7 CORD AND PLUG SETS

- A. Match voltage and current ratings and number of conductors to requirements of equipment being connected.
- B. Cord: Rubber-insulated, stranded-copper conductors, with Type SOW-A jacket; with green-insulated grounding conductor and ampacity of at least 130 percent of the equipment rating.
- C. Plug: Nylon body and integral cable-clamping jaws. Match cord and receptacle type for connection.
2.1 TIMER LIGHT SWITCH

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Hubbell Premise Wiring.
 - 2. Leviton Manufacturing Co., Inc.
 - 3. Pass & Seymour/Legrand (Pass & Seymour).
- B. Digital Timer Light Switch
 - 1. Description: Switchbox-mounted, combination digital timer and conventional switch lighting-control unit, with backlit digital display, with selectable time interval in 10-minute increments.
 - 2. Standards: Comply with UL 20.
 - 3. Rated 960 W at 120 V ac for tungsten lighting, 10 A at 120 V ac or 10 A at 277 V ac for fluorescent or LED lighting, and 1/4 hp at 120 V ac.
- 2.2 TOGGLE SWITCHES, 120/277 V, 20 A
- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Hubbell Premise Wiring.
 - 2. Leviton Manufacturing Co., Inc.
 - 3. Pass & Seymour/Legrand (Pass & Seymour).
- B. Single-Pole Switches, 120/277 V, 20 A:
 - 1. Standards: Comply with UL 20 and FS W-S-896.
- C. Three-Way Switches, 120/277 V, 20 A:
 - 1. Comply with UL 20 and FS W-S-896.
- D. Four-Way Switches, 120/277 V, 20 A:
 - 1. Standards: Comply with UL 20 and FS W-S-896.
- E. Pilot-Light, Single-Pole Switches: 120/277 V, 20 A:
 - 1. Description: Illuminated when switch is off.
 - 2. Standards: Comply with UL 20 and FS W-S-896.
- 2.3 WALL PLATES
- A. Single Source: Obtain wall plates from same manufacturer of wiring devices.
- B. Single and combination types shall match corresponding wiring devices.
 - 1. Plate-Securing Screws: Metal with head color to match plate finish.
 - 2. Material for Finished Spaces: 0.035-inch- thick, satin-finished, Type 302 stainless steel.

- 3. Material for Unfinished Spaces: Galvanized steel.
- 4. Material for Damp Locations: Thermoplastic with spring-loaded lift cover and listed and labeled for use in wet and damp locations.
- C. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weather-resistant thermoplastic with lockable cover.
- 2.4 MEDIA/AUDIO-VISUAL WALL BOX
- A. Acceptable Manufacturer: Legrand US EFSB series or approved equals
- B. Classification and Use: Wall and ceiling boxes are to be utilized in dry, interior locations only as defined by Article 300-15 of the National Electrical Code, as adopted by the National Fire Protection Association, and approved by the American National Standards Institute.
- C. MB1-Two (2) gang wall box. Manufactured from stamped steel. Boxes shall have a polyester based baked enamel finished interior (white). Provide boxes with two (2) independent wiring compartments that allow for up to two (2) receptacles, communication and/or audio/video services. Boxes shall have removable and relocatable dividers to permit custom configuration of compartments as well as permit feed to adjacent compartments. Boxes shall permit feed to compartments on the opposite side of the box through a tunnel. The two (2) compartments shall have a minimum wiring capacity of 43-cubic inches. The two (2) compartments shall have a minimum depth of 3-5/8" behind the plate. The box shall be provided with a removable device compartment and a storage compartment to facilitate installation and moves, additions, and changes. The compartments shall be removable from the top of the wall box. The storage compartment shall be 6 7/8" L x 9" W x 3 1/2" H and shall have the means to secure audio/video devices. Provide boxes with removable knockout plates to allow for the maximum cable pass-through area. The cable pass-through area shall be a minimum of 2.4 cubic inches per channel. The box shall contain the following number of knockouts: four (4) 1-1/4" trade size, two (2) 3/4" trade size, and two (2) 2" trade size. The box shall be provided with a trim ring and decorative cover. The trim ring shall be made of steel .048" thickness minimum. The trim flange shall have an epoxy coating (white) that can be field painted. The decorative cover shall be made from steel .048" thickness minimum. The cover shall have an epoxy coating (white) that can be field painted. The box shall be able to accept 2-3/4" x 4-1/2" standard size wall plates. Include mounting brackets with the boxes that will accommodate 15 amp, 20 amp straight blade receptacles, Ortronics® workstation connectivity and modular adapters, a variety of audio/video devices from most manufacturers, and other open system devices. Refer to the drawings for power, data, and media configurations.

PART 3 - EXECUTION

- 3.1 INSTALLATION
- A. Coordination with Other Trades:

- 1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes, and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
- 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
- 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
- 4. Install wiring devices after all wall preparation, including painting, is complete.
- B. Conductors:
 - 1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
 - 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
 - 3. The length of free conductors at outlets for devices shall comply with NFPA 70, Article 300, without pigtails.
 - 4. Existing Conductors:
 - a. Cut back and pigtail or replace all damaged conductors.
 - b. Straighten conductors that remain and remove corrosion and foreign matter.
 - c. Pigtailing existing conductors is permitted, provided the outlet box is large enough.
- C. Device Installation:
 - 1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
 - 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
 - 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
 - 4. Connect devices to branch circuits using pigtails that are not less than 6 inches in length.
 - 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
 - 6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
 - 7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
 - 8. Tighten unused terminal screws on the device.
 - 9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.

- D. Receptacle Orientation:
 - 1. Install ground pin of vertically mounted receptacles up, and on horizontally mounted receptacles to the left.
- E. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.
- F. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.
- 3.2 IDENTIFICATION
- A. Comply with Section 26 05 53 "Identification for Electrical Systems."

3.3 FIELD QUALITY CONTROL

- A. Tests for Receptacles:
 - 1. Line Voltage: Acceptable range is 105 to 132 V.
 - 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
 - 3. Ground Impedance: Values of up to 2 ohms are acceptable.
 - 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
 - 5. Using the test plug, verify that the device and its outlet box are securely mounted.
 - 6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault-current path, defective devices, or similar problems. Correct circuit conditions remove malfunctioning units and replace with new ones, and retest as specified above.
- B. Wiring device will be considered defective if it does not pass tests and inspections.

END OF SECTION 26 27 26

SECTION 26 28 13 FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Cartridge fuses rated 600-V ac and less for use in control circuits enclosed switches enclosed controllers and motor-control centers.
 - 2. Plug fuses rated 125-V ac and less for use in plug-fuse-type fuseholders.
 - 3. Spare-fuse cabinets.

1.3 ACTION SUBMITTALS

- Product Data: For each type of product indicated. Include construction details, material, dimensions, descriptions of individual components, and finishes for spare-fuse cabinets. Retain first subparagraph below if variations in fuse performance due to ambient temperature extremes can affect system performance.
 - 1. Ambient Temperature Adjustment Information: If ratings of fuses have been adjusted to accommodate ambient temperatures, provide list of fuses with adjusted ratings.
 - a. For each fuse having adjusted ratings, include location of fuse, original fuse rating, local ambient temperature, and adjusted fuse rating.
 - b. Provide manufacturer's technical data on which ambient temperature adjustment calculations are based.
 - 2. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.

1.4 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For fuses to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," include the following:
 - 1. Ambient temperature adjustment information.
 - 2. Coordination charts and tables and related data.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

- 1. Fuses: Provide 3 of each size and type.
- 2. Provide two fuse pullers.

1.6 QUALITY ASSURANCE

- A. Source Limitations: Obtain fuses, for use within a specific product or circuit, from single source from single manufacturer.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with NEMA FU 1 for cartridge fuses.
- D. Comply with NFPA 70.
- E. Comply with UL 248-11 for plug fuses.

1.7 PROJECT CONDITIONS

A. Where ambient temperature to which fuses are directly exposed is less than 40 deg F or more than 100 deg F, apply manufacturer's ambient temperature adjustment factors to fuse ratings.

1.8 COORDINATION

A. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with system short-circuit current levels.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Cooper Bussmann, Inc.
 - 2. Edison Fuse, Inc.
 - 3. Ferraz Shawmut, Inc.
 - 4. Tracor; Littlefuse, Inc.

2.2 CARTRIDGE FUSES

A. Characteristics: NEMA FU 1, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.

2.3 SPARE-FUSE CABINET

A. Characteristics: Wall-mounted steel unit with full-length, recessed piano-hinged door and key-coded cam lock and pull.

- 1. Size: Adequate for storage of spare fuses specified with 15 percent spare capacity minimum.
- 2. Finish: Manufacturer's standard.
- 3. Identification: "SPARE FUSES" in 1-1/2-inch- high letters on exterior of door.
- 4. Fuse Pullers: For each size of fuse, where applicable and available, from fuse manufacturer.
- 5. Locate cabinet in Mechanical room 2201 adjacent to switchboard MSBNH1

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.
- B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.
- C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.
- D. Evaluate ambient temperatures to determine if fuse rating adjustment factors must be applied to fuse ratings.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.
- 3.2 FUSE APPLICATIONS
- A. Cartridge Fuses:
 - 1. Feeders: Class L, time delay.
 - 2. Motor Branch Circuits: Class RK1, time delay.
 - 3. Other Branch Circuits: Class RK5, time delay.
 - 4. Control Circuits: Class CC, time delay.

3.3 INSTALLATION

- A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.
- B. Fuses shall not be installed until equipment is ready to be energized.
- C. Install spare-fuse cabinet(s).
- 3.4 IDENTIFICATION
- A. Install labels complying with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems" and indicating fuse replacement information on inside door of each fused switch and adjacent to each fuse block, socket, and holder.

END OF SECTION 26 28 13

This page intentionally left blank.

SECTION 26 28 16 ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Fusible switches.
 - 2. Non-fusible switches.
 - 3. Enclosures.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 - 1. Enclosure types and details.
 - 2. Current. horsepower, and voltage ratings.
 - 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
 - 4. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
- B. Shop Drawings: For enclosed switches and circuit breakers. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Wiring Diagrams: For power, signal, and control wiring.
- C. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," include the following:
 - 1. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.

1.4 QUALITY ASSURANCE

A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single source from single manufacturer.

- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with NFPA 70.
- 1.5 PROJECT CONDITIONS
- A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - 1. Ambient Temperature: Not less than minus 22 deg F and not exceeding 104 deg F.
 - 2. Altitude: Not exceeding 6600 feet.

1.6 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

PART 2 - PRODUCTS

2.1 FUSIBLE SWITCHES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - 2. General Electric Company; GE Consumer & Industrial Electrical Distribution.
 - 3. Square D; a brand of Schneider Electric.
- B. Type HD, Heavy Duty, Single Throw, UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate indicated fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- C. HD Switches:
 - 1. UL Listed Short Circuit Rating: 200,000 symmetrical amperes when Class R or Class J fuses are used on switch sizes 30 to 600 amperes. The UL listed short circuit rating shall be 200,000 symmetrical amperes when Class L fuses are used on switch sizes 800 to 1200 amperes.
 - 2. Switch Blades: Visible when the switch is OFF, and the cover is open.
 - 3. Lugs: Front removable and UL listed for 167 deg F conductors' aluminum or copper conductors.
 - 4. Fuse Pullers: 30 through 100 ampere switches shall be equipped with factory installed fuse pullers.
 - 5. Arc Suppressors: Removable arc suppressors to facilitate easy access to line side lugs.

- 6. Electrical Interlock: Provisions for a field installable electrical interlock.
- 7. Switch Operating Mechanism: Quick-make, quick-break such that, during normal operation of the switch, the operation of the contacts shall not be capable of being restrained by the operating handle after the closing or opening action of the contacts has started.
- 8. Handle Position: At least 90° between OFF and ON positions to clearly distinguish and indicate handle position, "ON" and "OFF" positions shall be labeled.
- D. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 - 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 - 3. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
 - 4. Lugs: Mechanical type, suitable for number, size, and conductor material.
 - 5. Service-Rated Switches: Labeled for use as service equipment.

2.2 NON-FUSIBLE SWITCHES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - 2. General Electric Company; GE Consumer & Industrial Electrical Distribution.
 - 3. Square D; a brand of Schneider Electric.
- B. Type HD, Heavy Duty, Single Throw, UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- C. HD Switches:
 - 1. UL Listed Short Circuit Rating: 200,000 symmetrical amperes when Class R or Class J fuses are used on switch sizes 30 to 600 amperes. The UL listed short circuit rating shall be 200,000 symmetrical amperes when Class L fuses are used on switch sizes 800 to 1200 amperes.
 - 2. Switch Blades: Visible when the switch is OFF, and the cover is open.
 - 3. Lugs: Front removable and UL listed for 167 deg F conductors aluminum or copper conductors.
 - 4. Fuse Pullers: 30 through 100 ampere switches shall be equipped with factory installed fuse pullers. Arc Suppressors: Removable arc suppressors to facilitate easy access to line side lugs.
 - 5. Electrical Interlock: Provisions for a field installable electrical interlock.
 - 6. Switch Operating Mechanism: Quick-make, quick-break such that, during normal operation of the switch, the operation of the contacts shall not be capable of being restrained by the operating handle after the closing or opening action of the contacts has started.

- 7. Handle Position: At least 90° between OFF and ON positions to clearly distinguish and indicate handle position, "ON" and "OFF" positions shall be labeled.
- D. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 - 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 - 3. Lugs: Mechanical type, suitable for number, size, and conductor material.

2.3 ENCLOSURES

- A. Enclosed Switches and Circuit Breakers: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location. Provide the following minimum requirements, unless noted otherwise on the drawings.
 - 1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
 - 2. Outdoor Locations: NEMA 250, Type 3R.
 - 3. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
 - 4. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.
- B. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- C. Install fuses in fusible devices.
- D. Comply with NECA 1.
- 3.3 IDENTIFICATION
- A. Comply with requirements in Section 26 05 53 "Identification for Electrical Systems."

- 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
- 2. Label each enclosure with engraved metal or laminated-plastic nameplate.
- B. Provide and install on the inside door of all fusible disconnect switches a typewritten copy with a transparent protective cover with the following information.
 - 1. Fuse Amperage
 - 2. Fuse Type
 - 3. Fuse Class
 - 4. Fuse Voltage Rating
 - 5. Fuse Manufacturer
 - 6. Unit or Circuit Protected by Fuse

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Test insulation resistance for each enclosed switch and circuit breaker, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
 - 3. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 4. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- B. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly and lubricate as recommended by manufacturer.

END OF SECTION 26 28 16

This page intentionally left blank.

SECTION 26 29 13 ENCLOSED CONTROLLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes the following enclosed controllers rated 600 V and less:
 - 1. Full-voltage manual.
 - 2. Full-voltage magnetic.
- B. Related Section:
 - 1. Refer to the Electrical Equipment Wiring Schedule and One-Line Diagram for ratings and configuration.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of enclosed controller. Include manufacturer's technical data on features, performance, electrical characteristics, ratings, and enclosure types and finishes.
- B. Shop Drawings: For each enclosed controller. Include dimensioned plans, elevations, sections, details, and required clearances and service spaces around controller enclosures.
 - 1. Show tabulations of the following:
 - a. Each installed unit's type and details.
 - b. Factory-installed devices.
 - c. Nameplate legends.
 - d. Short-circuit current rating of integrated unit.
 - 2. Wiring Diagrams: For power, signal, and control wiring.

1.4 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For enclosed controllers to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," include the following:
 - 1. Routine maintenance requirements for enclosed controllers and installed components.
 - 2. Manufacturer's written instructions for testing and adjusting circuit breaker and MCP trip settings.

3. Manufacturer's written instructions for setting field-adjustable overload relays.

1.5 MATERIALS MAINTENANCE SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses for Fused Switches: Provide three of each size and type.
 - 2. Fuse Pullers: Furnish one fuse puller to the Owner.

1.6 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Store enclosed controllers indoors in clean, dry space with uniform temperature to prevent condensation. Protect enclosed controllers from exposure to dirt, fumes, water, corrosive substances, and physical damage.

1.8 COORDINATION

A. Coordinate layout and installation of enclosed controllers with other construction including conduit, piping, equipment, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

PART 2 - PRODUCTS

2.1 FULL-VOLTAGE CONTROLLERS

- A. General Requirements for Full-Voltage Controllers: Comply with NEMA ICS 2, general purpose, Class A.
- B. Motor-Starting Switches: "Quick-make, quick-break" toggle or push-button action; marked to show whether unit is off or on.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - b. General Electric Company; GE Consumer & Industrial Electrical Distribution.
 - c. Rockwell Automation, Inc.; Allen-Bradley brand.
 - d. Square D; a brand of Schneider Electric.
 - 2. Configuration: Nonreversing.
 - 3. Flush or Surface mounting. As indicated on drawings.
 - 4. Red pilot light.

- C. Fractional Horsepower Manual Controllers: "Quick-make, quick-break" toggle action; marked to show whether unit is off, on, or tripped.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - b. General Electric Company; GE Consumer & Industrial Electrical Distribution.
 - c. Rockwell Automation, Inc.; Allen-Bradley brand.
 - d. Square D; a brand of Schneider Electric.
 - 2. Configuration: Nonreversing.
 - 3. Overload Relays: Inverse-time-current characteristics; NEMA ICS 2, Class 10 tripping characteristics; heaters matched to nameplate full-load current of actual protected motor; external reset push button; bimetallic type.
 - 4. Flush or Surface mounting. As indicated on drawings.
 - 5. Red pilot light.
- D. Magnetic Controllers: Full voltage, across the line, electrically held.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - b. General Electric Company; GE Consumer & Industrial Electrical Distribution.
 - c. Rockwell Automation, Inc.; Allen-Bradley brand.
 - d. Square D; a brand of Schneider Electric.
 - 2. Configuration: Nonreversing.
 - 3. Contactor Coils: Pressure-encapsulated type.
 - a. Operating Voltage: Depending on contactor NEMA size and line-voltage rating, manufacturer's standard matching control power or line voltage.
 - 4. Power Contacts: Totally enclosed, double-break, silver-cadmium oxide; assembled to allow inspection and replacement without disturbing line or load wiring.
 - 5. Control Circuits: 120-V ac; obtained from integral CPT, with primary and secondary fuses, with CPT of sufficient capacity to operate integral devices and remotely located pilot, indicating, and control devices.
 - a. CPT Spare Capacity: 100 VA.
 - 6. Solid-State Overload Relay:
 - a. Switch or dial selectable for motor running overload protection.
 - b. Sensors in each phase.

- c. Class 10/20 selectable tripping characteristic selected to protect motor against voltage and current unbalance and single phasing.
- d. Class II ground-fault protection, with start and run delays to prevent nuisance trip on starting.
- 7. External overload reset push button.
- E. Combination Magnetic Controller: Factory-assembled combination of magnetic controller, OCPD, and disconnecting means.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - b. General Electric Company; GE Consumer & Industrial Electrical Distribution.
 - c. Rockwell Automation, Inc.; Allen-Bradley brand.
 - d. Square D; a brand of Schneider Electric.
 - 2. Fusible Disconnecting Means:
 - a. NEMA KS 1, heavy-duty, horsepower-rated, fusible switch with clips or bolt pads to accommodate Class R fuses.
 - b. Lockable Handle: Accepts three padlocks and interlocks with cover in closed position.
 - 3. Auxiliary Contacts: N.O./N.C., arranged to activate before switch blades open.
- 2.2 ENCLOSURES
- A. Enclosed Controllers: NEMA ICS 6, to comply with environmental conditions at installed location.
 - 1. Dry and Clean Indoor Locations: Type 1.
 - 2. Outdoor Locations: Type 3R.
 - 3. Other Wet or Damp Indoor Locations: Type 4.
 - 4. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: Type 12, which includes but not limited to vehicle circulation, service bays and vehicle storage.
- 2.3 ACCESSORIES
- A. General Requirements for Control Circuit and Pilot Devices: NEMA ICS 5; factory installed in controller enclosure cover unless otherwise indicated.
 - 1. Push Buttons, Pilot Lights, and Selector Switches: Standard-duty, type.
 - a. Push Buttons: Shielded types; START/STOP in front cover.
 - b. Pilot Lights: LED types; RUN: red in front cover; push to test.
 - c. Selector Switches: Rotary type; HAND/OFF/AUTO, in front cover.

- B. Reversible N.C./N.O. auxiliary contact(s).
- C. Phase-Failure, Phase-Reversal, and Undervoltage and Overvoltage Relays: Solid-state sensing circuit with isolated output contacts for hard-wired connections. Provide adjustable undervoltage, overvoltage, and time-delay settings.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and surfaces to receive enclosed controllers, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.
- B. Examine enclosed controllers before installation. Reject enclosed controllers that are wet, moisture damaged, or mold damaged.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Wall-Mounted Controllers: Install enclosed controllers on walls with tops at uniform height unless otherwise indicated, and by bolting units to wall or mounting on lightweight structural-steel channels bolted to wall. For controllers not at walls, provide freestanding racks complying with Section 26 05 29 "Hangers and Supports for Electrical Systems."
- B. Install fuses in each fusible-switch enclosed controller.
- C. Install fuses in control circuits if not factory installed. Comply with requirements in Section 26 28 13 "Fuses."
- D. Comply with NECA 1.

3.3 IDENTIFICATION

- A. Identify enclosed controllers, components, and control wiring. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label each enclosure with engraved nameplate.
 - 3. Label each enclosure-mounted control and pilot device.

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Test insulation resistance for each enclosed controller, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.
 - 3. Inspect controllers, wiring, components, connections, and equipment installation.

- 4. Test insulation resistance for each enclosed-controller element, component, connecting motor supply, feeder, and control circuits.
- 5. Test continuity of each circuit.
- 6. Verify that voltages at controller locations are within plus or minus 10 percent of motor nameplate rated voltages. If outside this range for any motor, notify Architect before starting the motor(s).
- 7. Test each motor for proper phase rotation.
- 8. Perform each electrical test and visual and mechanical inspection stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
- 9. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- 10. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
- B. Enclosed controllers will be considered defective if they do not pass tests and inspections.

3.5 ADJUSTING

A. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and overloadrelay pickup and trip ranges.

END OF SECTION 26 29 13

SECTION 26 32 13 ENGINE GENERATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes packaged engine-generator sets for emergency standby power supply with the following features:
 - 1. Gas engine.
 - 2. Unit-mounted cooling system.
 - 3. Unit-mounted control and monitoring.
 - 4. Performance requirements for sensitive loads.
 - 5. Outdoor enclosure.
- B. Related Sections include the following:
 - 1. Section 26 36 00 "Transfer Switches" for transfer switches including sensors and relays to initiate automatic-starting and -stopping signals for engine-generator sets.

1.3 DEFINITIONS

- A. LP: Liquid petroleum.
- B. Operational Bandwidth: The total variation from the lowest to highest value of a parameter over the range of conditions indicated, expressed as a percentage of the nominal value of the parameter.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of packaged engine generator indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. In addition, include the following:
 - 1. Thermal damage curve for generator.
 - 2. Time-current characteristic curves for generator protective device.
- B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 1. Dimensioned outline plan and elevation drawings of engine-generator set, and other components specified.
 - 2. Wiring Diagrams: Power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For manufacturer.
- B. Source quality-control test reports.
 - 1. Certified summary of prototype-unit test report.
 - 2. Certified Test Reports: For components and accessories that are equivalent, but not identical, to those tested on prototype unit.
 - 3. Certified Summary of Performance Tests: Certify compliance with specified requirement to meet performance criteria for sensitive loads.
 - 4. Report of factory test on units to be shipped for this Project, showing evidence of compliance with specified requirements.
 - 5. Report of sound generation.
 - 6. Report of exhaust emissions showing compliance with applicable regulations.
 - 7. Certified Torsional Vibration Compatibility: Comply with NFPA 110.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For packaged engine generators to include in emergency, operation, and maintenance manuals. In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," include the following:
 - 1. List of tools and replacement items recommended to be stored at Project for ready access. Include part and drawing numbers, current unit prices, and source of supply.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Filters: One set each of lubricating oil, fuel, and combustion-air filters.

1.8 QUALITY ASSURANCE

- A. Installer Qualifications: Manufacturer's authorized representative who is trained and approved for installation of units required for this Project.
 - 1. Maintenance Proximity: Not more than four hours' normal travel time from Installer's place of business to Project site.
- B. Manufacturer Qualifications: A qualified manufacturer. Maintain, within 200 miles of Project site, a service center capable of providing training, parts, and emergency maintenance repairs.
- C. Source Limitations: Obtain packaged generator sets and auxiliary components through one source from a single manufacturer.

- D. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use.
- E. Comply with ASME B15.1.
- F. Comply with NFPA 37.
- G. Comply with NFPA 110 requirements for Level 2 emergency power supply system.
- H. Comply with UL 2200.
- I. Engine Exhaust Emissions: Comply with applicable state and local government requirements.
- J. Noise Emission: Comply with applicable state and local government requirements 65DbA for maximum noise level at property boundaries due to sound emitted by generator set including engine, engine exhaust, engine cooling-air intake and discharge, and other components of installation.

1.9 PROJECT CONDITIONS

- A. Environmental Conditions: Engine-generator system shall withstand the following environmental conditions without mechanical or electrical damage or degradation of performance capability:
 - 1. Altitude: Sea level to 1000 feet.

1.10 COORDINATION

A. Coordinate size and location of concrete bases for package engine generators. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

1.11 WARRANTY

A. Warranty Period: 5 years from date of Substantial Completion.

1.12 MAINTENANCE SERVICE

A. Initial Maintenance Service: Beginning at Substantial Completion, provide 12 months' full maintenance by skilled employees of manufacturer's designated service organization. Include quarterly exercising to check for proper starting, load transfer, and running under load. Include routine preventive maintenance as recommended by manufacturer and adjusting as required for proper operation. Provide parts and supplies same as those used in the manufacture and installation of original equipment.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Generac Power Systems, Inc.
 - 2. Kohler Co.; Generator Division.
 - 3. Onan/Cummins Power Generation; Industrial Business Group.
 - 4. Spectrum Detroit Diesel.

2.2 ENGINE-GENERATOR SET

- A. Factory-assembled and -tested, engine-generator set.
- B. Mounting Frame: Maintain alignment of mounted components without depending on concrete foundation; and have lifting attachments.
 - 1. Rigging Diagram: Inscribed on metal plate permanently attached to mounting frame to indicate location and lifting capacity of each lifting attachment and generator-set center of gravity.
- C. Capacities and Characteristics:
 - 1. Power Output Ratings: Nominal ratings as indicated.
 - 2. Output Connections: Three-phase, four wire.
 - 3. Nameplates: For each major system component to identify manufacturer's name and address, and model and serial number of component.
- D. Generator-Set Performance:
 - 1. Steady-State Voltage Operational Bandwidth: 3 percent of rated output voltage from no load to full load.
 - 2. Transient Voltage Performance: Not more than 20 percent variation for 50 percent step-load increase or decrease. Voltage shall recover and remain within the steady-state operating band within three seconds.
 - 3. Steady-State Frequency Operational Bandwidth: 0.5 percent of rated frequency from no load to full load.
 - 4. Steady-State Frequency Stability: When system is operating at any constant load within the rated load, there shall be no random speed variations outside the steady-state operational band and no hunting or surging of speed.
 - 5. Transient Frequency Performance: Less than 5 percent variation for 50 percent step-load increase or decrease. Frequency shall recover and remain within the steady-state operating band within five seconds.
 - 6. Output Waveform: At no load, harmonic content measured line to line or line to neutral shall not exceed 5 percent total and 3 percent for single harmonics. Telephone influence factor, determined according to NEMA MG 1, shall not exceed 50 percent.
 - 7. Sustained Short-Circuit Current: For a 3-phase, bolted short circuit at system output terminals, system shall supply a minimum of 250 percent of rated full-load current for not less than 10 seconds and then clear the fault automatically, without damage to generator system components.
 - 8. Start Time: Comply with NFPA 110, Type 10, system requirements.

- E. Generator-Set Performance for Sensitive Loads:
 - 1. Oversizing generator compared with the rated power output of the engine is permissible to meet specified performance.
 - a. Nameplate Data for Oversized Generator: Show ratings required by the Contract Documents rather than ratings that would normally be applied to generator size installed.
 - 2. Steady-State Voltage Operational Bandwidth: 1 percent of rated output voltage from no load to full load.
 - 3. Transient Voltage Performance: Not more than 10 percent variation for 50 percent step-load increase or decrease. Voltage shall recover and remain within the steady-state operating band within 0.5 second.
 - 4. Steady-State Frequency Operational Bandwidth: Plus or minus 0.25 percent of rated frequency from no load to full load.
 - 5. Steady-State Frequency Stability: When system is operating at any constant load within the rated load, there shall be no random speed variations outside the steady-state operational band and no hunting or surging of speed.
 - 6. Transient Frequency Performance: Less than 2-Hz variation for 50 percent stepload increase or decrease. Frequency shall recover and remain within the steady-state operating band within three seconds.
 - 7. Output Waveform: At no load, harmonic content measured line to neutral shall not exceed 2 percent total with no slot ripple. Telephone influence factor, determined according to NEMA MG 1, shall not exceed 50 percent.
 - 8. Sustained Short-Circuit Current: For a 3-phase, bolted short circuit at system output terminals, system shall supply a minimum of 300 percent of rated full-load current for not less than 10 seconds and then clear the fault automatically, without damage to winding insulation or other generator system components.
 - 9. Excitation System: Performance shall be unaffected by voltage distortion caused by nonlinear load.
 - a. Provide permanent magnet excitation for power source to voltage regulator.
 - 10. Start Time: Comply with NFPA 110, Type 10, system requirements.

2.3 ENGINE

- A. Fuel: Natural gas.
- B. Rated Engine Speed: 1800 rpm.
- C. Maximum Piston Speed for Four-Cycle Engines: 2250 fpm.
- D. Lubrication System: The following items are mounted on engine or skid:
 - 1. Filter and Strainer: Rated to remove 90 percent of particles 5 micrometers and smaller while passing full flow.
 - 2. Thermostatic Control Valve: Control flow in system to maintain optimum oil temperature. Unit shall be capable of full flow and is designed to be fail-safe.

- 3. Crankcase Drain: Arranged for complete gravity drainage to an easily removable container with no disassembly and without use of pumps, siphons, special tools, or appliances.
- E. Engine Fuel System:
 - 1. Natural Gas System:
 - a. Carburetor.
 - b. Secondary Gas Regulators.
 - c. Fuel-Shutoff Solenoid Valves.
 - d. Flexible Fuel Connectors.
- F. Coolant Jacket Heater: Electric-immersion type, factory installed in coolant jacket system. Comply with NFPA 110 requirements for Level 1 equipment for heater capacity.
- G. Governor: Adjustable isochronous, with speed sensing.
- H. Cooling System: Closed loop, liquid cooled, with radiator factory mounted on enginegenerator-set mounting frame and integral engine-driven coolant pump.
 - 1. Coolant: Solution of 50 percent ethylene-glycol-based antifreeze and 50 percent water, with anticorrosion additives as recommended by engine manufacturer.
 - 2. Size of Radiator: Adequate to contain expansion of total system coolant from cold start to 110 percent load condition.
 - 3. Temperature Control: Self-contained, thermostatic-control valve modulates coolant flow automatically to maintain optimum constant coolant temperature as recommended by engine manufacturer.
 - 4. Coolant Hose: Flexible assembly with inside surface of nonporous rubber and outer covering of aging-, ultraviolet-, and abrasion-resistant fabric.
 - a. Rating: 50-psig maximum working pressure with coolant at 180 deg F, and non-collapsible under vacuum.
 - b. End Fittings: Flanges or steel pipe nipples with clamps to suit piping and equipment connections.
- I. Muffler/Silencer: Critical type, sized as recommended by engine manufacturer and selected with exhaust piping system to not exceed engine manufacturer's engine backpressure requirements.
- J. Air-Intake Filter: Standard-duty, engine-mounted air cleaner with replaceable dry-filter element and "blocked filter" indicator.
- K. Starting System: 24-V electric, with negative ground.
 - 1. Components: Sized so they will not be damaged during a full engine-cranking cycle with ambient temperature at maximum specified in Part 1 "Project Conditions" Article.
 - 2. Cranking Motor: Heavy-duty unit that automatically engages and releases from engine flywheel without binding.
 - 3. Cranking Cycle: As required by NFPA 110 for system level specified.

- 4. Battery: Adequate capacity within ambient temperature range specified in Part 1 "Project Conditions" Article to provide specified cranking cycle at least twice without recharging.
- 5. Battery Cable: Size as recommended by engine manufacturer for cable length indicated. Include required interconnecting conductors and connection accessories.
- 6. Battery Compartment: Factory fabricated of metal with acid-resistant finish and thermal insulation. Thermostatically controlled heater shall be arranged to maintain battery above 10 deg C regardless of external ambient temperature within range specified in Part 1 "Project Conditions" Article. Include accessories required to support and fasten batteries in place.
- 7. Battery-Charging Alternator: Factory mounted on engine with solid-state voltage regulation and 35-A minimum continuous rating.
- 8. Battery Charger: Current-limiting, automatic-equalizing and float-charging type. Unit shall comply with UL 1236 and include the following features:
 - a. Operation: Equalizing-charging rate of 10 A shall be initiated automatically after battery has lost charge until an adjustable equalizing voltage is achieved at battery terminals. Unit shall then be automatically switched to a lower float-charging mode and shall continue to operate in that mode until battery is discharged again.
 - b. Automatic Temperature Compensation: Adjust float and equalize voltages for variations in ambient temperature from minus 40 deg C to plus 60 deg C to prevent overcharging at high temperatures and undercharging at low temperatures.
 - c. Automatic Voltage Regulation: Maintain constant output voltage regardless of input voltage variations up to plus or minus 10 percent.
 - d. Ammeter and Voltmeter: Flush mounted in door. Meters shall indicate charging rates.

2.4 CONTROL AND MONITORING

- A. Automatic Starting System Sequence of Operation: When mode-selector switch on the control and monitoring panel is in the automatic position, remote-control contacts in one or more separate automatic transfer switches initiate starting and stopping of generator set. When mode-selector switch is switched to the on position, generator set starts. The off position of same switch initiates generator-set shutdown. When generator set is running, specified system or equipment failures or derangements automatically shut down generator set and initiate alarms. Operation of a remote emergency-stop switch also shuts down generator set.
- B. Configuration: Operating and safety indications, protective devices, basic system controls, engine gages, instrument transformers, generator disconnect switch or circuit breaker, and other indicated components shall be grouped in a combination control and power panel. Control and monitoring section of panel shall be isolated from power sections by steel barriers. Panel features shall include the following:
 - 1. Wall-Mounting Cabinet Construction: Rigid, self-supporting steel unit complying with NEMA ICS 6. Power bus shall be copper. Bus, bus supports, control wiring, and temperature rise shall comply with UL 891.

- C. Control and Monitoring Panel:
 - 1. Digital controller with integrated LCD display, controls, and microprocessor, capable of local and remote control, monitoring, and programming, with battery backup.
- D. Indicating and Protective Devices and Controls: As required by NFPA 110 for Level 2 system, and the following:
 - 1. AC voltmeter.
 - 2. AC ammeter.
 - 3. AC frequency meter.
 - 4. DC voltmeter (alternator battery charging).
 - 5. Engine-coolant temperature gage.
 - 6. Engine lubricating-oil pressure gage.
 - 7. Running-time meter.
 - 8. Ammeter-voltmeter, phase-selector switch(es).
 - 9. Generator-voltage adjusting rheostat.
 - 10. Generator overload.
- E. Indicating and Protective Devices and Controls:
 - 1. AC voltmeter.
 - 2. AC ammeter.
 - 3. AC frequency meter.
 - 4. DC voltmeter (alternator battery charging).
 - 5. Engine-coolant temperature gage.
 - 6. Engine lubricating-oil pressure gage.
 - 7. Running-time meter.
 - 8. Ammeter-voltmeter, phase-selector switch(es).
 - 9. Generator-voltage adjusting rheostat.
 - 10. Start-stop switch.
 - 11. Overspeed shutdown device.
 - 12. Coolant high-temperature shutdown device.
 - 13. Coolant low-level shutdown device.
 - 14. Oil low-pressure shutdown device.
 - 15. Generator overload.

F. Connection to Datalink:

- 1. A separate terminal block, factory wired to Form C dry contacts, for each alarm and status indication.
- 2. Provide connections for datalink transmission of indications of alarms to remote data terminals via BACNET to building BAS system. Coordinate programmed alarms with owner. See drawings for data link interface location.
- G. Supporting Items: Include sensors, transducers, terminals, relays, and other devices and include wiring required to support specified items. Locate sensors and other supporting items on engine or generator, unless otherwise indicated.
- H. Common Remote Panel with Common Audible Alarm: Comply with NFPA 110 requirements for Level 2 systems. Include necessary contacts and terminals in control

and monitoring panel. Remote panel shall be powered from the engine generator battery.

- I. Common Remote Audible Alarm: Signal the occurrence of any events listed below without differentiating between event types. Connect so that after an alarm is silenced, clearing of initiating condition will reactivate alarm until silencing switch is reset.
 - 1. Engine high-temperature shutdown.
 - 2. Lube-oil, low-pressure shutdown.
 - 3. Overspeed shutdown.
 - 4. Remote emergency-stop shutdown.
 - 5. Engine high temperature prealarm.
 - 6. Lube-oil, low-pressure prealarm.
 - 7. Low coolant level.
 - 8. Control switch not in auto position
- J. Remote Emergency-Stop Switch: Flush; wall mounted, unless otherwise indicated; and labeled. Push button shall be protected from accidental operation.

2.5 GENERATOR OVERCURRENT AND FAULT PROTECTION

- A. Generator Disconnect Switch: Molded-case type, 100 percent rated.
 - 1. Rating: Matched to generator output rating.
 - 2. Shunt Trip: Connected to trip switch when signaled by generator protector or by other protective devices.
- B. Generator Protector: Microprocessor-based unit shall continuously monitor current level in each phase of generator output, integrate generator heating effect over time, and predict when thermal damage of alternator will occur. When signaled by generator protector or other generator-set protective devices, a shunt-trip device in the generator disconnect switch shall open the switch to disconnect the generator from load circuits. Protector shall perform the following functions:
 - 1. Initiates a generator overload alarm when generator has operated at an overload equivalent to 110 percent of full-rated load for 60 seconds. Indication for this alarm is integrated with other generator-set malfunction alarms.
 - 2. Under single or three-phase fault conditions, regulates generator to 300 percent of rated full-load current for up to 10 seconds.
 - 3. As overcurrent heating effect on the generator approaches the thermal damage point of the unit, protector switches the excitation system off, opens the generator disconnect device, and shuts down the generator set.
 - 4. Senses clearing of a fault by other overcurrent devices and controls recovery of rated voltage to avoid overshoot.

2.6 GENERATOR, EXCITER, AND VOLTAGE REGULATOR

- A. Comply with NEMA MG 1.
- B. Drive: Generator shaft shall be directly connected to engine shaft. Exciter shall be rotated integrally with generator rotor.

- C. Electrical Insulation: Class H.
- D. Stator-Winding Leads: Brought out to terminal box to permit future reconnection for other voltages if required.
- E. Construction shall prevent mechanical, electrical, and thermal damage due to vibration, overspeed up to 125 percent of rating, and heat during operation at 110 percent of rated capacity.
- F. Enclosure: Drip proof.
- G. Voltage Regulator: Solid-state type, separate from exciter, providing performance as specified.
 - 1. Adjusting rheostat on control and monitoring panel shall provide plus or minus 5 percent adjustment of output-voltage operating band.
- H. Strip Heater: Thermostatically controlled unit arranged to maintain stator windings above dew point.
- I. Windings: Two-thirds pitch stator winding and fully linked amortisseur winding.
- J. Subtransient Reactance: 12 percent, maximum.

2.7 OUTDOOR GENERATOR-SET ENCLOSURE

- A. Description: Vandal-resistant, weatherproof steel housing, wind resistant up to 100 mph. Multiple panels shall be lockable and provide adequate access to components requiring maintenance. Panels shall be removable by one person without tools. Instruments and control shall be mounted within enclosure.
 - 1. Sound Attenuation: Level 2: 8 position average of 72 dB(A).
- B. Engine Cooling Airflow through Enclosure: Maintain temperature rise of system components within required limits when unit operates at 110 percent of rated load for 2 hours with ambient temperature at top of range specified in system service conditions.
 - 1. Louvers: Fixed-engine, cooling-air inlet, and discharge. Storm-proof and drainable louvers prevent entry of rain and snow.
 - 2. Automatic Dampers: At engine cooling-air inlet and discharge. Dampers shall be closed to reduce enclosure heat loss in cold weather when unit is not operating.
- C. Structural Design and Anchorage: Comply with ASCE/SEI 7 for wind loads of up to 100 mph.
- D. Hinged Doors: With padlocking provisions.
- E. Space Heater: Thermostatically controlled and sized to prevent condensation.
- F. Lighting: Provide weather-resistant LED lighting with 30-fc average maintained.

- G. Thermal Insulation: Manufacturer's standard materials and thickness selected in coordination with space heater to maintain winter interior temperature within operating limits required by engine generator components.
- H. Muffler Location: Within enclosure.
- I. Interior Lights with Switch: Factory-wired, vaporproof-type fixtures within housing; arranged to illuminate controls and accessible interior.
 - 1. AC lighting system wired to provided distribution panel
- J. Provide an internally mounted and wired electrical distribution panel to serve the engine generator and enclosure, including:
 - 1. 100-amp distribution panelboard connected to a 120/208VAC utility service by the installer.
 - 2. Two duplex GFI receptacles, one inside the enclosure, and a weatherproof receptacle on the outside of the enclosure.
 - 3. Factory wired normal AC service from the panelboard to the engine coolant heater, alternator heater, space heater, lights, receptacles and battery charger.

2.8 FINISHES

A. Indoor and Outdoor Enclosures and Components: Manufacturer's standard finish over corrosion-resistant pretreatment and compatible primer.

2.9 SOURCE QUALITY CONTROL

- A. Prototype Testing: Factory test engine-generator set using same engine model, constructed of identical or equivalent components and equipped with identical or equivalent accessories.
 - 1. Tests: Comply with NFPA 110, Level 1 Energy Converters and with IEEE 115.
- B. Project-Specific Equipment Tests: Before shipment, factory test engine-generator set, and other system components and accessories manufactured specifically for this Project. Perform tests at rated load and power factor. Include the following tests:
 - 1. Test components and accessories furnished with installed unit that are not identical to those on tested prototype to demonstrate compatibility and reliability.
 - 2. Full load run.
 - 3. Maximum power.
 - 4. Voltage regulation.
 - 5. Transient and steady-state governing.
 - 6. Single-step load pickup.
 - 7. Safety shutdown.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas, equipment bases, and conditions, with Installer present, for compliance with requirements for installation and other conditions affecting packaged engine-generator performance.
- B. Examine roughing-in of piping systems and electrical connections. Verify actual locations of connections before packaged engine-generator installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Comply with packaged engine-generator manufacturers' written installation and alignment instructions and with NFPA 110.
- B. Install packaged engine generator to provide access, without removing connections or accessories, for periodic maintenance.
- C. Electrical Wiring: Install electrical devices furnished by equipment manufacturers but not specified to be factory mounted.

3.3 CONNECTIONS

- A. Piping installation requirements are specified in other Sections. Drawings indicate general arrangement of piping and specialties.
- B. Connect fuel piping to engines with a gate valve and union and flexible connector.
 - 1. Natural-gas piping, valves, and specialties for gas distribution are specified in Section 23 11 23 "Facility Natural-Gas Piping."
- C. Ground equipment according to Section 26 05 26 "Grounding and Bonding for Electrical Systems."
- D. Connect wiring according to Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

3.4 IDENTIFICATION

A. Identify system components according to Section 23 05 53 "Identification for HVAC Piping and Equipment" and Section 26 05 53 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

- B. Tests and Inspections:
 - 1. Perform tests recommended by manufacturer and each electrical test and visual and mechanical inspection for "AC Generators and for Emergency Systems" specified in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 2. NFPA 110 Acceptance Tests: Perform tests required by NFPA 110 that are additional to those specified here including, but not limited to, single-step full-load pickup test.
 - 3. Battery Tests: Equalize charging of battery cells according to manufacturer's written instructions. Record individual cell voltages.
 - a. Measure charging voltage and voltages between available battery terminals for full-charging and float-charging conditions. Check electrolyte level and specific gravity under both conditions.
 - b. Test for contact integrity of all connectors. Perform an integrity load test and a capacity load test for the battery.
 - c. Verify acceptance of charge for each element of the battery after discharge.
 - d. Verify that measurements are within manufacturer's specifications.
 - 4. Battery-Charger Tests: Verify specified rates of charge for both equalizing and float-charging conditions.
 - 5. System Integrity Tests: Methodically verify proper installation, connection, and integrity of each element of engine-generator system before and during system operation. Check for air, exhaust, and fluid leaks.
 - 6. Noise Level Tests: Measure A-weighted level of noise emanating from generator-set installation, including engine exhaust and cooling-air intake and discharge, at four locations on the property line, and compare measured levels with required values.
- C. Coordinate tests with tests for transfer switches and run them concurrently.
- D. Test instruments shall have been calibrated within the last 12 months, traceable to standards of NIST, and adequate for making positive observation of test results. Make calibration records available for examination on request.
- E. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
- F. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- G. Remove and replace malfunctioning units and retest as specified above.
- H. Retest: Correct deficiencies identified by tests and observations and retest until specified requirements are met.
- I. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation resistances, time delays, and other values and observations.

Attach a label or tag to each tested component indicating satisfactory completion of tests.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain packaged engine generators.

END OF SECTION 26 32 13

SECTION 26 36 00 TRANSFER SWITCHES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes automatic transfer switches rated 600 V and less.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for transfer switches.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and accessories.
- B. Shop Drawings:
 - 1. Include plans, elevations, sections, details showing minimum clearances, conductor entry provisions, gutter space, and installed features and devices.
 - 2. Include material lists for each switch specified.
 - 3. Single-Line Diagram: Show connections between transfer switch, power sources, and load; and show interlocking provisions for each combined transfer switch.

1.4 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For each type of product to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," include the following:
 - a. Features and operating sequences, both automatic and manual.
 - b. List of all factory settings of relays; provide relay-setting and calibration instructions, including software, where applicable.

1.5 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace components of transfer switch or transfer switch components that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Two years from date of Substantial Completion.

PART 2 - PRODUCTS

- 2.1 PERFORMANCE REQUIREMENTS
- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NEMA ICS 1.
- C. Comply with NFPA 110.
- D. Comply with UL 1008 unless requirements of these Specifications are stricter.
- E. Indicated Current Ratings: Apply as defined in UL 1008 for continuous loading and total system transfer, including tungsten filament lamp loads not exceeding 30 percent of switch ampere rating, unless otherwise indicated.
- F. Tested Fault-Current Closing and Short-Circuit Ratings: Adequate for duty imposed by protective devices at installation locations in Project under the fault conditions indicated, based on testing according to UL 1008.
 - 1. Short-time withstand capability for three cycles.
- G. Repetitive Accuracy of Solid-State Controls: All settings shall be plus or minus 2 percent or better over an operating temperature range of minus 20 to plus 70 deg C.
- H. Resistance to Damage by Voltage Transients: Components shall meet or exceed voltage-surge withstand capability requirements when tested according to IEEE C62.62. Components shall meet or exceed voltage-impulse withstand test of NEMA ICS 1.
- I. Electrical Operation: Accomplish by a nonfused, momentarily energized solenoid or electric-motor-operated mechanism. Switches for emergency or standby purposes shall be mechanically and electrically interlocked in both directions to prevent simultaneous connection to both power sources unless closed transition.
- J. Neutral Switching: Where four-pole switches are indicated, provide neutral pole switched simultaneously with phase poles.
- K. Neutral Terminal: Solid and fully rated unless otherwise indicated.
- L. Factory Wiring: Train and bundle factory wiring and label, consistent with Shop Drawings, by color-code or by numbered or lettered wire and cable with printed markers at terminations. Color-coding and wire and cable markers are specified in Section 26 05 53 "Identification for Electrical Systems."
 - 1. Designated Terminals: Pressure type, suitable for types and sizes of field wiring indicated.
 - 2. Power-Terminal Arrangement and Field-Wiring Space: Suitable for top, side, or bottom entrance of feeder conductors as indicated.
 - 3. Control Wiring: Equipped with lugs suitable for connection to terminal strips.
- 4. Accessible via front access.
- M. Enclosures: General-purpose NEMA 250, Type 1, complying with NEMA ICS 6 and UL 508, unless otherwise indicated.

2.2 CONTACTOR-TYPE AUTOMATICTRANSFER SWITCHES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Cummins Power Generation.
 - 2. Russelectric, Inc.
 - 3. ASCO Power Technologies.
 - 4. GE Zenith
- B. Comply with Level 1 equipment according to NFPA 110.
- C. Switch Characteristics: Designed for continuous-duty repetitive transfer of full-rated current between active power sources.
 - 1. Switch Action: Double throw; mechanically held in both directions.
 - 2. Contacts: Silver composition or silver alloy for load-current switching. Contactorstyle automatic transfer-switch units, rated 600 A and higher, shall have separate arcing contacts.
 - 3. Conductor Connectors: Suitable for use with conductor material and sizes.
 - 4. Material: Tin-plated aluminum.
 - 5. Main and Neutral Lugs: Mechanical type.
 - 6. Ground Lugs and Bus-Configured Terminators: Mechanical type.
 - 7. Ground bar.
 - 8. Connectors shall be marked for conductor size and type according to UL 1008.
- D. Automatic Open-Transition Transfer Switches: Interlocked to prevent the load from being closed on both sources at the same time.
 - 1. Sources shall be mechanically and electrically interlocked to prevent closing both sources on the load at the same time.
- E. Automatic Delayed-Transition Transfer Switches: Pauses or stops in intermediate position to momentarily disconnect both sources, with transition controlled by programming in the automatic transfer-switch controller. Interlocked to prevent the load from being closed on both sources at the same time.
 - 1. Adjustable Time Delay: For override of normal-source voltage sensing to delay transfer and engine start signals for alternative source. Adjustable from zero to six seconds, and factory set for one second.
 - 2. Sources shall be mechanically and electrically interlocked to prevent closing both sources on the load at the same time.
 - 3. Fully automatic break-before-make operation with center off position.

- F. Signal-Before-Transfer Contacts: A set of normally open/normally closed dry contacts operates in advance of retransfer to normal source. Interval shall be adjustable from 1 to 30 seconds.
- G. Digital Communication Interface: Matched to capability of remote annunciator or annunciator and control panel.
- H. Automatic Transfer-Switch Controller Features:
 - 1. Controller operates through a period of loss of control power.
 - 2. Under voltage Sensing for Each Phase of Normal and Alternate Source: Sense low phase-to-ground voltage on each phase. Pickup voltage shall be adjustable from 85 to 100 percent of nominal, and dropout voltage shall be adjustable from 75 to 98 percent of pickup value. Factory set for pickup at 90 percent and dropout at 85 percent.
 - 3. Voltage/Frequency Lockout Relay: Prevent premature transfer to generator. Pickup voltage shall be adjustable from 85 to 100 percent of nominal. Factory set for pickup at 90 percent. Pickup frequency shall be adjustable from 90 to 100 percent of nominal. Factory set for pickup at 95 percent.
 - 4. Time Delay for Retransfer to Normal Source: Adjustable from zero to 30 minutes, and factory set for 10 minutes. Override shall automatically defeat delay on loss of voltage or sustained under voltage of emergency source, provided normal supply has been restored.
 - 5. Test Switch: Simulate normal-source failure.
 - 6. Switch-Position Pilot Lights: Indicate source to which load is connected.
 - 7. Source-Available Indicating Lights: Supervise sources via transfer-switch normaland emergency-source sensing circuits.
 - a. Normal Power Supervision: Green light with nameplate engraved "Normal Source Available."
 - b. Emergency Power Supervision: Red light with nameplate engraved "Emergency Source Available."
 - 8. Unassigned Auxiliary Contacts: Two normally open, single-pole, double-throw contacts for each switch position, rated 10 A at 240-V ac.
 - 9. Transfer Override Switch: Overrides automatic retransfer control so transfer switch will remain connected to emergency power source regardless of condition of normal source. Pilot light indicates override status.
 - 10. Engine Starting Contacts: One isolated and normally closed, and one isolated and normally open; rated 10 A at 32-V dc minimum.
 - 11. Engine Shutdown Contacts: Time delay adjustable from zero to five minutes, and factory set for five minutes. Contacts shall initiate shutdown at remote enginegenerator controls after retransfer of load to normal source.
 - 12. Engine-Generator Exerciser: Solid-state, programmable-time switch starts engine generator and transfers load to it from normal source for a preset time, then retransfers and shuts down engine after a preset cool-down period. Initiates exercise cycle at preset intervals adjustable from 7 to 30 days. Running periods shall be adjustable from 10 to 30 minutes. Factory settings shall be for 7-day exercise cycle, 20-minute running period, and 5-minute cool-down period. Exerciser features include the following:

- a. Exerciser Transfer Selector Switch: Permits selection of exercise with and without load transfer.
- b. Push-button programming control with digital display of settings.
- c. Integral battery operation of time switch when normal control power is unavailable.
- 13. In-Phase Monitor: Factory-wired, internal relay controls transfer so contacts close only when the two sources are synchronized in phase and frequency. Relay shall compare phase relationship and frequency difference between normal and emergency sources and initiate transfer when both sources are within 15 electrical degrees, and only if transfer can be completed within 60 electrical degrees. Transfer shall be initiated only if both sources are within 2 Hz of nominal frequency and 70 percent or more of nominal voltage.

2.3 Generator Docking Station

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Trystar Co. TMTS Series
 - 2. Asco Power Technologies
 - 3. Approved Equal
- B. Manual Transfer Switch
 - 1. TMTS Docking Station shall have integrated Rotary Transfer Switch (MTS).
 - a. MTS shall have three positions Utility/Permanent Line OFF Temporary Line.
 - b. MTS shall be located behind pad lockable door to prevent any tampering by unauthorized personnel.
- C. Docking station shall include 16 Series Camlok Panel Mounts for use as connection to Portable Generator ETL or UL 1008 Standards. UL listings of individual components is not acceptable.
- D. Enclosures:
 - 1. NEMA 3R rain-tight, 304 GA aluminum enclosure.
 - a. Pad-lockable front door shall include a hinged access plate at the bottom for entry of cables from portable generator or portable load bank. NEMA 3R integrity shall be maintained with access plate open for cable entry.
 - b. Front and side through a front access panel shall be accessible for maintenance.
 - c. Top, side, and bottom through a front access panel shall be accessible for permanent cabling.
 - 2. Finishes: Paint after fabrication. Powder coated Hammerstone Gray.
- E. Phase, Neutral, and Ground Buses:

- 1. Material: Silver-plated Copper.
- 2. Equipment Ground Bus: bonded to box.
- 3. Isolated Ground Bus: insulated from box.
- 4. Ground Bus: 50% of phase size.
- 5. Neutral Bus: Neutral bus rated 100 percent of phase bus.
- 6. Round edges on bus.
- F. Temporary generator connectors shall be Camlok style mounted on gland plate.
 - 1. Camlok shall be color coded according to system voltage.
 - a. A phase Black
 - b. B phase Red
 - c. C phase Blue
 - d. N Neutral White
 - e. G Ground Green
- G. Temporary connectors shall include protective flip lids to prevent accidental contact.
- H. Permanent connectors shall be broad range set-screw type, located behind an aluminum barrier.
- I. Short Circuit & Withstand Rating.
 - 1. Shall be minimum 65KAIC unless otherwise indicated on drawings.
- J. Voltage & Amperage : As noted on the Drawings.
- K. Phase Rotation Monitor Device:
 - 1. Phase monitoring relay to be Siemens 3U4512-1AR20 or equal.
- L. Accessories as follows:
 - a. Two Wire Auto Start
 - b. Extra Depth for Bottom Conduit Access
 - c. Kirk Key Door Interlock
 - d. Listed Monitoring Device

2.4 TRANSFER SWITCH ACESSORIES

a. Transition: Provide open-transition operation when transferring between power sources.

PART 3 - EXECUTION

- 3.1 INSTALLATION
- A. Floor-Mounting Switch: Anchor to floor by bolting.

- 1. Install transfer switches on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 03 30 00 "Cast-in-Place Concrete."
- 2. Coordinate size and location of concrete bases. Cast anchor-bolt inserts into bases.
- 3. Provide workspace and clearances required by NFPA 70.
- B. Identify components according to Section 26 05 53 "Identification for Electrical Systems."
- C. Set field-adjustable intervals and delays, relays, and engine exerciser clock.
- D. Comply with NECA 1.

3.2 CONNECTIONS

- A. Wiring Method: Install cables in raceways except within electrical enclosures. Conceal raceway and cables except in unfinished spaces.
 - 1. Comply with requirements for raceways and boxes specified in Section 26 05 33 "Raceways and Boxes for Electrical Systems."
- B. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii.
- C. Ground equipment according to Section 26 05 26 "Grounding and Bonding for Electrical Systems."
- D. Connect wiring according to Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."
- E. Route and brace conductors according to manufacturer's written instructions.] Do not obscure manufacturer's markings and labels.
- F. Final connections to equipment shall be made with liquid tight, flexible metallic conduit no more than 18 inches (457 mm) in length.

3.3 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. After installing equipment, test for compliance with requirements according to NETA ATS.
 - 2. Visual and Mechanical Inspection:
 - a. Compare equipment nameplate data with Drawings and Specifications.
 - b. Inspect physical and mechanical condition.
 - c. Inspect anchorage, alignment, grounding, and required clearances.

- d. Verify that the unit is clean.
- e. Verify appropriate lubrication on moving current-carrying parts and on moving and sliding surfaces.
- f. Verify tightness of all control connections.
- g. Inspect bolted electrical connections for high resistance using one of the following methods, or both:
 - 1) Use of low-resistance ohmmeter.
 - 2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method according to manufacturer's published data.
- h. Perform manual transfer operation.
- i. Verify positive mechanical interlocking between normal and alternate sources.
- j. Perform visual and mechanical inspection of surge arresters.
- k. Inspect control power transformers.
 - 1) Inspect for physical damage, cracked insulation, broken leads, tightness of connections, defective wiring, and overall general condition.
 - 2) Verify that primary and secondary fuse or circuit-breaker ratings match Drawings.
 - 3) Verify correct functioning of drawout disconnecting contacts, grounding contacts, and interlocks.
- 3. Electrical Tests:
 - a. Perform insulation-resistance tests on all control wiring with respect to ground.
 - b. Verify settings and operation of control devices.
 - c. Calibrate and set all relays and timers.
 - d. Verify phase rotation, phasing, and synchronized operation.
 - e. Perform automatic transfer tests.
 - f. Verify correct operation and timing of the following functions:
 - 1) Normal source voltage-sensing and frequency-sensing relays.
 - 2) Engine start sequence.
 - 3) Time delay on transfer.
 - 4) Alternative source voltage-sensing and frequency-sensing relays.
 - 5) Automatic transfer operation.
 - 6) Interlocks and limit switch function.
 - 7) Time delay and retransfer on normal power restoration.
 - 8) Engine cool-down and shutdown feature.
- 4. Measure insulation resistance phase-to-phase and phase-to-ground with insulation-resistance tester. Include external annunciation and control circuits. Use test voltages and procedure recommended by manufacturer. Comply with manufacturer's specified minimum resistance.
 - a. Check for electrical continuity of circuits and for short circuits.

- b. Inspect for physical damage, proper installation and connection, and integrity of barriers, covers, and safety features.
- c. Verify that manual transfer warnings are properly placed.
- d. Perform manual transfer operation.
- 5. After energizing circuits, perform each electrical test for transfer switches stated in NETA ATS and demonstrate interlocking sequence and operational function for each switch at least three times.
 - a. Simulate power failures of normal source to automatic transfer switches and retransfer from emergency source with normal source available.
 - b. Simulate loss of phase-to-ground voltage for each phase of normal source.
 - c. Verify time-delay settings.
 - d. Verify pickup and dropout voltages by data readout or inspection of control settings.
 - e. Verify proper sequence and correct timing of automatic engine starting, transfer time delay, retransfer time delay on restoration of normal power, and engine cool-down and shutdown.
- C. Coordinate tests with tests of generator and run them concurrently.
- D. Report results of tests and inspections in writing. Record adjustable relay settings and measured insulation and contact resistances and time delays. Attach a label or tag to each tested component indicating satisfactory completion of tests.
- E. Remove and replace malfunctioning units and retest as specified above.

3.4 DEMONSTRATION

- A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain transfer switches and related equipment.
- B. Coordinate this training with that for generator equipment.

END OF SECTION 26 36 00

This page intentionally left blank.

SECTION 26 43 13 SURGE PROTECTION FOR LOW-VOLTAGE ELECTRICAL POWER CIRCUITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes:
 - 1. Type 2 surge protective devices.
 - 2. Enclosures.
 - 3. Conductors and cables.

1.3 DEFINITIONS

- A. Inominal: Nominal discharge current.
- B. MCOV: Maximum continuous operating voltage.
- C. Mode(s), also Modes of Protection: air of electrical connections where the VPR applies.
- D. MOV: Metal-oxide varistor; an electronic component with a significant non-ohmic current-voltage characteristic.
- E. NRTL: Nationally recognized testing laboratory.
- F. OCPD: Overcurrent protective device.
- G. SCCR: Short-circuit current rating.
- H. SPD: Surge protective device.
- I. Type 2 SPDs: Permanently connected SPDs intended for installation on the load side of the service disconnect overcurrent device.
- J. VPR: Voltage protection rating.
- 1.4 ACTION SUBMITTALS
- A. Product Data: For each type of product.
 - 1. Include electrical characteristics, specialties, and accessories for SPDs.
 - 2. NRTL certification of compliance with UL 1449.
 - a. Tested values for VPRs.
 - b. Inominal ratings.

- c. MCOV, type designations.
- d. OCPD requirements.
- e. Manufacturer's model number.
- f. System voltage.
- g. Modes of protection.

1.5 CLOSEOUT SUBMITTALS

- A. Maintenance Data: For SPDs to include in maintenance manuals.
- 1.6 WARRANTY
- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace SPDs that fail in materials or workmanship within five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 TYPE 2 SURGE PROTECTIVE DEVICES (SPDs)

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. ABB, Electrification Products Division.
 - 2. Advanced Protection Technologies Inc. (APT).
 - 3. Eaton.
 - 4. Schneider Electric USA, Inc.
 - 5. LEA International LSS Series.
- B. Source Limitations: Obtain devices from single source from single manufacturer.
- C. Standards:
 - 1. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 1449, Type 2.
 - 2. Comply with UL 1283.
- D. Product Options:
 - 1. Include LED indicator lights for power and protection status.
 - 2. Include internal thermal protection that disconnects the SPD before damaging internal suppressor components.
 - 3. Include NEMA ICS 5, dry Form C contacts rated at 2 A and 24 V ac for remote monitoring of protection status.
 - 4. Include surge counter.
- E. Performance Criteria:
 - 1. MCOV: Not less than 115 percent of nominal system voltage for 480Y/277 V power systems.

- 2. Peak Surge Current Rating: Minimum single-pulse surge current withstand rating per phase must not be less than 150 kA. Peak surge current rating must be arithmetic sum of the ratings of individual MOVs in a given mode.
- 3. Protection modes and UL 1449 VPR for grounded wye circuits with 480Y/277 V, three-phase, four-wire circuits must not exceed the following:
 - a. Line to Neutral: 1200 V for 480Y/277 V.
 - b. Line to Ground: 1200 V for 480Y/277 V.
 - c. Neutral to Ground: 1200 V for 480Y/277 V.
 - d. Line to Line: 2000 V for 480Y/277 V.

2.2 ENCLOSURES

- A. Indoor Enclosures: NEMA 250, Type 1.
- 2.3 CONDUCTORS AND CABLES
- A. Power Wiring: Same size as SPD leads, complying with Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

- 3.1 INSTALLATION
- A. Comply with NECA 1.
- B. Provide OCPD and disconnect for installation of SPD in accordance with UL 1449 and manufacturer's written instructions.
- C. Install leads between disconnects and SPDs short, straight, twisted, and in accordance with manufacturer's written instructions. Comply with wiring methods in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables."
 - 1. Do not splice and extend SPD leads unless specifically permitted by manufacturer.
 - 2. Do not exceed manufacturer's recommended lead length.
 - 3. Do not bond neutral and ground.
- D. Use crimped connectors and splices only. Wire nuts are unacceptable.

3.2 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Compare equipment nameplate data for compliance with Drawings and the Specifications.
 - 2. Inspect anchorage, alignment, grounding, and clearances.
 - 3. Verify that electrical wiring installation complies with manufacturer's written installation requirements.

B. SPDs that do not pass tests and inspections will be considered defective.

3.3 STARTUP SERVICE

- A. Complete startup checks in accordance with manufacturer's written instructions.
- B. Do not perform insulation-resistance tests of the distribution wiring equipment with SPDs installed. Disconnect SPDs before conducting insulation-resistance tests; reconnect them immediately after the testing is over.
- C. Energize SPDs after power system has been energized, stabilized, and tested.

3.4 DEMONSTRATION

A. Train Owner's maintenance personnel to operate and maintain SPDs.

END OF SECTION 26 43 13

SECTION 26 51 19 LED INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes LED luminaires
 - 1. Section 26 09 23 "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays.
 - 2. Section 26 09 43.23 "Relay-Based Lighting Controls" for manual or programmable control systems with low-voltage control wiring or data communication circuits.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Arrange in order of luminaire designation.
 - 2. Include data on features, accessories, and finishes.
 - 3. Include physical description and dimensions of luminaires.
 - 4. Include emergency lighting units, including batteries and chargers.
 - 5. Include life, output (lumens, CCT, and CRI), and energy-efficiency data.
 - 6. Photometric data and adjustment factors based on laboratory tests, complying with IES "Lighting Measurements Testing and Calculation Guides" for each luminaire type. The adjustment factors shall be for lamps and accessories identical to those indicated for the luminaire as applied IES LM-79 or IES LM-80.
 - a. Manufacturers' Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.
- B. Product Schedule: For luminaires and lamps. Use same designations indicated on Drawings.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For luminaires and lighting systems to include in operation and maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

- 1. Lenses: Three (3) percent of each type and rating installed. Furnish at least one (1) of each type.
- 2. LED Drivers: Five (5) percent of quantity installed, minimum of one (1) of each size and type.

1.6 QUALITY ASSURANCE

- A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.
- B. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.8 WARRANTY

- A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
- B. Warranty Period: Five year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 LUMINAIRE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Locate labels where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
- C. Recessed luminaires shall comply with NEMA LE 4.

2.2 LED LUMINAIRES

- A. LED Luminaires shall meet all DesignLights Consortium® (DesignLights.org) Product Qualification Criteria. This does not require that the luminaire be listed on the DesignLights Consortium's® Qualified Products List, but they must meet the Product Qualification Criteria. The technical requirements that the luminaire shall meet for each Application Category are:
 - 1. Minimum Light Output.
 - 2. Zonal Lumen Requirements.

- 3. Minimum Luminaire Efficacy.
- 4. Minimum CRI.
- 5. L70 Lumen Maintenance.
- B. Additional requirements:
 - 1. Color Temperature for interior luminaires as listed in the Luminaire Schedule on the plans.
 - 2. Color Consistency: LED manufacturer shall use a maximum 3-step MacAdam Ellipse binning process to achieve consistent luminaire-to-luminaire color for interior luminaires. Exterior luminaires shall use a maximum 5-step MacAdam Ellipse binning process.
 - 3. Luminaire shall be mercury-free, lead-free, and RoHS compliant.
 - 4. Luminaire shall comply with FCC 47 CFR part 15 non-consumer RFI/EMI standards.
 - 5. Light output of the LED system shall be measured using the absolute photometry method following IES LM-79 and IES LM-80 requirements and guidelines.
 - 6. Luminaire shall maintain 70% lumen output (L70) for a minimum of 50,000 hours.
 - 7. Lumen output shall not depreciate more than 20% after 10,000 hours of use.
 - 8. Luminaire and driver shall be furnished from a single manufacturer to ensure compatibility.
 - 9. Luminaire Color Rendering Index (CRI) shall be a minimum of 80 for interior luminaires, and a minimum of 70 for exterior luminaires.
 - 10. LED luminaire shall be thermally designed as to not exceed the maximum junction temperature of the LED for the ambient temperature of the location the luminaire is to be installed. Rated case temperature shall be suitable for operation in the ambient temperatures typically found for the intended installation. Exterior luminaires to operate in ambient temperatures of -20°F to 122°F (-29°C to 50°C).
 - 11. Luminaire shall operate normally for input voltage fluctuations of plus or minus 10 percent.
 - 12. Luminaire shall have a maximum Total Harmonic Distortion (THD) of <20% at full input power and across specified voltage range.
 - 13. All connections to luminaires shall be reverse polarity protected and provide high voltage protection in the event connections are reversed or shorted during the installation process.
 - 14. All luminaires shall be provided with knockouts for conduit connections.
- C. LED Luminaires used for Emergency Egress Lighting:
 - 1. The failure of one LED shall not affect the operation of the remaining LEDs.

2.3 EXIT SIGNS

- A. General Requirements for Exit Signs: Comply with UL 924; for sign colors, visibility, luminance, and lettering size, comply with authorities having jurisdiction.
- B. Internally Lighted Signs:
 - 1. Lamps for AC Operation: LEDs; 50,000 hours minimum rated lamp life.

2.4 LED DRIVERS

A. General

- 1. Provide driver type (non-dimmed, step-dimmed, continuous-dimming, etc.) as indicated on the luminaire schedule on the drawings.
- 2. Driver shall have a rated life of 50,000 hours, minimum.
- 3. Driver and LEDs shall be furnished from a single manufacturer to ensure compatibility.
- 4. Driver shall have a minimum power factor (pf) of 0.9 and a maximum crest factor (cf) of 1.5 at full input power and across specified voltage range.
- 5. Driver shall operate normally for input voltage fluctuations of plus or minus 10 percent.
- 6. Driver shall have a maximum Total Harmonic Distortion (THD) of <20% at full input power and across specified voltage range.
- 7. Wiring connections to LED drivers shall utilize polarized quick-disconnects for field maintenance.
- 8. Fuse Protections: All luminaires shall have built-in fuse protection. All power supply outputs shall be either fuse protected or be Polymeric Positive Temperature Coefficient (PTC)-protected as per Class 2 UL listing.
- 9. Provide all of the following data on submittals:
 - a. Input watts
 - b. Power Factor (pf)
 - c. Crest Factor (cf) at full input power
 - d. Total Harmonic Distortion (THD)
- B. Dimming Drivers:
 - 1. LED driver shall be compatible with dimming controls where dimming is indicated on the plans. Dimmable drivers shall use Dimming Constant Current (DCC), Constant Voltage, or Pulse Width Modulation (PWM) operation.
 - 2. Continuous Dimming Drivers: LED luminaires shall dim to (10%, 1%, or 0.1%) as specified in the Luminaire Schedule on the plans without visible flicker or "popcorn effect". "Popcorn effect" is defined as the luminaire being on a pre-set dimmed level (less than 100%) and going to 100% prior to returning to the pre-set level when power is returned to the luminaire. Continuous Dimming Drivers shall use 0-10V control.
- 2.5 MATERIALS
- A. Metal Parts:
 - 1. Free of burrs and sharp corners and edges.
 - 2. Sheet metal components shall be steel unless otherwise indicated.
 - 3. Form and support to prevent warping and sagging.
- B. Steel:
 - 1. ASTM A36/A36M for carbon structural steel.
 - 2. ASTM A568/A568M for sheet steel.

- C. Stainless Steel:
 - 1. 1. Manufacturer's standard grade.
 - 2. 2. Manufacturer's standard type, ASTM A240/240M.
- D. Galvanized Steel: ASTM A653/A653M.
- E. Aluminum: ASTM B209.

2.6 METAL FINISHES

A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.7 LUMINAIRE SUPPORT

- A. Comply with requirements in Section 26 05 29 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.
- B. Single-Stem Hangers: 1/2-inch steel tubing with swivel ball fittings and ceiling canopy. Finish same as luminaire.
- C. Wires: ASTM A641/A641M, Class 3, soft temper, zinc-coated steel, 12 gage.
- D. Rod Hangers: 3/16-inch minimum diameter, cadmium-plated, threaded steel rod.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before luminaire installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Comply with NECA 1.
- B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.
- C. Install lamps in each luminaire.
- D. Supports:

- 1. Sized and rated for luminaire weight.
- 2. Able to maintain luminaire position after cleaning and relamping.
- 3. Provide support for luminaire without causing deflection of ceiling or wall.
- 4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and a vertical force of 400 percent of luminaire weight.
- E. Flush-Mounted Luminaires:
 - 1. Secured to outlet box.
 - 2. Attached to ceiling structural members at four points equally spaced around circumference of luminaire.
 - 3. Trim ring flush with finished surface.
- F. Wall-Mounted Luminaires:
 - 1. Attached to structural members in walls or as noted on drawings.
 - 2. Do not attach luminaires directly to gypsum board.
- G. Suspended Luminaires:
 - 1. Ceiling Mount:
 - a. Two 5/32-inch- diameter aircraft cable supports adjustable to 10 feet in length.
 - b. Pendant mount with 5/32-inch- diameter aircraft cable supports adjustable to 10 feet in length.
 - 2. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
 - 3. Stem-Mounted, Single-Unit Luminaires: Suspend with twin-stem hangers. Support with approved outlet box and accessories that hold stem and provide damping of luminaire oscillations. Support outlet box vertically to building structure using approved devices.
 - 4. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and wire support for suspension for each unit length of luminaire chassis, including one at each end.
 - 5. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.
- H. Ceiling-Grid-Mounted Luminaires:
 - 1. Secure to any required outlet box.
 - 2. Use approved devices and support components to connect luminaire to ceiling grid and building structure in a minimum of four locations, spaced near corners of luminaire.
- I. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables" for wiring connections.

3.3 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.

END OF SECTION 26 51 19

This page intentionally left blank.

SECTION 26 56 19 LED EXTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Exterior solid-state luminaires that are designed for and exclusively use LED lamp technology.
 - 2. Luminaire supports.
- B. Related Requirements:
 - 1. Section 26 09 23 "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of luminaire.
 - 1. Arrange in order of luminaire designation.
 - 2. Include data on features, accessories, and finishes.
 - 3. Include physical description and dimensions of luminaire.
 - 4. Lamps include life, output (lumens, CCT, and CRI), and energy-efficiency data.
 - 5. Photometric data and adjustment factors based on laboratory tests, complying with IES LM-79 and IES LM-80.
 - a. Manufacturer's Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the NVLAP for Energy Efficient Lighting Products.
 - b. Testing Agency Certified Data: For indicated luminaires, photometric data certified by a qualified independent testing agency. Photometric data for remaining luminaires shall be certified by manufacturer.
 - 6. Wiring diagrams for power, control, and signal wiring.
 - 7. Means of attaching luminaires to supports and indication that the attachment is suitable for components involved.
- B. Shop Drawings: For nonstandard or custom luminaires.
 - 1. Include plans, elevations, sections, and mounting and attachment details.

- 2. Include details of luminaire assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
- 3. Include diagrams for power, signal, and control wiring.

1.4 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For luminaires to include in operation and maintenance manuals.
 - 1. Provide a list of all lamp types used on Project. Use ANSI and manufacturers' codes.

1.5 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. LED Drivers: Five (5) percent of quantity installed, minimum of one (1) of each size and type.

1.6 QUALITY ASSURANCE

- A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturers' laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.
- B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7, accredited under the NVLAP for Energy Efficient Lighting Products and complying with applicable IES testing standards.
- C. Provide luminaires from a single manufacturer for each luminaire type.
- D. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.
- E. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.
 - 1. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering prior to shipping.

1.8 FIELD CONDITIONS

A. Verify existing and proposed utility structures prior to the start of work associated with luminaire installation.

B. Mark locations of exterior luminaires for approval by Architect prior to the start of luminaire installation.

1.9 WARRANTY

- A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures, including luminaire support components.
 - b. Faulty operation of luminaires and accessories.
 - c. Deterioration of metals, metal finishes, and other materials beyond normal weathering.
 - 2. Warranty Period: 2 year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 LUMINAIRE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. NRTL Compliance: Luminaires shall be listed and labeled for indicated class and division of hazard by an NRTL.
- C. FM Global Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.
- D. UL Compliance: Comply with UL 1598 and listed for wet location.
- E. CRI of minimum 80. CCT of 4100 K.
- F. L70 lamp life of 50,000 hours.
- G. Internal driver.
- H. Nominal Operating Voltage: As indicated on drawings.
- I. Source Limitations: Obtain luminaires from single source from a single manufacturer.
- J. Source Limitations: For luminaires, obtain each color, grade, finish, type, and variety of luminaire from single source with resources to provide products of consistent quality in appearance and physical properties.
- 2.2 MATERIALS
- A. Metal Parts: Free of burrs and sharp corners and edges.

- B. Sheet Metal Components: Corrosion-resistant aluminum. Form and support to prevent warping and sagging.
- C. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position. Doors shall be removable for cleaning or replacing lenses.
- D. Diffusers and Globes:
 - 1. Acrylic Diffusers: 100 percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 - 2. Glass: Annealed crystal glass unless otherwise indicated.
- E. Lens and Refractor Gaskets: Use heat- and aging-resistant resilient gaskets to seal and cushion lenses and refractors in luminaire doors.
- F. Reflecting surfaces shall have minimum reflectance as follows unless otherwise indicated:
 - 1. White Surfaces: minimum 85 percent.
 - 2. Specular Surfaces: minimum 83 percent.
 - 3. Diffusing Specular Surfaces: minimum 75 percent.
- G. Housings:
 - 1. Rigidly formed, weather- and light-tight enclosure that will not warp, sag, or deform in use.
- H. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Labels shall be located where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
 - 1. Label shall include the following lamp characteristics:
 - a. "USE ONLY" and include specific LED Module.
 - b. CCT and CRI for all luminaires.

2.3 FINISHES

- A. Luminaire Finish: Manufacturer's standard paint applied to factory-assembled and tested luminaire before shipping.
- B. Factory-Applied Finish for Steel Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
 - 1. Surface Preparation: Clean surfaces to comply with SSPC-SP 1, to remove dirt, oil, grease, and other contaminants that could impair paint bond. Grind welds and

polish surfaces to a smooth, even finish. Remove mill scale and rust, if present, from uncoated steel, complying with SSPC-SP 5/NACE No. 1 or SSPC-SP 8.

- 2. Exterior Surfaces: Manufacturer's standard finish consisting of one or more coats of primer and two finish coats of high-gloss, high-build polyurethane enamel.
 - a. Color: As selected by Architect from manufacturer's full range.

2.4 LUMINAIRE SUPPORT COMPONENTS

A. Comply with requirements in Section 26 05 29 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for luminaire electrical conduit to verify actual locations of conduit connections before luminaire installation.
- C. Examine walls, roofs, and canopy ceilings and overhang ceilings for suitable conditions where luminaires will be installed.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 GENERAL INSTALLATION REQUIREMENTS

- A. Comply with NECA 1.
- B. Use fastening methods and materials selected to resist seismic forces defined for the application and approved by manufacturer.
- C. Fasten luminaire to structural support.
- D. Supports:
 - 1. Sized and rated for luminaire weight.
 - 2. Able to maintain luminaire position after cleaning and relamping.
 - 3. Support luminaires without causing deflection of finished surface.
 - 4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and a vertical force of 400 percent of luminaire weight.
- E. Wiring Method: Install cables in raceways. Conceal raceways and cables.
- F. Install luminaires level, plumb, and square with finished grade unless otherwise indicated. Install luminaires at height and aiming angle as indicated on Drawings.

- G. Coordinate layout and installation of luminaires with other construction.
- H. Adjust luminaires that require field adjustment or aiming.
- I. Comply with requirements in Section 26 05 19 "Low-Voltage Electrical Power Conductors and Cables" and Section 26 05 33 "Raceways and Boxes for Electrical Systems" for wiring connections and wiring methods.

3.3 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 26 05 53 "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL

- A. Inspect each installed luminaire for damage. Replace damaged luminaires and components.
- B. Perform the following tests and inspections:
 - 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
 - 2. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
- C. Luminaire will be considered defective if it does not pass tests and inspections.

3.5 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain luminaires.

END OF SECTION 26 56 19

SECTION 27 05 26 GROUNDING AND BONDING FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- 1.2 SUMMARY
- A. Section Includes:
 - 1. Grounding conductors.
 - 2. Grounding connectors.
 - 3. Grounding busbars.
 - 4. Grounding rods.
 - 5. Grounding labeling.
- 1.3 DEFINITIONS
- A. BCT: Bonding conductor for telecommunications.
- B. TGB: Telecommunications grounding busbar.
- C. TMGB: Telecommunications main grounding busbar.
- D. Service Provider: The operator of a service that provides telecommunications transmission delivered over access provider facilities.
- 1.4 ACTION SUBMITTALS
- A. Product Data: For each type of product.
- B. Shop Drawings: For communications equipment room signal reference grid. Include plans, elevations, sections, details, and attachments to other work.

1.5 INFORMATIONAL SUBMITTALS

- A. As-Built Data: Plans showing as-built locations of grounding and bonding infrastructure, including the following:
 - 1. Ground rods.
 - 2. Ground and roof rings.
 - 3. BCT, TMGB, TGBs, and routing of their bonding conductors.
- B. Qualification Data: For Installer, installation supervisor, and field inspector.
- C. Qualification Data: For testing agency and testing agency's field supervisor.

D. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For grounding to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," include the following:
 - a. Result of the ground-resistance test, measured at the point of BCT connection.
 - b. Result of the bonding-resistance test at each TGB and its nearest grounding electrode.

1.7 QUALITY ASSURANCE

- A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 - 1. Installation Supervision: Installation shall be under the direct supervision of ITS Technician, who shall be present at all times when Work of this Section is performed at Project site.
 - 2. Field Inspector: Currently registered by BICSI as an RCDD to perform the on-site inspection.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with UL 467 for grounding and bonding materials and equipment.
- C. Comply with TIA-607-B.

2.2 CONDUCTORS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Harger Lightning & Grounding.
 - 2. Panduit Corp.
 - 3. TE Connectivity Ltd.
- B. Comply with UL 486A-486B.
- C. Insulated Conductors: Stranded copper wire, green or green with yellow stripe insulation, insulated for 600 V, and complying with UL 83.

- 1. Ground wire for custom-length equipment ground jumpers shall be No. 6 AWG, 19-strand, UL-listed, Type THHN wire.
- 2. Cable Tray Equipment Grounding Wire: No. 8 AWG.
- D. Cable Tray Grounding Jumper:
 - 1. Not smaller than No. 6 AWG and not longer than 12 inches (300 mm). If jumper is a wire, it shall have a crimped grounding lug with two holes and long barrel for two crimps. If jumper is a flexible braid, it shall have a one-hole ferrule. Attach with grounding screw or connector provided by cable tray manufacturer.
 - 2. Not smaller than No. 10 AWG and not longer than 12 inches (300 mm). If jumper is a wire, it shall have a crimped grounding lug with one hole and standard barrel for one crimp. If jumper is a flexible braid, it shall have a one- or two-hole ferrule. Attach with grounding screw or connector provided by cable tray manufacturer.
- E. Bare Copper Conductors:
 - 1. Solid Conductors: ASTM B3.
 - 2. Stranded Conductors: ASTM B8.
 - 3. Tinned Conductors: ASTM B33.
 - 4. Bonding Cable: 28 kcmils (14.2 sq. mm), 14 strands of No. 17 AWG conductor, and 1/4 inch (6.3 mm) in diameter.
 - 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 - 6. Bonding Jumper: Tinned-copper tape, braided conductors terminated with twohole copper ferrules; 1-5/8 inches (41 mm) wide and 1/16 inch (1.6 mm) thick.

2.3 CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Burndy; Hubbell Incorporated, Construction and Energy.
 - 2. Chatsworth Products, Inc.
 - 3. Harger Lightning & Grounding.
 - 4. Panduit Corp.
 - 5. TE Connectivity Ltd.
- B. Irreversible connectors listed for the purpose. Listed by an NRTL as complying with NFPA 70 for specific types, sizes, and combinations of conductors and other items connected. Comply with UL 486A-486B.
- C. Compression Wire Connectors: Crimp-and-compress connectors that bond to the conductor when the connector is compressed around the conductor. Comply with UL 467.
 - 1. Electroplated tinned copper, C and H shaped.
- D. Signal Reference Grid Connectors: Combination of compression wire connectors, access floor grounding clamps, bronze U-bolt grounding clamps, and copper split-bolt connectors, designed for the purpose.

- E. Busbar Connectors: Cast silicon bronze, solderless compression or exothermic-type, mechanical connector; with a long barrel and two holes spaced on 5/8- or 1-inch (15.8- or 25.4-mm) centers for a two-bolt connection to the busbar.
- F. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.

2.4 GROUNDING BUSBARS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Chatsworth Products, Inc.
 - 2. Harger Lightning & Grounding.
 - 3. Panduit Corp.
- B. TMGB: Predrilled, wall-mounted, rectangular bars of hard-drawn solid copper, 1/4 by 4 inches (6.3 by 100 mm) in cross section, length as indicated on Drawings. The busbar shall be NRTL listed for use as TMGB and shall comply with TIA-607-B.
 - 1. Predrilling shall be with holes for use with lugs specified in this Section.
 - 2. Mounting Hardware: Stand-off brackets that provide a 4-inch (100-mm) clearance to access the rear of the busbar. Brackets and bolts shall be stainless steel.
 - 3. Stand-off insulators for mounting shall be Lexan or PVC. Comply with UL 891 for use in 600-V switchboards, impulse tested at 5000 V.
- C. TGB: Predrilled rectangular bars of hard-drawn solid copper, 1/4 by 2 inches (6.3 by 50 mm) in cross section, length as indicated on Drawings. The busbar shall be for wall mounting, shall be NRTL listed as complying with UL 467, and shall comply with TIA-607-B.
 - 1. Predrilling shall be with holes for use with lugs specified in this Section.
 - 2. Mounting Hardware: Stand-off brackets that provide at least a 2-inch (50-mm) clearance to access the rear of the busbar. Brackets and bolts shall be stainless steel.
 - 3. Stand-off insulators for mounting shall be Lexan or PVC. Comply with UL 891 for use in 600-V switchboards, impulse tested at 5000 V.
- D. Rack and Cabinet Grounding Busbars: Rectangular bars of hard-drawn solid copper, accepting conductors ranging from No. 14 to No. 2/0 AWG, NRTL listed as complying with UL 467, and complying with TIA-607-B. Predrilling shall be with holes for use with lugs specified in this Section.
 - 1. Cabinet-Mounted Busbar: Terminal block, with stainless-steel or copper-plated hardware for attachment to the cabinet.
 - 2. Rack-Mounted Horizontal Busbar: Designed for mounting in 19- or 23-inch (483or 584-mm) equipment racks. Include a copper splice bar for transitioning to an adjoining rack, and stainless-steel or copper-plated hardware for attachment to the rack.

3. Rack-Mounted Vertical Busbar: 72 or 36 inches (1827 or 914 mm) long, with stainless-steel or copper-plated hardware for attachment to the rack.

2.5 GROUND RODS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Harger Lightning & Grounding.
 - 2. TE Connectivity Ltd.
- B. Ground Rods: Copper-clad; 3/4 inch by 10 feet (19 mm by 3 m).

2.6 IDENTIFICATION

A. Comply with requirements for identification products in Section 27 05 53 "Identification for Communications Systems."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine the ac grounding electrode system and equipment grounding for compliance with requirements for maximum ground-resistance level and other conditions affecting performance of grounding and bonding of the electrical system.
- B. Inspect the test results of the ac grounding system measured at the point of BCT connection.
- C. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.
- D. Proceed with connection of the BCT only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Bonding shall include the ac utility power service entrance, the communications cable entrance, and the grounding electrode system. The bonding of these elements shall form a loop so that each element is connected to at least two others.
- B. Comply with NECA 1.
- C. Comply with TIA-607-B.
- 3.3 APPLICATION
- A. Conductors: Install solid conductor for No. 8 AWG and smaller and stranded conductors for No. 6 AWG and larger unless otherwise indicated.

- 1. The bonding conductors between the TGB and structural steel of steel-frame buildings shall not be smaller than No. 6 AWG.
- 2. The bonding conductors between the TMGB and structural steel of steel-frame buildings shall not be smaller than No. 6 AWG.
- B. Underground Grounding Conductors: Install bare tinned-copper conductor, No. 2 AWG minimum.
- C. Conductor Terminations and Connections:
 - 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 - 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
 - 3. Connections to Ground Rods at Test Wells: Bolted connectors.
 - 4. Connections to Structural Steel: Welded connectors.
- D. Conductor Support:
 - 1. Secure grounding and bonding conductors at intervals of not less than 36 inches (900 mm).
- E. Grounding and Bonding Conductors:
 - 1. Install in the straightest and shortest route between the origination and termination point, and no longer than required. The bend radius shall not be smaller than eight times the diameter of the conductor. No one bend may exceed 90 degrees.
 - 2. Install without splices.
 - 3. Support at not more than 36-inch (900-mm) intervals.
 - 4. Install grounding and bonding conductors in 3/4-inch (21-mm) PVC conduit until conduit enters a telecommunications room. The grounding and bonding conductor pathway through a plenum shall be in EMT. Conductors shall not be installed in EMT unless otherwise indicated.
 - a. If a grounding and bonding conductor is installed in ferrous metallic conduit, bond the conductor to the conduit using a grounding bushing that complies with requirements in Section 27 05 28 "Pathways for Communications Systems," and bond both ends of the conduit to a TGB.

3.4 GROUNDING ELECTRODE SYSTEM

A. The BCT between the TMGB and the ac service equipment ground shall not be smaller than No. 1/0 AWG.

3.5 GROUNDING BUSBARS

A. Indicate locations of grounding busbars on Drawings. Install busbars horizontally, on insulated spacers 2 inches (50 mm) minimum from wall, 12 inches (300 mm) above finished floor unless otherwise indicated.

B. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus.

3.6 CONNECTIONS

- A. Bond metallic equipment in a telecommunications equipment room to the grounding busbar in that room, using equipment grounding conductors not smaller than No. 6 AWG.
- B. Stacking of conductors under a single bolt is not permitted when connecting to busbars.
- C. Assemble the wire connector to the conductor, complying with manufacturer's written instructions and as follows:
 - 1. Use crimping tool and the die specific to the connector.
 - 2. Pretwist the conductor.
 - 3. Apply an antioxidant compound to all bolted and compression connections.
- D. Primary Protector: Bond to the TMGB with insulated bonding conductor.
- E. Interconnections: Interconnect all TGBs with the TMGB with the telecommunications backbone conductor. If more than one TMGB is installed, interconnect TMGBs using the grounding equalizer conductor. The telecommunications backbone conductor and grounding equalizer conductor size shall not be less than 2 kcmils/linear foot (1 sq. mm/linear meter) of conductor length, up to a maximum size of No. 3/0 AWG unless otherwise indicated.
- F. Telecommunications Enclosures and Equipment Racks: Bond metallic components of enclosures to the telecommunications bonding and grounding system. Install top-mounted rack grounding busbar unless the enclosure and rack are manufactured with the busbar. Bond the equipment grounding busbar to the TGB No. 2 AWG bonding conductors.
- G. Structural Steel: Where the structural steel of a steel frame building is readily accessible within the room or space, bond each TGB and TMGB to the vertical steel of the building frame.
- H. Electrical Power Panelboards: Where an electrical panelboard for telecommunications equipment is located in the same room or space, bond each TGB to the ground bar of the panelboard.
- I. Shielded Cable: Bond the shield of shielded cable to the TGB in communications rooms and spaces. Comply with TIA-568-C.1 and TIA-568-C.2 when grounding shielded balanced twisted-pair cables.
- J. Rack- and Cabinet-Mounted Equipment: Bond powered equipment chassis to the cabinet or rack grounding bar. Power connection shall comply with NFPA 70; the equipment grounding conductor in the power cord of cord- and plug-connected equipment shall be considered as a supplement to bonding requirements in this Section.
- K. Access Floors: Bond all metal parts of access floors to the TGB.

- L. Equipment Room Signal Reference Grid: Provide a low-impedance path between telecommunications cabinets, equipment racks, and the reference grid, using No. 6 AWG bonding conductors.
 - 1. Install the conductors in grid pattern on 4-foot (1200-mm) centers, allowing bonding of one pedestal from each access floor tile.
 - 2. Bond the TGB of the equipment room to the reference grid at two or more locations.
 - 3. Bond all conduits and piping entering the equipment room to the TGB at the perimeter of the room.
- M. Towers and Antennas:
 - 1. Ground Ring: Buried at least 30 inches (760 mm) below grade and at least 24 inches (610 mm) from the base of the tower or mounting.
 - 2. Bond each tower base and metallic frame of a dish to the ground ring, buried at least 18 inches (460 mm) below grade.
 - 3. Bond the ground ring and antenna grounds to the equipment room TMGB or TGB, buried at least 30 inches (760 mm) below grade.
 - 4. Bond metallic fences within 6 feet (1.8 m) of towers and antennas to the ground ring, buried at least 18 inches (460 mm) below grade.
 - 5. Special Requirements for Roof-Mounted Towers:
 - a. Roof Ring: Meet requirements for the ground ring except the conductors shall comply with requirements in Section 26 41 13 "Lightning Protection for Structures."
 - b. Bond tower base footings steel, the TGB in the equipment room, and antenna support guys to the roof ring.
 - c. Connect roof ring to the perimeter conductors of the lightning protection system.
 - 6. Waveguides and Coaxial Cable:
 - a. Bond cable shields at the point of entry into the building to the TGB and to the cable entrance plate, using No. 2 AWG bonding conductors.
 - b. Bond coaxial cable surge arrester to the ground or roof ring using bonding conductor size recommended by surge-arrester manufacturer.

3.7 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS

- A. Duct-Bank Grounding Conductor: Bury 12 inches (300 mm) above duct bank when indicated as part of duct-bank installation.
- B. Comply with IEEE C2 grounding requirements.
- C. Grounding Manholes and Handholes: Install a driven ground rod through manhole or handhole floor, close to wall, and set rod depth so 4 inches (100 mm) extends above finished floor. If necessary, install ground rod before manhole is placed and provide No. 1/0 AWG bare, tinned-copper conductor from ground rod into manhole through a waterproof sleeve in manhole wall. Protect ground rods passing through concrete floor with a double wrapping of pressure-sensitive insulating tape or heat-shrunk insulating

sleeve from 2 inches (50 mm) above to 6 inches (150 mm) below concrete. Seal floor opening with waterproof, nonshrink grout.

- D. Grounding Connections to Manhole Components: Bond exposed-metal parts such as inserts, cable racks, pulling irons, ladders, and cable shields within each manhole or handhole, to ground rod or grounding conductor. Make connections with No. 4 AWG minimum, bonding conductor. Train conductors level or plumb around corners and fasten to manhole walls. Connect grounding conductors to cable armor and cable shields according to written instructions by manufacturer of splicing and termination kits.
- 3.8 IDENTIFICATION
- A. Labels shall be preprinted or computer-printed type.
 - 1. Label TMGB(s) with "fs-TMGB," where "fs" is the telecommunications space identifier for the space containing the TMGB.
 - 2. Label TGB(s) with "fs-TGB," where "fs" is the telecommunications space identifier for the space containing the TGB.
 - 3. Label the BCT and each telecommunications backbone conductor at its attachment point: "WARNING! TELECOMMUNICATIONS BONDING CONDUCTOR. DO NOT REMOVE OR DISCONNECT!"

3.9 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - 1. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
 - 2. Test the bonding connections of the system using an ac earth ground-resistance tester, taking two-point bonding measurements in each telecommunications equipment room containing a TMGB and a TGB and using the process recommended by BICSI TDMM. Conduct tests with the facility in operation.
 - a. Measure the resistance between the busbar and the nearest available grounding electrode. The maximum acceptable value of this bonding resistance is 100 milliohms.
 - 3. Test for ground loop currents using a digital clamp-on ammeter, with a full-scale of not more than 10 A, displaying current in increments of 0.01 A at an accuracy of plus/minus 2.0 percent.
 - a. With the grounding infrastructure completed and the communications system electronics operating, measure the current in every conductor connected to the TMGB and in each TGB. Maximum acceptable ac current level is 1 A.

- D. Excessive Ground Resistance: If resistance to ground at the BCT exceeds 5 ohms, notify Architect promptly and include recommendations to reduce ground resistance.
- E. Grounding system will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

END OF SECTION 27 05 26
SECTION 27 05 53 IDENTIFICATION FOR COMMUNICATIONS SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Color and legend requirements for labels and signs.
 - 2. Labels.
 - 3. Bands and tubes.
 - 4. Tapes.
 - 5. Signs.
 - 6. Cable ties.
 - 7. Fasteners for labels and signs.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for communications identification products.
- B. Samples: For each type of label and sign to illustrate composition, size, colors, lettering style, mounting provisions, and graphic features of identification products.
- C. Identification Schedule:
 - 1. Outlets: Scaled drawings indicating location and proposed designation.
 - 2. Backbone Cabling: Riser diagram showing each communications room, backbone cable, and proposed backbone cable designation.
 - 3. Racks: Scaled drawings indicating location and proposed designation.
 - 4. Patch Panels: Enlarged scaled drawings showing rack row, number, and proposed designations.

PART 2 - PRODUCTS

- 2.1 PERFORMANCE REQUIREMENTS
- A. Comply with NFPA 70 and TIA 606-B.
- B. Comply with ANSI Z535.4 for safety signs and labels.

- C. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.
- D. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 - 1. Temperature Change: 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

2.2 COLOR AND LEGEND REQUIREMENTS

- A. Equipment Identification Labels:
 - 1. Black letters on a white field.

2.3 LABELS

- A. Vinyl Wraparound Labels: Preprinted, flexible labels laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing label ends.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. HellermannTyton.
 - c. Panduit Corp.
- B. Snap-Around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeves, with diameters sized to suit diameters of raceway or cable they identify, that stay in place by gripping action.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. HellermannTyton.
 - c. Panduit Corp.
- C. Self-Adhesive Wraparound Labels: Preprinted, 3-mil- (0.08-mm-) thick, polyester flexible labels with acrylic pressure-sensitive adhesive.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. Brother International Corporation.
 - c. Ideal Industries, Inc.

- d. Panduit Corp.
- 2. Self-Lamination: Clear; UV-, weather- and chemical-resistant; self-laminating protective shields over the legend. Labels sized such that the clear shield overlaps the entire printed legend.
- 3. Marker for Labels: Permanent, waterproof black ink marker recommended by tag manufacturer.
- 4. Marker for Labels: Machine-printed, permanent, waterproof black ink recommended by printer manufacturer.
- D. Self-Adhesive Labels: Polyester, thermal, transfer-printed, 3-mil- (0.08-mm-) thick, multicolor, weather- and UV-resistant, pressure-sensitive adhesive labels, configured for intended use and location.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. Brother International Corporation.
 - c. HellermannTyton.
 - d. Panduit Corp.
 - 2. Minimum Nominal Size:
 - a. 1-1/2 by 6 inches (37 by 150 mm) for raceway and conductors.
 - b. 3-1/2 by 5 inches (76 by 127 mm) for equipment.
 - c. As required by authorities having jurisdiction.

2.4 BANDS AND TUBES

- A. Snap-Around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeves, 2 inches (50 mm) long, with diameters sized to suit diameters of raceway or cable they identify, that stay in place by gripping action.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. HellermannTyton.
 - c. Panduit Corp.

2.5 <u>SIGNS</u>

- A. Baked-Enamel Signs:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

- a. Carlton Industries, LP.
- b. emedco.
- c. Marking Services, Inc.
- 2. Preprinted aluminum signs, high-intensity reflective, punched or drilled for fasteners, with colors, legend, and size required for application.
- 3. 1/4-inch (6.4-mm) grommets in corners for mounting.
- 4. Nominal Size: 7 by 10 inches (180 by 250 mm).
- B. Metal-Backed Butyrate Signs:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. Champion America.
 - c. Marking Services, Inc.
 - 2. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs, with 0.0396-inch (1-mm) galvanized-steel backing, punched and drilled for fasteners, and with colors, legend, and size required for application.
 - 3. 1/4-inch (6.4-mm) grommets in corners for mounting.
 - 4. Nominal Size: 10 by 14 inches (250 by 360 mm).
- C. Laminated-Acrylic or Melamine-Plastic Signs:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. Carlton Industries, LP.
 - c. Marking Services, Inc.
 - 2. Engraved legend.
 - 3. Thickness:
 - a. For signs up to 20 sq. in. (129 sq. cm), minimum 1/16 inch (1.6 mm) thick.
 - b. For signs larger than 20 sq. in. (129 sq. cm), 1/8 inch (3.2 mm) thick.
 - c. Engraved legend with black letters on white face.
 - d. Punched or drilled for mechanical fasteners with 1/4-inch (6.4-mm) grommets in corners for mounting.
 - e. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.
- 2.6 CABLE TIES
- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

- 1. HellermannTyton.
- 2. Ideal Industries, Inc.
- 3. Panduit Corp.
- B. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.
 - 1. Minimum Width: 3/16 inch (5 mm).
 - 2. Tensile Strength at 73 deg F (23 deg C) according to ASTM D638: 12,000 psi (82.7 MPa).
 - 3. Temperature Range: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C).
 - 4. Color: Black, except where used for color-coding.
- C. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.
 - 1. Minimum Width: 3/16 inch (5 mm).
 - 2. Tensile Strength at 73 deg F (23 deg C) according to ASTM D638: 12,000 psi (82.7 MPa).
 - 3. Temperature Range: Minus 40 to plus 185 deg F (Minus 40 to plus 85 deg C).
 - 4. Color: Black.
- D. Plenum-Rated Cable Ties: Self-extinguishing, UV stabilized, one piece, and self-locking.
 - 1. Minimum Width: 3/16 inch (5 mm).
 - 2. Tensile Strength at 73 deg F (23 deg C) according to ASTM D638: 7000 psi (48.2 MPa).
 - 3. UL 94 Flame Rating: 94V-0.
 - 4. Temperature Range: Minus 50 to plus 284 deg F (Minus 46 to plus 140 deg C).
 - 5. Color: Black.

2.7 MISCELLANEOUS IDENTIFICATION PRODUCTS

- A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).
- B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 PREPARATION

A. Self-Adhesive Identification Products: Before applying communications identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION

- A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.
- B. Install identifying devices before installing acoustical ceilings and similar concealment.
- C. Verify identity of each item before installing identification products.
- D. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.
- E. Apply identification devices to surfaces that require finish after completing finish work.
- F. Install signs with approved legend to facilitate proper identification, operation, and maintenance of communications systems and connected items.
- G. Elevated Components: Increase sizes of labels, signs, and letters to those appropriate for viewing from the floor.
- H. Vinyl Wraparound Labels:
 - 1. Secure tight to surface of raceway or cable at a location with high visibility and accessibility.
 - 2. Attach labels that are not self-adhesive type with clear vinyl tape, with adhesive appropriate to the location and substrate.
 - 3. Provide label 6 inches (150 mm) from cable end.
- I. Snap-Around Labels:
 - 1. Secure tight to surface at a location with high visibility and accessibility.
 - 2. Provide label 6 inches (150 mm) from cable end.
- J. Self-Adhesive Wraparound Labels:
 - 1. Secure tight to surface at a location with high visibility and accessibility.
 - 2. Provide label 6 inches (150 mm) from cable end.
- K. Self-Adhesive Labels:
 - 1. On each item, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual.
 - 2. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high label; where two lines of text are required, use labels 2 inches (50 mm) high.
- L. Snap-Around, Color-Coding Bands: Secure tight to surface at a location with high visibility and accessibility.
- M. Cable Ties: General purpose, except as listed below:

- 1. Outdoors: UV-stabilized nylon.
- 2. In Spaces Handling Environmental Air: Plenum rated.

3.3 IDENTIFICATION SCHEDULE

- A. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.
- B. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, pull points, and locations with high visibility. Identify by system and circuit designation.
- C. Accessible Fittings for Raceways and Cables within Buildings: Identify covers of each junction and pull box with self-adhesive labels containing wiring system legend.
 - 1. System legends shall be as follows:
 - a. Telecommunications.
- D. Faceplates: Label individual faceplates with self-adhesive labels. Place label at top of faceplate. Each faceplate shall be labeled with its individual, sequential designation, numbered clockwise when entering room from primary egress, composed of the following, in the order listed:
 - 1. Wiring closet designation.
 - 2. Colon.
 - 3. Faceplate number.
- E. Equipment Room Labeling:
 - 1. Racks, Frames, and Enclosures: Identify front and rear of each with selfadhesive labels containing equipment designation.
 - 2. Patch Panels: Label individual rows in each rack, starting at top and working down, with self-adhesive labels.
 - 3. Data Outlets: Label each outlet with a self-adhesive label indicating the following, in the order listed:
 - a. Room number being served.
 - b. Colon.
 - c. Faceplate number.
- F. Backbone Cables: Label each cable with a vinyl-wraparound label indicating the location of the far or other end of the backbone cable. Patch panel or punch down block where cable is terminated should be labeled identically.
- G. Horizontal Cables: Label each cable with a vinyl-wraparound label indicating the following, in the order listed:
 - 1. Room number.
 - 2. Colon.
 - 3. Faceplate number.

- H. Locations of Underground Lines: Underground-line warning tape for copper, coaxial, hybrid copper/fiber, and optical-fiber cable.
- I. Instructional Signs: Self-adhesive labels.
- J. Warning Labels for Indoor Cabinets, Boxes, and Enclosures: Self-adhesive labels.
 - 1. Apply to exterior of door, cover, or other access.
- K. Equipment Identification Labels:
 - 1. Indoor Equipment: Self-adhesive label.
 - 2. Outdoor Equipment: Laminated-acrylic or melamine-plastic sign 4 inches (100 mm) high.
 - 3. Equipment to Be Labeled:
 - a. Communications cabinets.
 - b. Uninterruptible power supplies.
 - c. Computer room air conditioners.
 - d. Fire-alarm and suppression equipment.
 - e. Egress points.
 - f. Power distribution components.

END OF SECTION 27 05 53

SECTION 27 11 00 COMMUNICATIONS EQUIPMENT ROOM FITTINGS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Backboards.
 - 2. Boxes, enclosures, and cabinets.
 - 3. Power strips.
- B. Related Requirements:
 - 1. Section 27 15 13 "Communications Copper Horizontal Cabling" for copper data cabling associated with system panels and devices.

<u>1.3</u> <u>DEFINITIONS</u>

- A. Access Provider: An operator that provides a circuit path or facility between the service provider and user. An access provider can also be a service provider.
- B. BICSI: Building Industry Consulting Service International.
- C. RCDD: Registered communications distribution designer.
- D. Service Provider: The operator of a telecommunications transmission service delivered through access provider facilities.
- E. TGB: Telecommunications grounding bus bar.
- F. TMGB: Telecommunications main grounding bus bar.
- <u>1.4</u> <u>ACTION SUBMITTALS</u>
- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for equipment racks and cabinets.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Shop Drawings: For communications equipment room fittings. Include plans, elevations, sections, details, and attachments to other work.

- 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
- 2. Equipment Racks and Cabinets: Include workspace requirements and access for cable connections.
- 3. Grounding: Indicate location of grounding bus bar and its mounting detail showing standoff insulators and wall mounting brackets.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer, qualified layout technician, installation supervisor, and field inspector.
- B. Seismic Qualification Data: Certificates, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions. Base certification on the maximum number of components capable of being mounted in each rack type. Identify components on which certification is based.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: Cabling installer must have personnel certified by BICSI on staff.
 - 1. Layout Responsibility: Preparation of Shop Drawings shall be under direct supervision of an RCDD.
 - 2. Installation Supervision: Installation shall be under direct supervision of Technician, who shall be present at all times when Work of this Section is performed at Project site.
 - 3. Field Inspector: Currently registered by BICSI as an RCDD to perform the on-site inspection.

PART 2 - PRODUCTS

2.1 BACKBOARDS

- A. Backboards: Plywood, fire-retardant treated, 3/4 by 48 by 96 inches (19 by 1220 by 2440 mm).
- B. Backboard Paint: Light-colored fire-retardant paint.

2.2 BOXES, ENCLOSURES, AND CABINETS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

- 1. FSR Inc.
- 2. Hoffman; nVent.
- 3. Hubbell Incorporated.
- 4. MonoSystems, Inc.
- B. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets shall be listed and labeled for intended location and use.
- C. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.
- D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, Type FD, ferrous alloy, with gasketed cover.
- E. Nonmetallic Outlet and Device Boxes: Comply with NEMA OS 2 and UL 514C.
- F. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- G. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, cast aluminum with gasketed cover.
- H. Box extensions used to accommodate new building finishes shall be of same material as recessed box.
- I. Device Box Dimensions: 4 inches square by 2-1/8 inches deep (100 mm square by 60 mm deep).
- J. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 3R with continuoushinge cover with flush latch unless otherwise indicated.
 - 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 - 2. Nonmetallic Enclosures: Plastic.
 - 3. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.
- K. Cabinets:
 - 1. NEMA 250, Type 3R galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 - 2. Hinged door in front cover with flush latch and concealed hinge.
 - 3. Key latch to match panelboards.
 - 4. Metal barriers to separate wiring of different systems and voltage.
 - 5. Accessory feet where required for freestanding equipment.
 - 6. Nonmetallic cabinets shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- 2.3 POWER STRIPS
- A. Comply with requirements in Section 27 11 16 "Communications Racks, Frames, and Enclosures."
- B. Power Strips: Comply with UL 1363.

- 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- 2. Rack mounting, with detachable flanges.
- 3. Height: 1 RU.
- 4. Housing: Metal.
- 5. Six, 15-A, 120-V ac, NEMA WD 6, Configuration 5-15R receptacles.
- 6. Front-facing receptacles.
- 7. LED indicator lights for power and protection status.
- 8. LED indicator lights for reverse polarity and open outlet ground.
- 9. Circuit Breaker and Thermal Fusing: When protection is lost, circuit opens and cannot be reset.
- 10. Circuit Breaker and Thermal Fusing: Unit continues to supply power if protection is lost.
- 11. Cord connected with 15-foot (4.5-m) line cord.
- 12. Rocker-type on-off switch, illuminated when in on position.
- 13. Surge Protection: UL 1449, Type 3.
 - a. Maximum Surge Current, Line to Neutral: 27 kA.
 - b. Protection modes shall be line to neutral, line to ground, and neutral to ground.
 - c. UL 1449 Voltage Protection Rating for line to neutral and line to ground shall be 600 V and 500 V. for neutral to ground.

PART 3 - EXECUTION

3.1 ENTRANCE FACILITIES

- A. Contact telecommunications service provider and arrange for installation of demarcation point, protected entrance terminals, and a housing when so directed by service provider.
- 3.2 INSTALLATION
- A. Comply with NECA 1.
- B. Comply with BICSI's "Telecommunications Distribution Methods Manual" for layout of communications equipment spaces.
- C. Comply with BICSI's "Information Technology Systems Installation Methods Manual" for installation of equipment in communications equipment spaces.
- D. Bundle, lace, and train conductors and cables to terminal points without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.
- E. Coordinate layout and installation of communications equipment in tracks and in room. Coordinate service entrance configuration with service provider.
 - 1. Meet jointly with systems providers, equipment suppliers, and Owner to exchange information and agree on details of equipment configurations and installation interfaces.

- 2. Record agreements reached in meetings and distr ibute them to other participants.
- 3. Adjust configurations and locations of distribution frames, cross-connects, and patch panels in equipment rooms to accommodate and optimize configurations and space requirements of communications equipment.
- 4. Adjust configurations and locations of equipment with distribution frames, crossconnects, and patch panels of cabling systems of other communications, electronic safety and security, and related systems that share space in equipment room.
- F. Coordinate location of power raceways and receptacles with locations of communications equipment requiring electrical power to operate.
- G. Backboards:
 - 1. Install from 6 inches (150 mm) to 8 feet, 6 inches (2588 mm) above finished floor. If plywood is fire rated, ensure that fire-rating stamp is visible after installation.
 - 2. Paint all sides of backboard with two coats of paint, leaving fire rating stamp visible.
 - 3. Comply with requirements for backboard installation in BICSI's "Information Technology Systems Installation Methods Manual" and TIA-569-D.

3.3 SLEEVE AND SLEEVE SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 27 05 44 "Sleeves and Sleeve Seals for Communications Pathways and Cabling."

3.4 FIRESTOPPING

- A. Comply with requirements in Section 07 84 13 "Penetration Firestopping."
- B. Comply with TIA-569-D, Annex A, "Firestopping."
- C. Comply with BICSI's "Information Technology Systems Installation Methods Manual," "Firestopping Practices" Ch.

END OF SECTION 27 11 00

This page intentionally left blank.

SECTION 27 11 16 COMMUNICATIONS RACKS, FRAMES, AND ENCLOSURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. 19-inch equipment racks.
 - 2. Power strips.
 - 3. Grounding.
 - 4. Labeling.
- B. Related Requirements:
 - 1. Section 27 11 10 "Communications Equipment Room Fittings" for backboards and accessories.
 - 2. Section 27 05 26 "Grounding and Bonding for Telecommunications Equipment" for TMGBs and TGBs.
 - 3. Section 27 13 23 "Communications Optical Fiber Backbone Cabling" for opticalfiber data cabling associated with system panels and devices.
 - 4. Section 27 15 13 "Communications Copper Horizontal Cabling" for copper data cabling associated with system panels and devices.
- 1.3 DEFINITIONS
- A. Access Provider: An operator that provides a circuit path or facility between the service provider and user. An access provider can also be a service provider.
- B. BICSI: Building Industry Consulting Service International.
- C. LAN: Local area network.
- D. RCDD: Registered communications distribution designer.
- E. Service Provider: The operator of a telecommunications transmission service delivered through access provider facilities.
- F. TGB: Telecommunications grounding bus bar.
- G. TMGB: Telecommunications main grounding bus bar.
- 1.4 ACTION SUBMITTALS
- A. Product Data: For each type of product.

- 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for equipment racks and cabinets.
- 2. Include rated capacities, operating characteristics, electrical characteristics, certifications, standards compliance, and furnished specialties and accessories.
- B. Shop Drawings: For communications racks, frames, and enclosures. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 2. Equipment Racks and Cabinets: Include workspace requirements and access for cable connections.
 - 3. Grounding: Indicate location of TGB and its mounting detail showing standoff insulators and wall-mounting brackets.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer, qualified layout technician, installation supervisor, and field inspector.
- B. Seismic Qualification Data: Certificates, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions. Base certification on the maximum number of components capable of being mounted in each rack type. Identify components on which certification is based.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: Cabling installer must have personnel certified by BICSI on staff.
 - 1. Layout Responsibility: Preparation of Shop Drawings shall be under direct supervision of an RCDD.
 - 2. Installation Supervision: Installation shall be under direct supervision of Technician, who shall be present at all times when Work of this Section is performed at Project site.
 - 3. Field Inspector: Currently registered by BICSI as an RCDD to perform on-site inspection.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. UL listed.
- B. RoHS compliant.

C. Compliant with requirements of the Payment Card Industry Data Security Standard.

2.2 BACKBOARDS

Backboards: Plywood, fire-retardant treated, 3/4 by 48 by 96 inches (19 by 1220 by 2440 mm). Comply with requirements for plywood backing panels specified in Section 06 10 53 "Miscellaneous Rough Carpentry."

2.3 <u>19-INCH EQUIPMENT RACKS</u>

- A. Description: Two post racks with threaded rails designed for mounting telecommunications equipment. Width is compatible with EIA/ECIA 310-E, 19-inch (482.6-mm) equipment mounting with an opening of 17.72-inches (450-mm) between rails.
- B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Belden Inc.
 - 2. CommScope, Inc.
 - 3. Ortronics, Inc.
 - 4. Panduit Corp.
 - 5. Siemon Co. (The).
- C. General Requirements:
 - 1. Frames: Modular units designed for telecommunications terminal support and coordinated with dimensions of units to be supported.
 - 2. Material: Extruded steel.
 - 3. Finish: Manufacturer's standard, baked-polyester powder coat.
 - 4. Color: Black.
- D. Floor-Mounted Racks:
 - 1. Overall Height: 84 inches (2133.6 mm).
 - 2. Upright Depth: 3 inches (76.2 mm).
 - 3. Two-Post Load Rating: 200 lb (91 kg).
 - 4. Number of Rack Units per Rack: 45.
 - a. Numbering: Every five rack units, on interior of rack.
 - 5. Threads: 12-24.
 - 6. Vertical and horizontal cable management channels, top and bottom cable troughs, grounding lug, and a power strip.
 - 7. Base shall have a minimum of four mounting holes for permanent attachment to floor.
 - 8. Top shall have provisions for attaching to cable tray or ceiling.
 - 9. Self-leveling.
- E. Cable Management:

- 1. Metal, with integral wire retaining fingers.
- 2. Baked-polyester powder coat finish.
- 3. Vertical cable management panels shall have front and rear channels, with covers.
- 4. Provide horizontal crossover cable manager at the top of each relay rack, with a minimum height of two rack units each.

2.4 GROUNDING

- A. Comply with requirements in Section 27 05 26 "Grounding and Bonding for Communications Systems" for grounding conductors and connectors.
- B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Chatsworth Products, Inc.
 - 2. Harger Lightning & Grounding.
 - 3. Panduit Corp.
- C. Rack and Cabinet TGBs: Rectangular bars of hard-drawn solid copper, accepting conductors ranging from No. 14 to No. 2/0 AWG, NRTL listed as complying with UL 467, and complying with TIA-606-B. Predrilling shall be with holes for use with lugs specified in this Section.
 - 1. Cabinet-Mounted TGB: Terminal block, with stainless-steel or copper-plated hardware for attachment to cabinet.
 - 2. Rack-Mounted Horizontal TGB: Designed for mounting in 19- or 23-inch (482.6or 584.2-mm) equipment racks. Include a copper splice bar for transitioning to an adjoining rack, and stainless-steel or copper-plated hardware for attachment to the rack.
 - 3. Rack-Mounted Vertical TGB: 72 or 36 inches (1828.8 or 914.4 mm) long, with stainless-steel or copper-plated hardware for attachment to rack.

2.5 LABELING

A. Comply with TIA-606-B and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

PART 3 - EXECUTION

- 3.1 INSTALLATION
- A. Comply with NECA 1.
- B. Comply with BICSI TDMM for layout of communications equipment spaces.
- C. Comply with BICSI ITSIMM for installation of communications equipment spaces.
- D. Bundle, lace, and train conductors and cables to terminal points without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.

- E. Coordinate layout and installation of communications equipment in racks and room. Coordinate service entrance configuration with service provider.
 - 1. Meet jointly with system providers, equipment suppliers, and Owner to exchange information and agree on details of equipment configurations and installation interfaces.
 - 2. Record agreements reached in meetings and distribute them to other participants.
 - 3. Adjust configurations and locations of distribution frames, cross-connects, and patch panels in equipment spaces to accommodate and optimize configuration and space requirements of telecommunications equipment.
 - 4. Adjust configurations and locations of equipment with distribution frames, crossconnects, and patch panels of cabling systems of other communications, electronic safety and security, and related systems that share space in equipment room.
- F. Coordinate location of power raceways and receptacles with locations of communications equipment requiring electrical power to operate.

3.2 GROUNDING

- A. Comply with NECA/BICSI 607.
- B. Install grounding according to BICSI ITSIMM, "Bonding, Grounding (Earthing) and Electrical Protection" Ch.
- C. Locate TGB to minimize length of bonding conductors. Fasten to wall, allowing at least 2 inches (50 mm) of clearance behind TGB. Connect TGB with a minimum No. 4 AWG grounding electrode conductor from TGB to suitable electrical building ground. Connect rack TGB to near TGB or the TMGB.
 - 1. Bond the shield of shielded cable to patch panel, and bond patch panel to TGB or TMGB.

3.3 IDENTIFICATION

- A. Coordinate system components, wiring, and cabling complying with TIA-606-B. Comply with requirements in Section 27 05 53 "Identification for Electrical Systems."
- B. Comply with requirements in Section 09 91 23 "Interior Painting" for painting backboards. For fire-resistant plywood, do not paint over manufacturer's label.
- C. Paint and label colors for equipment identification shall comply with TIA-606-B for Class 2 level of administration, including optional identification requirements of this standard.
- D. Labels shall be machine printed. Type shall be 1/8 inch (3 mm) in height.

END OF SECTION 27 11 16

This page intentionally left blank.

SECTION 27 13 23 COMMUNICATIONS OPTICAL FIBER BACKBONE CABLING

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. 9/125 micrometer single-mode, inside plant optical fiber cable (OS2).
 - 2. Optical fiber cable connecting hardware, patch panels, and cross-connects.
 - 3. Cabling identification products.

1.3 DEFINITIONS

- A. BICSI: Building Industry Consulting Service International.
- B. Cross-Connect: A facility enabling the termination of cable elements and their interconnection or cross-connection.
- C. RCDD: Registered Communications Distribution Designer.

1.4 OPTICAL FIBER BACKBONE CABLING DESCRIPTION

- A. Optical fiber backbone cabling system shall provide interconnections between communications equipment rooms, main terminal space, and entrance facilities in the telecommunications cabling system structure. Cabling system consists of backbone cables, intermediate and main cross-connects, mechanical terminations, and patch cords or jumpers used for backbone-to-backbone cross-connection.
- B. Backbone cabling cross-connects may be located in communications equipment rooms or at entrance facilities. Bridged taps and splitters shall not be used as part of backbone cabling.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Reviewed and stamped by RCDD.
 - 1. System Labeling Schedules: Electronic copy of labeling schedules, in software and format selected by Owner.
 - 2. System Labeling Schedules: Electronic copy of labeling schedules that are part of the cabling and asset identification system of the software.
 - 3. Cabling administration drawings and printouts.
 - 4. Wiring diagrams to show typical wiring schematics including the following:

- a. Telecommunications rooms plans and elevations.
- b. Telecommunications pathways.
- c. Telecommunications system access points.
- d. Telecommunications grounding system.
- e. Cross-connects.
- f. Patch panels.
- g. Patch cords.
- 5. Cross-connects and patch panels. Detail mounting assemblies and show elevations and physical relationship between the installed components.
- C. Optical fiber cable testing plan.

1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For RCDD, Installer, installation supervisor, and field inspector.
- B. Source quality-control reports.
- C. Product Certificates: For each type of product.
- D. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

A. Maintenance Data: For optical fiber cable, splices, and connectors to include in maintenance manuals.

1.8 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Patch-Panel Units: One of each type.
 - 2. Plugs: Ten of each type.
 - 3. Jacks: Ten of each type.

1.9 QUALITY ASSURANCE

- A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 - 1. Layout Responsibility: Preparation of Shop Drawings and Cabling Administration Drawings, Cabling Administration Drawings, and field-testing program development by an RCDD.
 - 2. Installation Supervision: Installation shall be under the direct supervision of Technician, who shall be present at all times when Work of this Section is performed at Project site.
 - 3. Testing Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.
- B. Testing Agency Qualifications: Testing agency must have personnel certified by BICSI on staff.

1. Testing Agency's Field Supervisor: Currently certified by BICSI as an RCDD

1.10 DELIVERY, STORAGE, AND HANDLING

- A. Test cables upon receipt at Project site.
 - 1. Test optical fiber cable to determine the continuity of the strand end to end. Use optical loss test set.
 - 2. Test optical fiber cable while on reels. Use an optical time domain reflectometer to verify the cable length and locate cable defects, splices, and connector, including the loss value of each. Retain test data and include the record in maintenance data.

1.11 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

1.12 COORDINATION

A. Coordinate layout and installation of telecommunications pathways and cabling with Owner's telecommunications and LAN equipment and service suppliers.

1.13 SOFTWARE SERVICE AGREEMENT

- A. Technical Support: Beginning with Substantial Completion, provide software support for two years.
- B. Upgrade Service: Update software to latest version at Project completion. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system. Upgrade shall include new or revised licenses for use of software.
 - 1. Provide 30 days' notice to Owner to allow scheduling and access to system and to allow Owner to upgrade computer equipment if necessary.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. General Performance: Backbone cabling system shall comply with transmission standards in TIA-568-C.1, when tested according to test procedures of this standard.
- B. Surface-Burning Characteristics: As determined by testing identical products according to ASTM E84 by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame-Spread Index: 25 or less.
 - 2. Smoke-Developed Index: 50 or less.

- C. Telecommunications Pathways and Spaces: Comply with TIA-569-D.
- D. Grounding: Comply with TIA-607-B.

2.2 9/125 MICROMETER SINGLE-MODE, INSIDE PLANT OPTICAL FIBER CABLE (OS2)

- A. Description: Single mode, 9/125-micrometer, 24 fibers, stranded loose tube, optical fiber cable.
- B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Belden.
 - 2. CommScope, Inc.
 - 3. SYSTIMAX Solutions; a CommScope Inc. brand.
- C. Standards:
 - 1. Comply with TIA-492CAAB for detailed specifications.
 - 2. Comply with TIA-568-C.3 for performance specifications.
 - 3. Comply with ICEA S-83-596 for mechanical properties.
- D. Maximum Attenuation: 0.5 dB/km at 1310 nm; 0.5 dB/km at 1550 nm.
- E. Jacket:
 - 1. Jacket Color: Yellow.
 - 2. Cable cordage jacket, fiber, unit, and group color shall be according to TIA-598-D.
 - 3. Imprinted with fiber count, fiber type, and aggregate length at regular intervals not to exceed 40 inches (1000 mm).
- F. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with UL 444, UL 1651, and NFPA 70 for the following types:
 - 1. Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262.
 - 2. Plenum Rated, Nonconductive: Type OFNP in listed plenum communications raceway.
 - 3. Plenum Rated, Nonconductive: Type OFNP, or Type OFNR in metallic conduit.
 - 4. Plenum Rated, Nonconductive: Type OFNP, complying with NFPA 262; Type OFNP in listed plenum communications raceway; or Type OFNP, or Type OFNR in metallic conduit.
 - 5. Riser Rated, Nonconductive: Type OFNR or Type OFNP, complying with UL 1666.
 - 6. Riser Rated, Nonconductive: Type OFNP or Type OFNR in listed riser or plenum communications raceway.
 - 7. Riser Rated, Nonconductive: Type OFNP, or Type OFNR in metallic conduit installed per NFPA 70, Article 300.22, "Wiring in Ducts, Plenums, and Other Air-Handling Spaces."

2.3 <u>9/125 MICROMETER SINGLE-MODE, OUTSIDE PLANT OPTICAL FIBER CABLE</u> (OS1)

- A. Description: Single mode, 9/125-micrometer, 48 fibers, tight buffered, optical fiber cable.
- B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Belden.
 - 2. CommScope, Inc.
 - 3. SYSTIMAX Solutions; a CommScope Inc. brand.
- C. Standards:
 - 1. Comply with TIA-492CAAA for detailed specifications.
 - 2. Comply with TIA-568-C.3 for performance specifications.
 - 3. Comply with ICEA S-87-640 for mechanical properties.
- D. Maximum Attenuation: 0.5 dB/km at 1310 nm; 0.5 dB/km at 1550 nm.
- E. Jacket:
 - 1. Jacket Color: Black.
 - 2. Cable cordage jacket, fiber, unit, and group color shall be according to TIA-598-D.
 - 3. Imprinted with fiber count, fiber type, and aggregate length at regular intervals not to exceed 40 inches (1000 mm).

2.4 OPTICAL FIBER CABLE HARDWARE

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Belden.
 - 2. Corning Cable Systems.
 - 3. Hubbell Premise Wiring; Hubbell Incorporated, Commercial and Industrial.
 - 4. Siemon Co. (The).
- B. Standards:
 - 1. Comply with Fiber Optic Connector Intermateability Standard (FOCIS) specifications of the TIA-604 series.
 - 2. Comply with TIA-568-C.3.
- C. Cross-Connects and Patch Panels: Modular panels housing multiple-numbered, duplex cable connectors.

- 1. Number of Connectors per Field: One for each fiber of cable or cables assigned to field, plus spares and blank positions adequate to suit specified expansion criteria.
- D. Patch Cords: Factory-made, dual-fiber cables in 36-inch (900-mm) lengths.
- E. Connector Type: Type SC complying with TIA-604-3-B, connectors.
- F. Plugs and Plug Assemblies:
 - 1. Male; color-coded modular telecommunications connector designed for termination of a single optical fiber cable.
 - 2. Insertion loss not more than 0.25 dB.
 - 3. Marked to indicate transmission performance.
- G. Jacks and Jack Assemblies:
 - 1. Female; quick-connect, simplex and duplex; fixed telecommunications connector designed for termination of a single optical fiber cable.
 - 2. Insertion loss not more than 0.25 dB.
 - 3. Marked to indicate transmission performance.
 - 4. Designed to snap-in to a patch panel or faceplate.

2.5 GROUNDING

- A. Comply with requirements in Section 27 05 26 "Grounding and Bonding for Communications Systems" for grounding conductors and connectors.
- B. Comply with TIA-607-B.

2.6 IDENTIFICATION PRODUCTS

- A. Comply with TIA-606-B and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.
- 2.7 SOURCE QUALITY CONTROL
- A. Testing Agency: Engage a qualified testing agency to evaluate cables.
- B. Factory test multimode optical fiber cables according to TIA-526-14-B and TIA-568-C.3.
- C. Factory test pre-terminated optical fiber cable assemblies according to TIA-526-14-B and TIA-568-C.3.
- D. Cable will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 ENTRANCE FACILITIES

A. Coordinate backbone cabling with the protectors and demarcation point provided by communications service provider.

3.2 WIRING METHODS

- A. Wiring Method: Install cables in raceways and cable trays except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces, in attics, and in gypsum board partitions where unenclosed wiring method may be used. Conceal raceway and cables except in unfinished spaces.
 - 1. Install plenum cable in environmental air spaces, including plenum ceilings.
 - 2. Comply with requirements for pathways specified in Section 27 05 28 "Pathways for Communications Systems."
- B. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.
- C. Wiring within Enclosures: Bundle, lace, and train cables within enclosures. Connect to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Provide and use lacing bars and distribution spools.

3.3 INSTALLATION OF OPTICAL FIBER BACKBONE CABLES

- A. Comply with NECA 1, NECA 301, and NECA/BICSI 568.
- B. General Requirements for Optical Fiber Cabling Installation:
 - 1. Comply with TIA-568-C.1 and TIA-568-C.3.
 - 2. Comply with BICSI ITSIMM, Ch. 6, "Cable Termination Practices."
 - 3. Terminate all cables; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, cross-connects, and patch panels.
 - 4. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 - 5. Install lacing bars to restrain cables, to prevent straining connections, and to prevent bending cables to smaller radii than minimums recommended by manufacturer.
 - 6. Bundle, lace, and train cable to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIMM, "Cabling Termination Practices" Chapter. Use lacing bars and distribution spools.
 - 7. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
 - 8. Cold-Weather Installation: Bring cable to room temperature before de-reeling. Heat lamps shall not be used for heating.
 - 9. In the communications equipment room, provide a 10-foot- (3-m-) long service loop on each end of cable.
 - 10. Pulling Cable: Comply with BICSI ITSIMM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.

- 11. Cable may be terminated on connecting hardware that is rack or cabinet mounted.
- C. Open-Cable Installation:
 - 1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
 - 2. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.
- D. Installation of Cable Routed Exposed under Raised Floors:
 - 1. Install plenum-rated cable only.
 - 2. Install cabling after the flooring system has been installed in raised floor areas.
 - 3. Coil cable 6 feet (1800 mm) long not less than 12 inches (300 mm) in diameter below each feed point.
- E. Group connecting hardware for cables into separate logical fields.
- 3.4 FIRESTOPPING
- A. Comply with requirements in Section 07 84 13 "Penetration Firestopping."
- B. Comply with TIA-569-D, Annex A, "Firestopping."
- C. Comply with BICSI ITSIMM, "Firestopping" Chapter.
- 3.5 GROUNDING
- A. Install grounding according to BICSI ITSIMM, "Grounding (Earthing), Bonding, and Electrical Protection" Chapter.
- B. Comply with TIA-607-B and NECA/BICSI-607.
- C. Locate grounding bus bar to minimize the length of bonding conductors. Fasten to wall allowing at least 2-inch (50-mm) clearance behind the grounding bus bar. Connect grounding bus bar with a minimum No. 4 AWG grounding electrode conductor from grounding bus bar to suitable electrical building ground.
- D. Bond metallic equipment to the grounding bus bar, using not smaller than No. 6 AWG equipment grounding conductor.

3.6 IDENTIFICATION

- A. Identify system components, wiring, and cabling complying with TIA-606-B. Comply with requirements for identification specified in Section 27 05 53 "Identification for Communications Systems."
 - 1. Administration Class: Class 2.
 - 2. Color-code cross-connect fields and apply colors to voice and data service backboards, connections, covers, and labels.

- B. Paint and label colors for equipment identification shall comply with TIA-606-B for Class 2 level of administration including optional identification requirements of this standard.
- C. Comply with requirements in Section 27 15 23 "Communications Optical Fiber Horizontal Cabling" for cable and asset management software.
- D. Cable Schedule: Install in a prominent location in each equipment room and wiring closet. List incoming and outgoing cables and their designations, origins, and destinations. Protect with rigid frame and clear plastic cover. Furnish an electronic copy of final comprehensive schedules for Project.
- E. Cabling Administration Drawings: Show building floor plans with cabling administrationpoint labeling. Identify labeling convention and show labels for telecommunications closets, backbone pathways and cables, terminal hardware and positions, horizontal cables, work areas and workstation terminal positions, grounding buses and pathways, and equipment grounding conductors.
- F. Cable and Wire Identification:
 - 1. Label each cable within 4 inches (100 mm) of each termination and tap, where it is accessible in a cabinet or junction or outlet box, and elsewhere as indicated.
 - 2. Each wire connected to building-mounted devices is not required to be numbered at device if color of wire is consistent with associated wire connected and numbered within panel or cabinet.
 - 3. Exposed Cables and Cables in Cable Trays and Wire Troughs: Label each cable at intervals not exceeding 15 feet (4.5 m).
 - 4. Label each unit and field within distribution racks and frames.
 - 5. Identification within Connector Fields in Equipment Rooms and Wiring Closets: Label each connector and each discrete unit of cable-terminating and connecting hardware. Where similar jacks and plugs are used for both voice and data communication cabling, use a different color for jacks and plugs of each service.
- G. Labels shall be preprinted or computer-printed type with printing area and font color that contrasts with cable jacket color but still complies with requirements in TIA 606-B, for the following:
 - 1. Flexible vinyl or polyester that flexes as cables are bent.

3.7 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
- B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.

- D. Perform tests and inspections with the assistance of a factory-authorized service representative.
- E. Tests and Inspections:
 - 1. Visually inspect optical fiber jacket materials for NRTL certification markings. Inspect cabling terminations in communications equipment rooms for compliance with color-coding for pin assignments and inspect cabling connections for compliance with TIA-568-C.1.
 - 2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
 - 3. Optical Fiber Cable Tests:
 - a. Test instruments shall meet or exceed applicable requirements in TIA-568-C.1. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
 - b. Link End-to-End Attenuation Tests:
 - 1) Horizontal and multimode backbone link measurements: Test at 850 or 1300 nm in one direction according to TIA-526-14-B, Method B, One Reference Jumper.
 - Attenuation test results for backbone links shall be less than 2.0 dB. Attenuation test results shall be less than those calculated according to equation in TIA-568-C.1.
- F. Data for each measurement shall be documented. Data for submittals shall be printed in a summary report that is formatted similar to Table 10.1 in BICSI TDMM, or transferred from the instrument to the computer, saved as text files, and printed and submitted.
- G. Remove and replace cabling where test results indicate that it does not comply with specified requirements.
- H. End-to-end cabling will be considered defective if it does not pass tests and inspections.
- I. Prepare test and inspection reports.

END OF SECTION 27 13 23

SECTION 27 15 13 COMMUNICATIONS COPPER HORIZONTAL CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Category 6 twisted pair cable.
 - 2. Category 6a twisted pair cable.
 - 3. Cable management system.
 - 4. Cabling identification products.
 - 5. Grounding provisions for twisted pair cable.
 - 6. Source quality control requirements for twisted pair cable.

1.3 DEFINITIONS

- A. Cross-Connect: A facility enabling the termination of cable elements and their interconnection or cross-connection.
- B. EMI: Electromagnetic interference.
- C. FTP: Shielded twisted pair.
- D. F/FTP: Overall foil screened cable with foil screened twisted pair.
- E. F/UTP: Overall foil screened cable with unscreened twisted pair.
- F. IDC: Insulation displacement connector.
- G. LAN: Local area network.
- H. Jack: Also commonly called an "outlet," it is the fixed, female connector.
- I. Plug: Also commonly called a "connector," it is the removable, male telecommunications connector.
- J. RCDD: Registered Communications Distribution Designer.
- K. Screen: A metallic layer, either a foil or braid, placed around a pair or group of conductors.
- L. Shield: A metallic layer, either a foil or braid, placed around a pair or group of conductors.

- M. S/FTP: Overall braid screened cable with foil screened twisted pair.
- N. S/UTP: Overall braid screened cable with unscreened twisted pairs.
- O. UTP: Unscreened (unshielded) twisted pair.

1.4 COPPER HORIZONTAL CABLING DESCRIPTION

- A. Horizontal cable cabling system shall provide interconnections between Distributor A, Distributor B, or Distributor C, and the equipment outlet, otherwise known as "Cabling Subsystem 1," in the telecommunications cabling system structure. Cabling system consists of horizontal cables, intermediate and main cross-connects, mechanical terminations, and patch cords or jumpers used for horizontal-to-horizontal cross-connection.
 - 1. TIA-568-C.1 requires that a minimum of two equipment outlets be installed for each work area.
 - 2. Horizontal cabling shall contain no more than one transition point or consolidation point between the horizontal cross-connect and the telecommunications equipment outlet.
 - 3. Bridged taps and splices shall not be installed in the horizontal cabling.
- B. A work area is approximately 100 sq. ft. (9.3 sq. m) and includes the components that extend from the equipment outlets to the station equipment.
- C. The maximum allowable horizontal cable length is 295 feet (90 m). This maximum allowable length does not include an allowance for the length of 16 feet (4.9 m) to the workstation equipment or in the horizontal cross-connect.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Reviewed and stamped by RCDD.
 - 1. System Labeling Schedules: Electronic copy of labeling schedules, in software and format selected by Owner.
 - 2. System Labeling Schedules: Electronic copy of labeling schedules that are part of the cabling and asset identification system of the software.
 - 3. Cabling administration Drawings and printouts.
 - 4. Wiring diagrams and installation details of telecommunications equipment, to show location and layout of telecommunications equipment, including the following:
 - a. Telecommunications rooms plans and elevations.
 - b. Telecommunications pathways.
 - c. Telecommunications system access points.
 - d. Telecommunications grounding system.
 - e. Telecommunications conductor drop locations.
 - f. Typical telecommunications details.
 - g. Mechanical, electrical, and plumbing systems.

- C. Twisted pair cable testing plan.
- D. Samples: For telecommunications jacks and plugs, in specified finish, one for each type and configuration and faceplates for color selection and evaluation of technical features.

1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For RCDD, Installer, installation supervisor, and field inspector.
- B. Product Certificates: For each type of product.
- C. Source quality-control reports.
- D. Field quality-control reports.
- 1.7 CLOSEOUT SUBMITTALS
- A. Maintenance Data: For splices and connectors to include in maintenance manuals.
- B. Software and Firmware Operational Documentation:
 - 1. Software operating and upgrade manuals.
 - 2. Program Software Backup: On USB media or compact disk, complete with data files.
 - 3. Device address list.
 - 4. Printout of software application and graphic screens.

1.8 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Connecting Blocks: One of each type.
 - 2. Faceplates: One of each type.
 - 3. Jacks: Ten of each type.
 - 4. Patch-Panel Units: One of each type.
 - 5. Plugs: Ten of each type.

1.9 QUALITY ASSURANCE

- A. Installer Qualifications: Cabling Installer must have personnel certified by BICSI on staff.
 - 1. Layout Responsibility: Preparation of Shop Drawings and cabling administration Drawings, cabling administration Drawings, and field testing program development by an RCDD.
 - 2. Installation Supervision: Installation shall be under the direct supervision of Technician, who shall be present at all times when Work of this Section is performed at Project site.
 - 3. Testing Supervisor: Currently certified by BICSI as an RCDD to supervise on-site testing.

- B. Testing Agency Qualifications: Testing agency must have personnel certified by BICSI on staff.
 - 1. Testing Agency's Field Supervisor: Currently certified by BICSI as an RCDD.

1.10 DELIVERY, STORAGE, AND HANDLING

- A. Test cables upon receipt at Project site.
 - 1. Test each pair of twisted pair cable for open and short circuits.

1.11 PROJECT CONDITIONS

A. Environmental Limitations: Do not deliver or install cables and connecting materials until wet work in spaces is complete and dry, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.

1.12 COORDINATION

A. Coordinate layout and installation of telecommunications pathways and cabling with Owner's telecommunications and LAN equipment and service suppliers.

1.13 SOFTWARE SERVICE AGREEMENT

- A. Technical Support: Beginning with Substantial Completion, provide software support for two years.
- B. Upgrade Service: Update software to latest version at Project completion. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system. Upgrade shall include new or revised licenses for use of software.
 - 1. Provide 30 days' notice to Owner to allow scheduling and access to system and to allow Owner to upgrade computer equipment if necessary.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. General Performance: Horizontal cabling system shall comply with transmission standards in TIA-568-C.1, when tested according to test procedures of this standard.
- B. Telecommunications Pathways and Spaces: Comply with TIA-569-D.
- C. Grounding: Comply with TIA-607-B.
- 2.2 GENERAL CABLE CHARACTERISTICS
- A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction as complying with the applicable standard and NFPA 70 for the following types:

- 1. Communications, Plenum Rated: Type CMP complying with UL 1685 or Type CMP in listed plenum communications raceway or Type CMP in listed cable routing assembly.
- 2. Communications, Plenum Rated: Type CM, Type CMG, Type CMP, Type CMR, or Type CMX in metallic conduit installed according to NFPA 70, Article 300.22, "Wiring in Ducts, Plenums, and Other Air-Handling Spaces."
- 3. Communications, Non-plenum: Type CMR complying with UL 1666 and ICEA S-103-701.
- 4. Communications, Non-plenum: Type CMP or Type CMR in listed plenum or riser communications raceway.
- 5. Communications, Non-plenum: Type CMP or Type CMR in metallic conduit installed according to NFPA 70, Article 300.22, "Wiring in Ducts, Plenums, and Other Air-Handling Spaces."
- B. Surface-Burning Characteristics: Comply with ASTM E84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Flame-Spread Index: 25 or less.
 - 2. Smoke-Developed Index: 50 or less.
- C. RoHS compliant.

2.3 CATEGORY 6 TWISTED PAIR CABLE

- A. Description: Four-pair, balanced-twisted pair cable, certified to meet transmission characteristics of Category 6 cable at frequencies up to 250MHz.
- B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Berk-Tek Leviton; a Nexans/Leviton alliance.
 - 2. CommScope, Inc.
 - 3. Superior Essex Inc.
 - 4. SYSTIMAX Solutions; a CommScope Inc. brand.
- C. Standard: Comply with NEMA WC 66/ICEA S-116-732 and TIA-568-C.2 for Category 6 cables.
- D. Conductors: 100-ohm, 23 AWG solid copper.
- E. Shielding/Screening: Unshielded twisted pairs (UTP).
- F. Cable Rating: Plenum.
- G. Jacket: Blue thermoplastic.
- 2.4 CATEGORY 6a TWISTED PAIR CABLE
- A. Description: Four-pair, balanced-twisted pair cable, certified to meet transmission characteristics of Category 6a cable at frequencies up to 500MHz.

- B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Berk-Tek Leviton; a Nexans/Leviton alliance.
 - 2. CommScope, Inc.
 - 3. Superior Essex Inc.
 - 4. SYSTIMAX Solutions; a CommScope Inc. brand.
- C. Standard: Comply with TIA-568-C.2 for Category 6a cables.
- D. Conductors: 100-ohm, 23 AWG solid copper.
- E. Shielding/Screening: Shielded twisted pairs (STP).
- F. Cable Rating: Plenum.
- G. Jacket: Yellow thermoplastic.
- 2.5 TWISTED PAIR CABLE HARDWARE
- A. Description: Hardware designed to connect, splice, and terminate twisted pair copper communications cable.
- B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Berk-Tek Leviton; a Nexans/Leviton alliance.
 - 2. CommScope, Inc.
 - 3. Panduit Corp.
 - 4. Superior Essex Inc.
 - 5. SYSTIMAX Solutions; a CommScope Inc. brand.
- C. General Requirements for Twisted Pair Cable Hardware:
 - 1. Comply with the performance requirements of Category 6 and Category 6a.
 - Comply with TIA-568-C.2, IDC type, with modules designed for punch-down caps or tools.
 - 3. Cables shall be terminated with connecting hardware of same category or higher.
- D. Source Limitations: Obtain twisted pair cable hardware from single source from single manufacturer. Obtain twisted pair cable hardware from same manufacturer as twisted pair cable, from single source.
- E. Connecting Blocks:
 - 1. 110-style IDC for Category 6.
 - 2. Provide blocks for the number of cables terminated on the block, plus 25 percent spare, integral with connector bodies, including plugs and jacks where indicated.
- F. Cross-Connect: Modular array of connecting blocks arranged to terminate building cables and permit interconnection between cables.
 - 1. Number of Terminals per Field: One for each conductor in assigned cables.
- G. Patch Panel: Modular panels housing numbered jack units with IDC-type connectors at each jack location for permanent termination of pair groups of installed cables.
 - 1. Features:
 - a. Universal T568A and T568B wiring labels.
 - b. Labeling areas adjacent to conductors.
 - c. Replaceable connectors.
 - d. 24 or 48 ports.
 - 2. Construction: 16-gauge steel and mountable on 19-inch (483 mm) equipment racks.
 - 3. Number of Jacks per Field: One for each four-pair cable indicated.
- H. Patch Cords: Factory-made, four-pair cables in 48-inch (1200-mm) lengths; terminated with an eight-position modular plug at each end.
 - 1. Patch cords shall have bend-relief-compliant boots and color-coded icons to ensure performance. Patch cords shall have latch guards to protect against snagging.
 - 2. Patch cords shall have color-coded boots for circuit identification.
- I. Plugs and Plug Assemblies:
 - 1. Male; eight position; color-coded modular telecommunications connector designed for termination of a single four-pair, 100-ohm, unshielded or shielded twisted pair cable.
 - 2. Standard: Comply with TIA-568-C.2.
 - 3. Marked to indicate transmission performance.
- J. Jacks and Jack Assemblies:
 - 1. Female; eight position; modular; fixed telecommunications connector designed for termination of a single four-pair, 100-ohm, unshielded or shielded twisted pair cable.
 - 2. Designed to snap-in to a patch panel or faceplate.
 - 3. Standard: Comply with TIA-568-C.2.
 - 4. Marked to indicate transmission performance.
- K. Faceplate:
 - 1. Four port, vertical single gang faceplates designed to mount to single gang wall boxes.
 - 2. Plastic Faceplate: High-impact plastic. Coordinate color with Section 26 27 26 "Wiring Devices."
 - 3. Metal Faceplate: Stainless steel, complying with requirements in Section 26 27 26 "Wiring Devices."

- 4. For use with snap-in jacks accommodating any combination of twisted pair, optical fiber, and coaxial work area cords.
 - a. Flush mounting jacks, positioning the cord at a 45-degree angle.

L. Legend:

- 1. Machine printed, in the field, using adhesive-tape label.
- 2. Snap-in, clear-label covers and machine-printed paper inserts.

2.6 IDENTIFICATION PRODUCTS

A. Comply with TIA-606-B and UL 969 for a system of labeling materials, including label stocks, laminating adhesives, and inks used by label printers.

2.7 GROUNDING

- A. Comply with requirements in Section 27 05 26 "Grounding and Bonding for Communications Systems" for grounding conductors and connectors.
- B. Comply with TIA-607-B.

2.8 SOURCE QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to evaluate cables.
- B. Factory test cables on reels according to TIA-568-C.1.
- C. Factory test twisted pair cables according to TIA-568-C.2.
- D. Cable will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 WIRING METHODS

- A. Wiring Method: Install cables in raceways and cable trays, except within consoles, cabinets, desks, and counters and except in accessible ceiling spaces, attics, and gypsum board partitions where unenclosed wiring method may be used. Conceal raceway and cables, except in unfinished spaces.
 - 1. Install plenum cable in environmental air spaces, including plenum ceilings.
- B. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.
- C. Wiring within Enclosures: Bundle, lace, and train cables within enclosures. Connect to terminal points with no excess and without exceeding manufacturer's limitations on

bending radii. Provide and use lacing bars and distribution spools. Install conductors parallel with or at right angles to sides and back of enclosure.

3.2 INSTALLATION OF PATHWAYS

A. Drawings indicate general arrangement of pathways and fittings.

3.3 INSTALLATION OF TWISTED-PAIR HORIZONTAL CABLES

- A. Comply with NECA 1 and NECA/BICSI 568.
- B. General Requirements for Cabling:
 - 1. Comply with TIA-568-C.0, TIA-568-C.1, and TIA-568-C.2.
 - 2. Comply with BICSI's "Information Transport Systems Installation Methods Manual (ITSIMM), Ch. 5, "Copper Structured Cabling Systems," "Cable Termination Practices" Section.
 - 3. Install 110-style IDC termination hardware unless otherwise indicated.
 - 4. Do not untwist twisted pair cables more than 1/2 inch (12 mm) from the point of termination to maintain cable geometry.
 - 5. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, cross-connects, and patch panels.
 - 6. MUTOA shall not be used as a cross-connect point.
 - 7. Consolidation points may be used only for making a direct connection to equipment outlets:
 - a. Do not use consolidation point as a cross-connect point, as a patch connection, or for direct connection to workstation equipment.
 - b. Locate consolidation points for twisted-pair cables at least 49 feet (15 m) from communications equipment room.
 - 8. Cables may not be spliced. Secure and support cables at intervals not exceeding 30 inches (760 mm) and not more than 6 inches (150 mm) from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
 - 9. Install lacing bars to restrain cables, prevent straining connections, and prevent bending cables to smaller radii than minimums recommended by manufacturer.
 - 10. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI Information Transport Systems Installation Methods Manual, Ch. 5, "Copper Structured Cabling Systems," "Cable Termination Practices" Section. Use lacing bars and distribution spools.
 - 11. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
 - 12. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
 - 13. In the communications equipment room, install a 10-foot- (3-m-) long service loop on each end of cable.
 - 14. Pulling Cable: Comply with BICSI Information Transport Systems Installation Methods Manual, Ch. 5, "Copper Structured Cabling Systems," "Pulling and Installing Cable" Section. Monitor cable pull tensions.

- C. Open-Cable Installation:
 - 1. Install cabling with horizontal and vertical cable guides in telecommunications spaces with terminating hardware and interconnection equipment.
 - 2. Suspend twisted pair cabling, not in a wireway or pathway, a minimum of 8 inches (200 mm) above ceilings by cable supports not more than 60 inches (1524 mm) apart.
 - 3. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items.
- D. Installation of Cable Routed Exposed under Raised Floors:
 - 1. Install plenum-rated cable only.
 - 2. Install cabling after the flooring system has been installed in raised floor areas.
 - 3. Coil cable 6 feet (1800 mm) long not less than 12 inches (300 mm) in diameter below each feed point.
- E. Group connecting hardware for cables into separate logical fields.
- F. Separation from EMI Sources:
 - 1. Comply with recommendations from BICSI's "Telecommunications Distribution Methods Manual" and TIA-569-D for separating unshielded copper communication cable from potential EMI sources, including electrical power lines and equipment.
 - 2. Separation between open communications cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches (127 mm).
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches (300 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches (600 mm).
 - 3. Separation between communications cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches (64 mm).
 - b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches (150 mm).
 - c. Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches (300 mm).
 - 4. Separation between communications cables in grounded metallic raceways, power lines, and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 - a. Electrical Equipment Rating Less Than 2 kVA: No requirement.

- b. Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches (76 mm).
- c. Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches (150 mm).
- 5. Separation between Communications Cables and Electrical Motors and Transformers, 5 kVA or HP and Larger: A minimum of 48 inches (1200 mm).
- 6. Separation between Communications Cables and Fluorescent Fixtures: A minimum of 5 inches (127 mm).

<u>3.4</u> FIRESTOPPING

- A. Comply with requirements in Section 07 84 13 "Penetration Firestopping."
- B. Comply with TIA-569-D, Annex A, "Firestopping."
- C. Comply with "Firestopping Systems" Article in BISCI's "Telecommunications Distribution Methods Manual."
- 3.5 GROUNDING
- A. Install grounding according to the "Grounding, Bonding, and Electrical Protection" chapter in BICSI's "Telecommunications Distribution Methods Manual."
- B. Comply with TIA-607-B and NECA/BICSI-607.
- C. Locate grounding bus bar to minimize the length of bonding conductors. Fasten to wall, allowing at least a 2-inch (50-mm) clearance behind the grounding bus bar. Connect grounding bus bar to suitable electrical building ground, using a minimum No. 4 AWG grounding electrode conductor.
- D. Bond metallic equipment to the grounding bus bar, using not smaller than a No. 6 AWG equipment grounding conductor.

3.6 IDENTIFICATION

- A. Identify system components, wiring, and cabling complying with TIA-606-B. Comply with requirements for identification specified in Section 27 05 53 "Identification for Communications Systems."
 - 1. Administration Class: Class 2.
 - 2. Color-code cross-connect fields and apply colors to voice and data service backboards, connections, covers, and labels.
- B. Paint and label colors for equipment identification shall comply with TIA-606-B for Class 2 level of administration, including optional identification requirements of this standard.
- C. Cable Schedule: Install in a prominent location in each equipment room and wiring closet. List incoming and outgoing cables and their designations, origins, and destinations. Protect with rigid frame and clear plastic cover. Furnish an electronic copy of final comprehensive schedules for Project.

- D. Cabling Administration Drawings: Show building floor plans with cabling administrationpoint labeling. Identify labeling convention and show labels for telecommunications closets, terminal hardware and positions, horizontal cables, work areas and workstation terminal positions, grounding buses and pathways, and equipment grounding conductors.
- E. Cable and Wire Identification:
 - 1. Label each cable within 4 inches (100 mm) of each termination and tap, where it is accessible in a cabinet or junction or outlet box, and elsewhere as indicated.
 - 2. Each wire connected to building-mounted devices is not required to be numbered at the device if wire color is consistent with associated wire connected and numbered within panel or cabinet.
 - 3. Exposed Cables and Cables in Cable Trays and Wire Troughs: Label each cable at intervals not exceeding 15 feet (4.5 m).
 - 4. Label each terminal strip, and screw terminal in each cabinet, rack, or panel.
 - a. Individually number wiring conductors connected to terminal strips, and identify each cable or wiring group, extended from a panel or cabinet to a building-mounted device, with the name and number of a particular device.
 - b. Label each unit and field within distribution racks and frames.
 - 5. Identification within Connector Fields in Equipment Rooms and Wiring Closets: Label each connector and each discrete unit of cable-terminating and connecting hardware. Where similar jacks and plugs are used for both voice and data communication cabling, use a different color for jacks and plugs of each service.
- F. Labels shall be preprinted or computer-printed type, with a printing area and font color that contrast with cable jacket color but still comply with TIA-606-B requirements for the following:
 - 1. Cables use flexible vinyl or polyester that flexes as cables are bent.

3.7 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
- B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- D. Perform tests and inspections with the assistance of a factory-authorized service representative.
- E. Tests and Inspections:

- 1. Visually inspect jacket materials for NRTL certification markings. Inspect cabling terminations in communications equipment rooms for compliance with color-coding for pin assignments, and inspect cabling connections for compliance with TIA-568-C.1.
- 2. Visually inspect cable placement, cable termination, grounding and bonding, equipment and patch cords, and labeling of all components.
- 3. Test twisted pair cabling for DC loop resistance, shorts, opens, intermittent faults, and polarity between conductors. Test operation of shorting bars in connection blocks. Test cables after termination but not cross-connection.
 - a. Test instruments shall meet or exceed applicable requirements in TIA-568-C.2. Perform tests with a tester that complies with performance requirements in "Test Instruments (Normative)" Annex, complying with measurement accuracy specified in "Measurement Accuracy (Informative)" Annex. Use only test cords and adapters that are qualified by test equipment manufacturer for channel or link test configuration.
- F. Data for each measurement shall be documented. Data for submittals shall be printed in a summary report that is formatted similarly to Table 10.1 in BICSI's "Telecommunications Distribution Methods Manual," or shall be transferred from the instrument to the computer, saved as text files, printed, and submitted.
- G. Remove and replace cabling where test results indicate that they do not comply with specified requirements.
- H. End-to-end cabling will be considered defective if it does not pass tests and inspections.
- I. Prepare test and inspection reports.
- 3.8 SOFTWARE SERVICE AGREEMENT
- A. Technical Support: Beginning with Substantial Completion, provide software support for two years.
- B. Upgrade Service: Update software to latest version at Project completion. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system. Upgrade shall include new or revised licenses for use of software.
 - 1. Provide 30 days' notice to Owner to allow scheduling and access to system and to allow Owner to upgrade computer equipment if necessary.

END OF SECTION 27 15 13

This page intentionally left blank.

SECTION 27 51 23.20 INTERCOM SYSTEM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions.

1.2 SUMMARY

- A. Section includes intercom system with the following components:
 - 1. Video master stations.
 - 2. Video door station.
 - 3. Conductors and cables.
 - 4. Raceways.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: For intercom systems.
 - 1. Include plans, elevations details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include scaled drawings for video master station and video door station.
 - 4. Include diagrams for power, signal, and control wiring.
 - a. Identify terminals to facilitate installation, operation, and maintenance.
 - b. Single-line diagram showing interconnection of components.
 - c. Cabling diagram showing cable routing.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For intercom systems to include in operation and maintenance manuals.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.

1.6 COORDINATION

A. Coordinate layout, location and installation of both Video master intercom and Video door station with the owner.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. The system should have the capability of answering door call in hands-free mode, pressto-talk, door release, entrance monitoring, recording and playing voice memos and room-to-room communication.
- B. The system should have future Expansion Capability.

2.2 VIDEO MASTER AND DOOR STATION

- A. Video Master Station:
 - 1. Automatic (hands-free) and manual (press-to-talk) communication.
 - 2. Video monitoring
 - 3. Picture memory records up to 50 calls.
 - 4. Door release capability.
 - 5. Video master intercom shall be Aiphone JF series or approved equal.
- B. Video Door Station:
 - 1. Verify with owner for surface or flush mount.
 - 2. Vandal and weather resistant.
 - 3. Stainless steel faceplate.
 - 4. Camera with white illuminator LEDs.
 - 5. Video door station shall be Aiphone JF series or approved equal.
- C. Accessories:
 - 1. Manufacturer approved power supply.
 - 2. Manufacturer approved cable.
 - 3. Coordinate with the owner for door release info and provide the required relay or adopter.
 - 4. Coordinate with the owner for any back box or other accessories for full functional system.

PART 3 - EXECUTION

3.1 WIRING METHODS

- A. Wiring Method: Install cables in raceways and cable trays except within consoles, cabinets, desks, and counters. Conceal raceway and cables except in unfinished spaces.
 - 1. Install plenum cable in environmental air spaces, including plenum ceilings.
- B. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.

3.2 EXAMINATION

- A. Examine areas to receive hands-free color video intercom system.
- B. Notify owner/Architect of conditions that would adversely affect installation or subsequent use.
- C. Do not begin installation until unacceptable conditions are corrected.

3.3 INSTALLATION

- A. Install hands-free color video intercom system in accordance with manufacturer's instructions.
- B. Mount equipment plumb, level, square and secure.
- C. Adjust intercom system for proper operation in accordance with manufacturer's instructions.
- D. General Requirements:
 - 1. Terminate conductors; no cable shall contain unterminated elements. Make terminations only at outlets and terminals.
 - 2. Splices, Taps, and Terminations: Arrange on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures. Cables may not be spliced.
 - 3. Do not install bruised, kinked, scored, deformed, or abraded cable. Do not splice cable between termination, tap, or junction points. Remove and discard cable if damaged during installation and replace it with new cable.
 - 4. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used.
- E. Open-Cable Installation:
 - 1. Install cabling with horizontal and vertical cable guides in telecommunication spaces with terminating hardware and interconnection equipment.
 - 2. Cable shall not be run through structural members or be in contact with pipes, ducts, or other potentially damaging items.
- F. Separation of Wires: Separate speaker-microphone, line-level, speaker-level, video, and power wiring runs. Install in separate raceways or, where exposed or in same enclosure, separate conductors at least 12 inches (300 mm) apart for speaker microphones and adjacent parallel power and telephone wiring. Separate other intercommunication equipment conductors as recommended by equipment manufacturer.

3.4 SYSTEM PROGRAMMING

A. Programming: Fully brief Owner on available programming options. Record Owner's decisions and set up initial system program. Prepare a written record of decisions, implementation methodology, and final results.

3.5 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
- B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- D. Tests and Inspections:
 - 1. Schedule tests with at least seven days' advance notice.
 - 2. After installing and programming system and after electrical circuitry has been energized, test for compliance with requirements.
 - 3. Operational Test: Test originating station-to-station (all-call, video display, and page] messages at each station. Verify proper routing and volume levels and that system is free of noise and distortion. Test each available message path from each station on system.
- E. Intercommunications and program systems will be considered defective if they do not pass tests and inspections.
- F. Prepare test and inspection reports.
- 3.6 ADJUSTING
- A. Adjust intercom system for proper operation in accordance with manufacturer's instructions.
- 3.7 PROTECTION
- A. Protect installed intercom system from damage during construction.

END OF SECTION 27 51 23.20

SECTION 28 10 00 ACCESS CONTROL SYSTEM (KEYSCAN)

PART 1 - GENERAL

1.1 SUMMARY

- A. The City of Madison Information Technology Department has been assisting other City agencies with standardizing facilities through the use of access cards, key fobs, and punch pads. All hardware is installed locally at the facility while software controls access to various doors remotely.
- B. These specifications describe the materials, equipment, and installation requirements to install an integrated, computerized access control and alarm monitoring system utilized by the City of Madison Information Technology (CoM-IT) Department.
- C. The ACS (Access Control System) Contractor shall be responsible for verifying equipment requirements, locations, and coordination with the General Contractor and all other necessary trades as needed for a complete installation.

1.2 RELATED SPECIFICATIONS

- A. 01 31 23 "Project Management Web Site."
- B. 01 33 23 "Submittals."
- C. 08 71 00 "Door Hardware."
- 1.3 RELATED DRAWINGS
- A. Refer to all Electrical drawings for locations of distribution panels and equipment as it relates to standard line voltage locations.
- B. Refer to all Technical drawings for locations of Access Control System (Keyscan) equipment.
- C. Refer to the door hardware schedule and Architectural floor plans for information relating to door access locations and specific hardware requirements.

1.4 <u>REFERENCES</u>

- A. The system shall comply with the standards, codes and regulations of the following regulatory bodies:
 - 1. Underwriters Laboratories (UL) Std No. 294 Access Control System Units
 - 2. Canadian Standards Association (CSA) Std C22.2 No. 205-M1983 Signal Equipment
 - 3. CE Standards
 - a. EN 55022 RF Emissions
 - b. EN 55024 RF Immunity

- c. EN 60950-1 Equipment Safety
- 4. FCC Subpart B RF Emissions
- 5. Industry Canada ICES 003 Emissions
- 6. RoHS

1.5 CONTRACTORS QUALIFICATIONS

- A. The Contractor installing the ACS system shall:
 - 1. Be a Certified Keyscan Enterprise Partner
 - 2. Utilize installers who are Keyscan Enterprise Certified Technicians
 - 3. Be based within 25 radial miles of the project location
 - 4. Be able to provide 24/7/365 support during the warranty period of this project
 - 5. Be able to respond and repair or replace most components within 4 hours of notification

1.6 SUBMITTALS

- A. The Contractor shall provide a complete submittal package in a timely manner to allow sufficient review time prior to ordering the system components required for a complete installation. The contractor shall be solely responsible for any equipment, purchased/ordered/delivered that is not approved of during the submittal review process.
- B. The complete submittal package shall include but not be limited to the following:
 - 1. All certifications of the contractor and contractor's installation team. Certifications shall be current from the start of the contract through the end of the warranty period.
 - 2. Cut sheets indicating, shop drawings, performance data, and other such information that will indicate the component being installed matches the component that was specified.
 - 3. Cut sheets and shop drawing of Contractors recommendations for tags and labels.

<u>1.7</u> WARRANTY

- A. The Contractor shall warrant for one year the complete installation of equipment and components associated with this contract and installation. Contractors warranty shall be in the form of a written letter on company letterhead referring to the contract information, dates of installation and acceptance, signed by an authorized representative of the Contractors Company.
 - 1. The Contractors warranty shall include but not be limited to the following:
 - a. Transportation to and from the location as often as needed during the warranty period.
 - b. All labor and materials necessary to properly and thoroughly trouble shoot the system.
 - c. All fees associated with the shipping of any component that needs to be returned or supplied by the manufacturer for repair or replacement.

- d. All labor and materials required to remove, repair, replace, or re-install any component.
- B. The Contractor shall also provide all manufacturers warranties/guarantees associated with installed components of the completed installation.

1.8 QUALITY ASURANCE

- A. The Contractor shall be responsible for coordinating his/her Work with other trades and divisions as needed for a complete installation. This shall include pre-installation meetings for locating equipment, conduit, cabling, control devices, and other materials and equipment required by this installation.
- B. The General Contractor (GC) shall be responsible for ensuring that all doors requiring controlled access are properly prepared and installed per the contract documents. The GC shall further be responsible for ensuring all project coordination, pre-installation meetings, submittals and other such project management responsibilities are conducted efficiently and according to the project specifications and schedules.

PART 2 - PRODUCTS

2.1 EXISTING SYSTEM PRODUCTS OVERVIEW

- A. The City of Madison Information Technology Department (CoM IT) owns and operates a fully licensed copy of the Keyscan Access Control System software.
 - 1. The Keyscan Access Control System (ACS) provides controlled access to secured doors and elevators through the use of electronic door latches, proximity readers, control panels, and a proprietary software program.
 - 2. The Keyscan software allows CoM-IT and the facility the Owner to customize multiple levels of access and system performance through any combination of the following:
 - a. Calendar and time based lock/unlock controls
 - b. Group access control for common personnel groups
 - c. Individual access control for specialized access control
 - d. Elevator access control for accessing/not accessing various floors
 - e. Temporarily disable access control for a specified time period
 - f. Remotely unlock/lock a door
 - g. Lockdown a facility from one location
 - h. Provide customizable alert notifications

2.2 NEW EQUIPMENT AND COMPONENTS

- A. The Contractor guarantees that all equipment and components shall be furnished new, undamaged, free of defects, and conform to the drawings and specifications of this contract. The contractor is solely responsible for replacing any damaged or defective item.
- B. New ACS components on interior and exterior access doors shall be able to be integrated with the Owners existing system.

2.3 DISTRIBUTION SUPPLY PANEL (AC-DS-1)

- A. AC-DS-1 brings line voltage into the ACS system with the following performance specifications:
 - 1. Input:
 - a. 115VAC, 60Hz, 1.45A
 - 2. Output:
 - a. Eight (8) PTC protected outputs
 - b. 16VAC output
 - c. 16VAC @ 10amp (175 VA) supply current (1.25 amp per device, 2.5 amp max.)
 - d. Outputs rated @ 2.5 amp
 - e. Main fuse rated @ 15 amp/32V
 - f. Surge suppression
 - 3. Miscellaneous electrical information:
 - a. Operating temperature 0° C to 49°C ambient
 - b. 81.89 BTU/hr
 - c. System AC input VA requirement 166.75 AV
 - 4. Miscellaneous required features;
 - a. AC power LED indicators
 - b. Illuminated master power disconnect circuit breaker with manual reset
 - 5. Agency Approvals:
 - a. UL 294 listed for Access Control System Units
 - b. CUL listed-CSA Standard C22.2 No 205-M1983 Signal Equipment
- B. AC-DS-1 shall be:
 - 1. Altronix, AL168175CB
 - 2. Pre-approved equal
- 2.4 POWER SUPPLY PANEL (AC-PS-1)
- A. The AC-PS-1 brings line voltage from the AC-DS-1, reduces then distributes the voltage to the Access Security Panels (AC-SEC-1) with the following performance specifications:
 - 1. Input:
 - a. 115VAC, 60Hz, 1.9A
 - b. Power supply input options
 - 1) One (1) common power input for ACM8 and lock power (factory installed)

- Two (2) isolated power inputs; one (1) to power the ACM8 and one (1) for lock accessory power, (external power supply is required). Current is determined by the power supply connected, not to exceed a maximum of 10 amp total
- c. Eight (8) Access control System trigger inputs with the following options:
 - 1) Eight (8) normally open (NO) inputs
 - 2) Eight (8) open collector inputs
 - 3) Any combination of the above
- 2. Output
 - a. 12VDC or 24VDC @ 6 amp supply current
 - b. Eight (8) independently controlled outputs with the following options:
 - 1) Eight (8) Fail-Safe and/or Fail-Secure power outputs
 - 2) Eight (8) form "C" 5 amp rated relay outputs
 - 3) Any combination of the above
 - c. Eight (8) auxiliary power outputs (un-switched)
 - d. Output fuses rated @ 3.5 amp
 - e. Filtered and electronically regulated outputs (built-in power supply).
- 3. Miscellaneous electrical information
 - a. Operating temperature 0° C to 49°C ambient
 - b. BTU/hr:
 - 1) 12VDC = 36.85 BTU/hr
 - 2) 24VDC = 73.70 BTU/hr
 - c. ACM8 board main fuse is rated at 10 amp
- 4. Battery Backup:
 - a. Built-in charger for sealed lead acid or gel type batteries
 - b. Power supply board maximum charge current 0.7 amp
 - c. Automatic switch over to stand-by battery when AC fails
 - d. Zero voltage drop when unit switches over to battery backup (AC failure condition)
 - e. Battery fail and battery presence supervision (form "C" contact)
- 5. Miscellaneous required features:
 - a. Fire Alarm disconnect (latching or non-latching) is individually selectable for any or all of the eight (8) outputs.
 - b. Fire Alarm disconnect input options:
 - 1) Normally open (NO) or normally closed (NC) dry contact input
 - 2) Polarity reversal input for FACP signaling circuit

- c. Alarm output relay indicates that FACP input is triggered (form "C" contact rated @ 1 amp 28VDC)
- d. Short circuit and thermal overload protection
- e. AC fail supervision (form "C" contact)
- f. Red LEDs indicate outputs are triggered (relays energized)
- g. Green LED indicates FACP disconnect is triggered
- h. AC input and DC output LED indicators
- i. Enclosure accommodates up to two (2) 12AH batteries
- 6. Agency Approvals:
 - a. UL 294 listed for Access Control System Units
 - b. CUL listed-CSA Standard C22.2 No 205-M1983 Signal Equipment
- B. AC-PS-1 shall be:
 - 1. Altronix, AL600ULACM
 - 2. Pre-approved equal
- 2.5 SECURITY PANEL (AC-SEC-1)
- A. The AC-SEC-1 distributes the reduced voltage and control wiring to/from each door with an access control device.
- B. AC-SEC-1 shall be:
 - 1. Keyscan CA8500 8 Reader Access Control Panel
- C. The AC-SEC-1 shall be provided, located and mounted by the Contractor.
- 2.6 Elevator FLOOR ACCESS control panel (eFAcp)
- A. The EFACP distributes the reduced voltage and control wiring to the elevator equipment for providing access control to specific floors while providing general public access to others.
- B. EFACP shall be:
 - 1. Keyscan EC1500 1 Cab Elevator Floor Access Control Panel
- C. The EFACP shall be provided, located and mounted by the Contractor in the elevator machine room (B11).
- D. The EFACP requires two (2), 16.5 VAC, 37 or 40VA transformers to be supplied and installed by the Contractor.
- 2.7 Door Control Devices
- A. The Contractor shall be responsible for verifying the Door Control Device (DCD) quantities and locations with the door hardware schedule.
- B. DCD shall be:

- 1. Keyscan K-KPR Keyscan Proximity Reader/Keypad, this reader accepts swipe monitoring of cards, key bobs, and other such devices as well as accepting personal identification numbers (PINs)
 - a. Plan designation = AC-CR1-W
- 2. The K-KPR shall be used for all locations including the elevator cab.

2.8 DOOR CONTROL CABLES

- A. The following cables are required for a complete installation of the ACS, per controlled door, as follows:
 - 1. One (1) 22/6 shielded cable, required; to DCD
 - 2. One (1) 18/2 un-shielded cable, required; lock power
 - 3. One (1) 22/2 un-shielded cable, required; door contact
 - 4. One (1) 22/4 un-shielded cable, required but not used; for future request to exit sensors
- B. At the Contractors option he/she may run a manufactured cable bundle containing all four (4) cables listed above. It shall be the sole responsibility of the contractor to appropriately size the conduits for the installation.

PART 3 - EXECUTION

3.1 COOPERATION OF THE ACS CONTRACTOR

- A. The Contractor shall be required to coordinate with all trades for a complete and timely installation. This includes attending all pre-installation meetings where equipment locations, conduit locations, and control devices will be installed or may be in conflict with the installation of other trades. The Contractor shall be solely responsible for any additional cost required for removing/replacing/modifying any completed work by other trades because the installation was not properly coordinated.
- B. The Contractor shall coordinate with the Owners Representative from City IT for all information necessary to complete the installation and integration with the Owners existing hardware and software.
- C. The Contractor shall verify with the appropriate Owners Representative for mounting heights of all hardware and equipment prior to installation. This shall be completed at a pre-installation walk through prior to rough-in.
- D. The Contractor shall coordinate with the elevator equipment installer the location and wiring of the EFACP.
- E. The Contractor shall coordinate with the Owner's Representative from City IT to verify all requirements for all access-controlled doors are properly coordinated and understood prior to roughing in the installation.

F. The Contractor shall coordinate with the fire alarm equipment installer for the location and connection to the Fire Alarm System.

3.2 GENERAL EQUIPMENT MOUNTING

- A. All ACS equipment shall be mounted to the 3/4" AC fire rated plywood panels provided and installed by the General Contractor. Contractor shall tape out all equipment prior to mounting to insure adequate space is allotted for the complete installation per the riser diagrams including all related conduits and cables.
- B. The EFACP shall be mounted to the 3/4" AC fire rated plywood panels provided and installed by the General contractor in the elevator Equipment Room. The General Contractor shall coordinate the location of the plywood panels with the Elevator Equipment Contractor and the ACS Contractor prior to installation.
- C. All equipment shall be neatly arranged so as to meet or exceed the manufacturer's recommended working space around each component.
- D. Equipment to be installed on plywood mounting panels shall include but not be limited to the following:
 - 1. Distribution Service Panel (AC-DS-1)
 - 2. Power Supply Panel (AC-PS-1)
 - 3. Access Control Panel (AC-SEC-1)
 - 4. Elevator Control Panel (EFACP), including transformers
 - 5. All required conduits, and boxes for line voltage

3.3 GENERAL CONDUITS AND WIRING

- A. This section shall apply to both the ACS Contractor and the Electrical Contractor. The following division of responsibilities shall apply:
 - 1. The Electrical Contractor shall be responsible for furnishing, installing, and connecting all conduits, connectors, conductors, and other related materials associated with providing line voltage to the ACS system as follows:
 - a. Providing an 110V, 15A, dedicated circuit from the designated distribution panel to AC-DS-1 as described in Section 2.3 above.
 - b. Providing line voltage from AC-DS-1 to AC-PS-1 as described in Section 2.4 above.
 - c. Providing and installing the required 110V, 20A dedicated duplex outlet in the elevator Equipment Room (B11). Coordinate the location with the ACS Contractor and the Elevator Contractor.
 - 2. The ACS Contractor shall be responsible for furnishing installing, and connecting all conduits, connectors, conductors and other related materials required to complete the installation of the low voltage wiring and door controller cabling.
- B. All conduits shall be properly sized for the number of wires or wire bundles being pulled through the conduit. The Contractor shall verify with the manufacturer the recommended fill rate by conduit size and shall not exceed the recommendations.

- C. The contractor shall neatly lay out all conduits in such a fashion so as to minimize bending, crossovers, etc.
- D. Bends, pull boxes, and pull points shall be sized and located as per all applicable codes and standards for the number of wires or wire bundles in the bend, pull box, pull point.
- E. CAT6 cables from each AC-SEC-1 and the EFACP shall be neatly run in cable management equipment supplied and installed by the cabling contractor or conduits supplied and installed by the ACS Contractor as needed. The switch to be used for all ACS equipment shall be located in the area's associated Telecom Room. Cables shall be labeled on both ends per the cabling specification.
- F. The General Contractor and the ACS Contractor shall ensure the following Emergency Access requirements are properly installed and operational prior to the final Madison Fire Department inspection for occupancy.
 - 1. CoM IT shall provide a minimum of six (6) swipe cards to each installed Knox Box for emergency entrance. The cards shall be appropriately coded for entry at all controlled access doors.

<u>3.4</u> ACS CONTROL OF ELEVATOR EQUIPMENT

- A. The contractor shall coordinate the installation of all required ACS equipment in the elevator Equipment Room with the Elevator Equipment Contractor and the Electrical Contractor.
- B. The Elevator Equipment Contractor shall provide and install a 6 conductor, shielded 18 gauge cable between the elevator equipment and the elevator cab for use with the ACS control equipment.
- C. The Contractor shall coordinate with the Elevator Equipment Contractor for locating and installing the DCD device (2.7. above) in the elevator cab and for coordinating all wiring between the two systems to attain the desired control specification (3.4.D. below)
- D. Prior to programming the elevator controls, coordinate with the City Project Manager and the appropriate representatives from City IT, for final control parameters.

3.5 EQUIPMENT IDENTIFICATION AND LABLEING

- A. The Contractor shall provide and install all equipment identification and labeling to the following specifications.
 - 1. Tags and labels shall be permanent rigid plastic or metal tags with engraved or machine stamped lettering. Handwritten self-stick or metal hand stamped tags will not be accepted.
 - 2. The Contractor shall work out the labeling scheme for doors with City IT, Owner, and Architect prior to ordering any labels or tags.
 - 3. The Contractor shall provide all labels and tags associated with this specification. This shall include the line voltage feed to each AC-DS-1 from the electrical distribution panel.

- B. Panels and Boxes:
 - 1. All panels and boxes shall be labeled on the outside cover that readily identifies the panel/box as a "Distribution Supply", "Power Supply", "Access Control Panel", "Elevator Floor Access Control Panel", etc. An associated number shall also be on each tag and the number "1" shall be used even if there is only one of that type panel/box.
 - 2. Access Control Panels shall have a card index inside the front cover of each door indicating the controller number, door number, and door location being served by that panel.

C. Conduits:

- 1. Line voltage from electrical distribution panels shall have conduits labeled on both ends as follows:
 - a. At the distribution panel the line voltage conduit shall be labeled with the system supplied, and the ACS distribution supply panel number.
 - b. In the Telecommunications Room the line voltage conduit label shall indicate the distribution panel and circuit number(s) controlling the supply line.
- 2. Conduits between Access Control Panels and the controlled doors shall be labeled on both ends as follows:
 - a. In the Telecommunications Room each conduit shall labeled with the door number(s) being supplied.
 - b. Above the finished ceiling where the conduit is exposed prior to going into the wall space that serves the door the conduit shall be labeled with the Door Control Panel and Controller number associated with the door being served.
 - c. If the conduit size is reduced as control cabling is supplied to doors along the run each change is conduit size shall be re-labeled as noted in 2.b. above.
- 3. Conduits between equipment and components in the Telecommunications Room do not need to be identified.

3.6 INSTALLATION TESTING AND ACCEPTANCE

- A. The CoM IT and the Owner shall be responsible for completing all software programming associated with the installation of this contract prior to the completion of the installation of the system components. It is the sole responsibility of the Contractor to notify the Owner no less than two (2) weeks in advance of completing the installation that all codes and time setting shall be prepared for final installation and testing.
- B. The Contractor, CoM IT, and the Owner shall test each access control point with swipe cards and PINs to insure the door unlocks.
- C. CoM IT shall test each door using the existing fully integrated software. This shall include but not be limited to the following:

- 1. Remotely lock/unlock the doors
- 2. Verify time clock feature works for locking doors
- 3. Verify swipe cards and PINs work on all doors
- 4. Verify emergency entrance cards for knox boxes work on all doors for the areas served.
- D. The Contractor, CoM IT, and the Owner shall test the elevator floor access functions as follows:
 - 1. With swipe cards and PINs to ensure controlled access to all floors.
 - 2. With no swipe cards or PINs to ensure that the general public can only access the designated public floors and not controlled access floors.
 - 3. Verify time clock feature works for accessing floors
- E. A completed and accepted installation shall pass all of the above tests for all controlled access points.
- F. The warranty period for the completed and accepted installation shall not begin until the date of the accepted general contract. The Contractor shall coordinate this date with the General Contractor.

END OF SECTION 28 10 00

This page intentionally left blank.

SECTION 28 20 00 VIDEO SURVEILLANCE

PART 1 - GENERAL

1.1 SUMMARY

- A. The City of Madison requires video surveillance of interior and exterior areas of the Madison Metro Transit facility. The video surveillance system will be connected to the existing City of Madison ExacQ system. Camera locations will be installed as indicated in the Technology plan sheets.
- B. This specification shall identify major equipment components and accessories required for a complete video surveillance installation. It does not include materials such as cables, boxes, connectors, conduit, supports and other ancillary equipment required to complete the installation.
- C. For the purposes of this specification the term Contractor shall refer to the person(s) responsible for installing the Electronic Surveillance System and may or may not be the same contractor installing other Division 27 and 28 related equipment. Other contractors having related work shall be referred to by full title (Electrical Contractor).

1.2 RELATED SPECIFICATIONS

- A. 01 31 23 "Project Management Web Site."
- B. 01 33 23 "Submittals."
- C. 01 78 23 "Operation and Maintenance Data."
- D. 01 78 36 "Warranties."
- E. 01 78 39 "As-Built drawings."
- F. All Division 27 and 28 specifications that may apply to this installation.
- 1.3 AREAS OF RESPONSIBILITY
- A. The General Contractor (GC) shall be responsible for ensuring all of the following:
 - 1. Coordinate all Contractor related work with the construction schedule.
 - 2. Coordinate all required Work with the Contractor and other trades during preinstallation meetings and resolve installation issues as needed.
- B. The Contractor shall be responsible for all of the following:
 - 1. For all equipment ordering and purchasing, setup, configuration, and testing of equipment being installed under this specification and connected to City of Madison-Information Technology (CoM-IT) servers and equipment.

- a. Include any mounting brackets required for mounting camera equipment to the structure.
- b. The Contractor shall be responsible for the bridge supports identified in Section 2.2.C below.
- 2. Verification of Owner installation requirements prior to installing equipment and accessories.
- 3. Provide all ancillary materials and equipment required to complete the installation.
- C. CoM-IT shall be responsible for all of the following:
 - 1. The CoM-IT shall be responsible for the ExacQ system licenses.
 - 2. Provide connection to servers and other hardware necessary to bring installed equipment on line.
 - 3. Assist in final testing of equipment and equipment functions installed under this specification.

1.4 QUALITY ASSURANCE

- A. Manufacturer: The manufacturer of equipment shall have a complete service organization for all products in the manufacturer's line.
- B. Integrator/Dealer: The Contractor must be a factory-authorized and certified integrator/dealer specializing in the ExacQ products, with demonstrated prior experience with the selected manufacturer's system installation and programming.
- C. The Contractor shall have acquired and maintained all certifications for a minimum of one (1) month prior to the posted bid date of this project.
- D. Servicing Contractor: The installer must be factory certified to provide service on the installed manufacturer's equipment and must have local service representatives within a 100 mile radius of the project site.

1.5 SUBMITTALS

- A. The Contractor shall provide submittals of the following:
 - 1. All applicable certifications and licenses of the Contractor and the Contractor's installation team. Applicable certifications and licenses shall be current from the start of the contract through the end of the warranty period.
 - 2. One (1) submittal for all ancillary Video Surveillance System (VSS) and VSS Contractor provided equipment required for a complete VSS installation as follows:
 - a. Product information sheets and shop drawings indicating each type/size/model of VSS accessory required for a complete VSS installation. Information sheets shall include the following information:
 - 1) Performance data for the item
 - 2) Plan identification number(s) where applicable
 - 3) Quantity required for each model

<u>1.6</u> WARRANTY

- A. The Contractor shall warrant for one year the complete installation of equipment and components associated with this contract and installation. Contractors warranty shall be in the form of a written letter on company letterhead referring to the contract information, dates of installation and acceptance, signed by an authorized representative of the Contractors Company.
 - 1. The Contractors warranty shall include but not be limited to the following:
 - a. Transportation to and from the location as often as needed during the warranty period.
 - b. All labor and materials necessary to properly and thoroughly trouble shoot the system.
 - c. All fees associated with the shipping of any component that needs to be returned or supplied by the manufacturer for repair or replacement.
 - d. All labor and materials required to remove, repair, replace, or re-install of any component.
- B. The Contractor shall also provide all manufacturers warranties/guarantees associated with installed components of the completed installation.

PART 2 - PRODUCTS

2.1 EXTERIOR SURVEILLANCE LOCATIONS

- A. The exterior camera shall be a high quality outdoor ready camera as follows:
 - 1. AXIS Communications, Multi-Sensor Network Camera with the minimum requirements listed below:
 - a. Resolution: HDTV minimum 4 X 1920x1080p
 - b. Lens: Varifocal, 2.8-6mm, F2.0
 - c. Image Sensor: 4 X 1/2.8" progressive scan RGB CMOS
 - d. Operating Conditions: -22 degrees Fahrenheit to 140 degrees Fahrenheit
 - e. One IP address for all channels
 - f. Casing: IP66, IP67, NEMA 4X and IK09 rated
 - g. Certified compatible with Exacq Technologies ExacqVision Video Management System
 - h. Power over Ethernet IEEE 802.3af/802.3at
- B. Exterior camera mounting accessories shall of high quality and rated for outdoor environments.
 - 1. AXIS Communications, models as required for the installation of the above noted camera and locations as indicated in the plans and specifications, any substitutions in camera placement to be reviewed and approved by City of Madison Department of Information Technology, with all standard features including the following:
 - a. Three (3) year AXIS extended warranty option.

2.2 INTERIOR SURVEILLANCE LOCATIONS

- A. The interior camera shall be a high quality indoor ready camera as follows:
 - 1. AXIS Communications, Dome Network Camera with the minimum requirements listed below:
 - a. Resolution: HDTV 1920x1080
 - b. Lens: Varifocal, 3-10.5 m, F1.4
 - c. Image Sensor: Progressive scan RGB CMOS
 - d. Operating Conditions: 32 degrees Fahrenheit to 122 degrees Fahrenheit
 - e. WDR capable
 - f. Casing: IP52, IK08
 - g. Power over Ethernet IEEE 802.3af/802.3at
 - h. Certified compatible with Exacq Technologies ExacqVision Video Management System
- B. Interior camera mounting accessories shall of high quality and rated for indoor environments,
 - 1. AXIS Communications, models as required for the installation of the above noted camera and locations as indicated in the plans and specifications, any substitutions in camera placement to be reviewed and approved by City of Madison Department of Information Technology, with all standard features including the following:
 - a. Three (3) year AXIS extended warranty option
 - b. Surface mount as per plans
 - c. Drop ceiling mount as per plans
- C. All drop ceiling mount locations shall include tile bridge supports
 - 1. ERICO, SCMKC Security Camera Mounting Kit
 - 2. Pre-approved equal

2.3 INTERIOR 180/360 SURVEILLANCE LOCATIONS

- A. The interior 180/360 camera shall be a high quality indoor ready camera as follows:
 - 1. AXIS Communications, Dome Network Camera with the minimum requirements listed below:
 - a. Resolution: Overview 2992x2992, Panorama 3584x1344, Corridor 2560x1920
 - b. Lens: Fixed 1.2 mm
 - c. Image Sensor: 12 MP (4000x3000) 1/1.7" Progressive scan RGB CMOS
 - d. Operating Conditions: -40 degrees Fahrenheit to 122 degrees Fahrenheit
 - e. WDR capable
 - f. Casing: IP66, NEMA 4X IK10
 - g. Power over Ethernet IEEE 802.3af/802.3at
 - h. Certified compatible with Exacq Technologies ExacqVision Video Management System

- B. Interior camera mounting accessories shall of high quality and rated for indoor environments,
 - 1. AXIS Communications, models as required for the installation of the above noted camera and locations as indicated in the plans and specifications, any substitutions in camera placement to be reviewed and approved by City of Madison Department of Information Technology, with all standard features including the following:
 - a. Three (3) year AXIS extended warranty option
 - b. Surface mount as per plans
 - c. Drop ceiling mount as per plans
- C. All drop ceiling mount locations shall include tile bridge supports
 - 1. ERICO, SCMKC Security Camera Mounting Kit
 - 2. Pre-approved equal

PART 3 - EXECUTION

3.1 COOPERATION OF THE CONTRACTOR

- A. All line voltage installations that may be required under this specification shall be installed by the Electrical Contractor. Power shall come from the nearest power panel where the equipment is being installed. Label boxes with panel and circuit number for future reference. Installation shall include any fire stopping as required by code.
- B. Data cables shall be installed by the Cabling Contractor as required for this installation. Data cables shall come from the nearest Telecom Room where the equipment is being installed. Installation shall include any fire stopping as required by code.
- C. The Contractor shall install all security cameras, mounting hardware, boxes and other equipment necessary for a complete installation of the surveillance system.

3.2 EXTERIOR INSTALLATIONS

- A. Provide and install all camera mounting hardware, fastening hardware and anchors as needed for a strong, secure and stable installation as necessary for the building materials being mounted to.
- B. Provide and install a high grade clear silicone sealant around all mounting hardware.
- C. Provide sufficient cable and install a drip loop if cable is exposed outside of the mounting hardware.
- D. Label camera end of data cable with permanent data tag indicating switch location connection id.
- E. Label switch end of data cable with permanent data tag indicating camera location.

3.3 INTERIOR INSTALLATIONS

- A. Provide and install all camera mounting hardware, fastening hardware and anchors as needed for a strong, secure and stable installation as necessary for the building materials being mounted to.
- B. Install tile bridge supports at all drop ceiling locations.
- C. Label camera end of data cable with permanent data tag indicating switch location connection id.
- D. Label switch end of data cable with permanent data tag indicating camera location.

3.4 INSTALLATION TESTING AND ACCEPTANCE

- A. Any required system programming (by CoM-IT or Contractor) shall be completed prior to doing any installation testing and acceptance.
- B. It is the sole responsibility of the Contractor to notify CoM-IT no less than two (2) weeks in advance of completing the installation to coordinate all final testing of the completed system.
- C. The Contractor and CoM-IT shall test each surveillance camera installation to ensure the installed components work per the specifications.
 - 1. All installed components shall be inspected as follows:
 - a. All connections are tight, exterior installations are weatherproof with clear silicone sealant.
 - b. All components are clean and free of dust, fingerprints, and other general dirt.
 - c. Camera lenses and domes are clean and free of lint, dust, and fingerprints.
 - d. Cameras are free to rotate.
 - e. All network connectivity is complete and installed properly.
 - 2. Each camera installation at the project site shall be tested from an off-site computer to ensure all pan/tilt/zoom features, focus and other functions are fully operational.
- D. A completed and accepted installation shall pass all of the above tests for each installed camera location.
- E. The warranty period for the completed and accepted installation shall not begin until the date of the accepted general contract. The Contractor shall coordinate this date with the General Contractor.

END OF SECTION 28 20 00

SECTION 28 46 21.11 ADDRESSABLE FIRE-ALARM SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. System smoke detectors.
 - 2. Manual fire alarm boxes.
 - 3. Addressable interface device.
 - 4. Heat detectors.
 - 5. Notification appliances.
- 1.3 DEFINITIONS
- A. FACP: Fire Alarm Control Panel.
- B. NICET: National Institute for Certification in Engineering Technologies.
- <u>1.4</u> <u>ACTION SUBMITTALS</u>
- A. Product Data: For each type of product, including furnished options and accessories.
 - 1. Include construction details, material descriptions, dimensions, profiles, and finishes.
 - 2. Include rated capacities, operating characteristics, and electrical characteristics.
- B. Shop Drawings: For fire-alarm system.
 - 1. Comply with recommendations and requirements in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 - 2. Include plans, elevations, sections, details, and attachments to other work.
 - 3. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and locations. Indicate conductor sizes, indicate termination locations and requirements, and distinguish between factory and field wiring.
 - 4. Detail assembly and support requirements.
 - 5. Include input/output matrix.
 - 6. Include statement from manufacturer that all equipment and components have been tested as a system and meet all requirements in this Specification and in NFPA 72.
 - 7. Include performance parameters and installation details for each detector.
 - 8. Verify that each duct detector is listed for complete range of air velocity, temperature, and humidity possible when air-handling system is operating.

- 9. Include floor plans to indicate final outlet locations showing address of each addressable device. Show size and route of cable and conduits and point-to-point wiring diagrams.
- C. General Submittal Requirements:
 - 1. Submittals shall be approved by authorities having jurisdiction prior to submitting them to Architect.
 - 2. Shop Drawings shall be prepared by persons with the following qualifications:
 - a. Trained and certified by manufacturer in fire-alarm system design.
 - b. NICET-certified, fire-alarm technician; Level III minimum.

1.5 INFORMATIONAL SUBMITTALS

A. Qualification Data: For Installer.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For fire-alarm systems and components to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 01 78 23 "Operation and Maintenance Data," include the following and deliver copies to authorities having jurisdiction:
 - a. Comply with the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
 - b. Provide "Fire Alarm and Emergency Communications System Record of Completion Documents" according to the "Completion Documents" Article in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 - c. Complete wiring diagrams showing connections between all devices and equipment. Each conductor shall be numbered at every junction point with indication of origination and termination points.
 - d. Riser diagram.
 - e. Device addresses.
 - f. Provide "Inspection and Testing Form" according to the "Inspection, Testing and Maintenance" chapter in NFPA 72, and include the following:
 - 1) Equipment tested.
 - 2) Frequency of testing of installed components.
 - 3) Frequency of inspection of installed components.
 - 4) Requirements and recommendations related to results of maintenance.
 - 5) Manufacturer's user training manuals.
 - g. Manufacturer's required maintenance related to system warranty requirements.
 - h. Abbreviated operating instructions for mounting at fire-alarm control unit and each annunciator unit.
- B. Software and Firmware Operational Documentation:

- 1. Software operating and upgrade manuals.
- 2. Program Software Backup: On magnetic media or compact disk, complete with data files.
- 3. Device address list.

1.7 REGULATORY REQUIREMENTS

- A. The complete installation shall conform to the applicable sections of the latest edition of the following Codes and Standards:
- B. National Fire Protection Association (NFPA):
 - 1. NFPA-70: National Electrical Code (NEC) generally, and Article 760 in particular
 - 2. NFPA-72: National Fire Alarm Code
 - 3. NFPA 101: Life Safety Code
 - 4. IBC: International Building Code
 - 5. IFC: International Fire Code
 - 6. MC: International Mechanical Code
- C. State of Wisconsin Department of Safety and Professional Services (DSPS)
 - 1. SPS 361.30: Plan Review Approval

1.8 QUALITY ASSURANCE

- A. Installer Qualifications: Personnel shall be trained and certified by manufacturer for installation of units required for this Project.
- B. Installer Qualifications: Installation shall be by personnel certified by NICET as fire-alarm Level II technician.
- C. NFPA Certification: Obtain certification according to NFPA 72 by a UL-listed alarm company.

1.9 PROJECT CONDITIONS

- A. Interruption of Existing Fire-Alarm Service: Do not interrupt fire-alarm service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary guard service according to requirements indicated:
 - 1. Notify Owner no fewer than seven days in advance of proposed interruption of firealarm service.
 - 2. Do not proceed with interruption of fire-alarm service without Owner's written permission.
- B. Use of Devices during Construction: Protect devices during construction unless devices are placed in service to protect the facility during construction.

1.10 SEQUENCING AND SCHEDULING

- A. Existing Fire-Alarm Equipment: Maintain existing equipment fully operational until new equipment has been tested and accepted. As new equipment is installed, label it "NOT IN SERVICE" until it is accepted. Remove labels from new equipment when put into service, and label existing fire-alarm equipment "NOT IN SERVICE" until removed from the building.
- B. Equipment Removal: After acceptance of new fire-alarm system, remove existing disconnected fire-alarm equipment and wiring.

1.11 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace fire-alarm system equipment and components that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: One (1) year from date of Substantial Completion.
 - 2. Warranty requirements shall include furnishing and installing all software upgrades issued by manufacturer during the one (1) year warranty period.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. EXTENDING the existing Fire Alarm System: Provide all items, components, devices, hardware, software, programming, expansion components, conduit, wiring etc., needed to EXTEND the existing Fire Alarm System with the new Fire Alarm system. This includes but is not limited to additional power supplies, initiating devices and circuits, signaling devices and circuits, monitoring devices and circuits, auxiliary control, and related devices such as, fan shutdown, etc. The existing Fire alarm system's functionality, integrity, and annunciation shall be equivalent to pre-construction conditions unless noted otherwise. The functionality and integrity shall be maintained during construction. The entire system shall be able to be completely reset from any single reset location point. The entire system shall be annunciated at any annunciation location.
- B. Existing Noncoded, UL-certified addressable system, with multiplexed signal transmission and horn/strobe evacuation.
- C. Automatic sensitivity control of certain smoke detectors.
- D. All components provided shall be listed for use with the selected system.
- E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 SYSTEMS OPERATIONAL DESCRIPTION

- A. Fire-alarm signal initiation shall be by one or more of the following devices and systems:
 - 1. Manual stations.
 - 2. Heat detectors.

- 3. Smoke detectors.
- 4. Duct smoke detectors.
- 5. Automatic sprinkler system water flow.
- B. Fire-alarm signal shall initiate the following actions:
 - 1. Identify alarm and specific initiating device at fire-alarm control unit and remote annunciators.
 - 2. Switch heating, ventilating, and air-conditioning equipment controls to fire-alarm mode. Refer to drawings for additional information.
 - 3. Transmit an alarm signal to the remote alarm receiving station.
 - 4. Record events in the system memory.
- C. Supervisory signal initiation shall be by one or more of the following devices and actions:
 - 1. Alert and Action signals of air-sampling detector system.
 - 2. Valve supervisory switch.
- D. System trouble signal initiation shall be by one or more of the following devices and actions:
 - 1. Open circuits, shorts, and grounds in designated circuits.
 - 2. Opening, tampering with, or removing alarm-initiating and supervisory signalinitiating devices.
 - 3. Loss of communication with any addressable sensor, input module, relay, control module.
 - 4. Fire Alarm Panel Low Battery.
- E. System Supervisory Signal Actions:
 - 1. Identify specific device initiating the event at fire-alarm control unit and remote annunciators.
 - 2. Valve supervisory switch.

2.3 FIRE-ALARM CONTROL UNIT- Existing Gamewell FCI-SLP-BLK Series

- A. Initiating-Device, Notification-Appliance, and Signaling-Line Circuits:
 - 1. Pathway Class Designations: NFPA 72, Class B.
 - 2. Pathway Survivability: Level 0.
 - 3. Install no more than 50 addressable devices on each signaling-line circuit.
- B. Notification-Appliance Circuit:
 - 1. Audible appliances shall sound in a three-pulse temporal pattern, as defined in NFPA 72.
 - 2. Visual alarm appliances shall flash in synchronization where multiple appliances are in the same field of view, as defined in NFPA 72.
- C. Smoke-Alarm Verification:

- 1. Initiate audible and visible indication of an "alarm-verification" signal at fire-alarm control unit.
- 2. Activate an approved "alarm-verification" sequence at fire-alarm control unit and detector.
- 3. Record events by the system printer.
- 4. Sound general alarm if the alarm is verified.
- 5. Cancel fire-alarm control unit indication and system reset if the alarm is not verified.

2.4 MANUAL FIRE-ALARM BOXES: Existing Gamewell-FCI- MS-7AF

- A. General Requirements for Manual Fire-Alarm Boxes: Comply with UL 38. Boxes shall be finished in red with molded, raised-letter operating instructions in contrasting color; shall show visible indication of operation; and shall be mounted on recessed outlet box. If indicated as surface mounted, provide manufacturer's surface back box.
 - 1. Double-action mechanism requiring two actions to initiate an alarm, breakingglass, or plastic-rod pull-lever type; with integral addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to fire-alarm control unit.
 - 2. Station Reset: Key- or wrench-operated switch.

2.5 SYSTEM SMOKE DETECTORS- Existing Gamewell-FCI ASD-PL3

- A. General Requirements for System Smoke Detectors:
 - 1. Comply with UL 268, operating at 24-V dc, nominal.
 - 2. Detectors shall be two-wire type.
 - 3. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
 - 4. Integral Visual-Indicating Light: LED type, indicating detector has operated and power-on status.
- B. Photoelectric Smoke Detectors:
 - 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
 - 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 - a. Primary status.
 - b. Device type.
 - c. Present average value.
 - d. Present sensitivity selected.
 - e. Sensor range (normal, dirty, etc.).
- C. Duct Smoke Detectors: Photoelectric type complying with UL 268A (System Sensor-SpectrAlert)
 - 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
 - 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
- a. Primary status.
- b. Device type.
- c. Present average value.
- d. Present sensitivity selected.
- e. Sensor range (normal, dirty, etc.).
- 3. Weatherproof Duct Housing Enclosure: NEMA 250, Type 4X; NRTL listed for use with the supplied detector for smoke detection in HVAC system ducts.
- 4. Relay Fan Shutdown: Fully programmable relay rated to interrupt fan motor-control circuit.

2.6 HEAT DETECTORS

- A. General Requirements for Heat Detectors: Comply with UL 521.
 - 1. Temperature sensors shall test for and communicate the sensitivity range of the device.
- B. Heat Detector, Combination Type: Actuated by either a fixed temperature of 135 deg F or a rate of rise that exceeds 15 deg F per minute unless otherwise indicated.
 - 1. Mounting: Twist-lock mounting plate interchangeable with smoke detectors
 - 2. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
- 2.7 NOTIFICATION APPLIANCES: Existing Gamewell-FCI-SCWL, P2RL, SRL, PC2RL, and SCRL
- A. General Requirements for Notification Appliances: Connected to notification-appliance signal circuits, zoned as indicated, equipped for mounting as indicated, and with screw terminals for system connections.
 - 1. Combination Devices: Factory-integrated audible and visible devices in a singlemounting assembly, equipped for mounting as indicated, and with screw terminals for system connections.
 - 2. Notification Appliance Circuits shall provide the features listed below. These requirements may require separate circuits for visual and audible devices.
 - a. Temporal audible notification for all audio appliances.
 - b. Synchronization of all visual devices where two or more devices are visible from the same location.
 - c. Ability to silence audible alarm while maintaining visual device operation.
- B. Horns: Electric-vibrating-polarized type, 24-V dc; with provision for housing the operating mechanism behind a grille. Comply with UL 464. Horns shall produce a sound-pressure level of 90 dBA, measured 10 feet from the horn, using the coded signal prescribed in UL 464 test protocol.
- C. Visible Notification Appliances: Xenon strobe lights complying with UL 1971, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The word "FIRE" is engraved in minimum 1-inch- high letters on the lens.

- 1. Rated Light Output:
 - a. 15/30/75/110 cd, selectable in the field.
- 2. Mounting: Wall mounted unless otherwise indicated.
- 3. For units with guards to prevent physical damage, light output ratings shall be determined with guards in place.
- 4. Flashing shall be in a temporal pattern, synchronized with other units.
- 5. Strobe Leads: Factory connected to screw terminals.
- 6. Mounting Faceplate: Factory finished, red.

2.8 ADDRESSABLE INTERFACE DEVICE

- A. General:
 - 1. Include address-setting means on the module.
 - 2. Store an internal identifying code for control panel use to identify the module type.
 - 3. Listed for controlling HVAC fan motor controllers.
- B. Control Module:
 - 1. Operate notification devices.
- C. Monitor Module: Microelectronic module providing a system address for alarm-initiating devices for wired applications with normally open contacts.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and conditions for compliance with requirements for ventilation, temperature, humidity, and other conditions affecting performance of the Work.
 - 1. Verify that manufacturer's written instructions for environmental conditions have been permanently established in spaces where equipment and wiring are installed before installation begins.
- B. Examine roughing-in for electrical connections to verify actual locations of connections before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 EQUIPMENT INSTALLATION

- A. Comply with NFPA 72, and requirements of authorities having jurisdiction for installation and testing of fire-alarm equipment. Install all electrical wiring to comply with requirements in NFPA 70 including, but not limited to, Article 760, "Fire Alarm Systems."
 - 1. Devices placed in service before all other trades have completed cleanup shall be replaced.

- 2. Devices installed but not yet placed in service shall be protected from construction dust, debris, dirt, moisture, and damage according to manufacturer's written storage instructions.
- B. Connecting to Existing Equipment: Verify that existing fire-alarm system is operational before making changes or connections.
 - 1. Expand, modify, and supplement existing control monitoring equipment as necessary to extend existing control functions to the new points. New components shall be capable of merging with existing configuration without degrading the performance of either system.
- C. Manual Fire-Alarm Boxes:
 - 1. Install manual fire-alarm box in the normal path of egress within 60 inches of the exit doorway.
 - 2. The operable part of manual fire-alarm box shall be between 42 inches above floor level. All devices shall be mounted at the same height unless otherwise indicated.
- D. Smoke- or Heat-Detector Spacing:
 - 1. Comply with the "Smoke-Sensing Fire Detectors" section in the "Initiating Devices" chapter in NFPA 72, for smoke-detector spacing.
 - 2. Comply with the "Heat-Sensing Fire Detectors" section in the "Initiating Devices" chapter in NFPA 72, for heat-detector spacing.
 - 3. HVAC: Locate detectors not closer than 36 inches from air-supply diffuser or return-air opening.
 - 4. Lighting Fixtures: Locate detectors not closer than 12 inches from any part of a lighting fixture and not directly above pendant mounted or indirect lighting.
 - 5. Where the devices are to be installed in a grid type ceiling system, the detectors shall be centered in the ceiling tile.
- E. Install a cover on each smoke detector that is not placed in service during construction. Cover shall remain in place except during system testing. Remove cover prior to system turnover.
- F. Duct Smoke Detectors: Comply with NFPA 72 and NFPA 90A. Install sampling tubes so they extend the full width of duct. Tubes more than 36 inches long shall be supported at both ends.
 - 1. Do not install smoke detector in duct smoke-detector housing during construction. Install detector only during system testing and prior to system turnover.
- G. Remote Status and Alarm Indicators: Install in a visible location near each smoke detector, sprinkler water-flow switch, and valve-tamper switch that is not readily visible from normal viewing position.
- H. Audible Alarm-Indicating Devices: Install not less than 6 inches below the ceiling. Install devices on flush-mounted back boxes with the device-operating mechanism concealed behind a grille. Install all devices at the same height were indicated on drawings.

I. Visible Alarm-Indicating Devices: Install not less than 6 inches below the ceiling. Install devices on flush-mounted back boxes with the device-operating mechanism concealed behind a grille. Install all devices at the same height were indicated on drawings.

3.3 WIRING

- A. Fire alarm wiring/cabling shall be furnished and installed by the Contractor in accordance with the manufacturer's recommendations and pursuant to National Fire Codes. Cabling shall be UL listed and labeled as complying with NFPA 70, Article 760 for power-limited fire alarm signal service.
 - 1. Fire alarm wiring/cabling shall be provided by the Contractor in accordance with the manufacturer's recommendations and pursuant to National Fire Codes.
 - 2. Wiring shall be installed in conduit in exposed construction.
 - 3. Wiring shall be installed in conduit from device to above accessible ceilings. Exposed plenum-rated cable (FPLP) shall be used above accessible ceilings supported every 4 feet or run in cable trays (if applicable) maintaining a minimum of 5-inches clearance from all lighting ballasts.
 - 4. Fire alarm cabling shall not be installed in the same bridle rings or cable trays designated for the cabling of other systems. All junction boxes shall be painted red with SLC and NAC circuits identified on cover.
 - 5. Fire Alarm Power Branch Circuits: Building wiring as specified in Section 26 05 19.
 - 6. No wiring other than that directly associated with fire alarm detection, alarm or auxiliary fire protection functions shall be in fire alarm conduits. Wiring splices shall be avoided to the extent possible, and if needed, they shall be made only in junction boxes, and enclosed by plastic wire nut type connectors. Transposing or changing color coding of wires shall not be permitted. All conductors in conduit containing more than one wire shall be labeled on each end, in all junction boxes, and at each device with "E-Z Markers" or equivalent. Conductors in cabinets shall be carefully formed and harnessed so that each drops off directly opposite to its terminal. Cabinet terminals shall be numbered and coded, and no unterminated conductors are permitted in cabinets or control panels. All controls, function switches, etc. shall be clearly labeled on all equipment panels.
- B. Fire Alarm Cabling Color Code: Provide circuit conductors with insulation color coding as follows or using colored tape at each conductor termination and in each junction box.
 - 1. Power branch circuit conductors: In accordance with Section 26 05 19.
 - 2. Signaling line circuit: Overall red jacket with black and red conductors.
 - 3. DC power supply circuit: Overall red jacket with violet and brown conductors.
- C. Devices surface mounted in areas shall be mounted on surface backboxes, furnished by fire alarm equipment supplier. Backboxes shall be painted to match device, and shall not have visible knockouts.
- D. All conduits and junction boxes shall be painted red.

3.4 CONNECTIONS

A. Make addressable connections with a supervised interface device to the following devices and systems. Install the interface device less than 36 inches from the device controlled.

Make an addressable confirmation connection when such feedback is available at the device or system being controlled.

3.5 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals.

3.6 GROUNDING

A. Ground shielded cables at the control panel location only. Insulate shield at device location.

3.7 FIELD QUALITY CONTROL

- A. Field tests shall be witnessed by authorities having jurisdiction.
- B. Perform tests and inspections.
- C. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Visual Inspection: Conduct visual inspection prior to testing.
 - a. Inspection shall be based on completed record Drawings and system documentation that is required by the "Completion Documents, Preparation" table in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 - b. Comply with the "Visual Inspection Frequencies" table in the "Inspection" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72; retain the "Initial/Reacceptance" column and list only the installed components.
 - 2. System Testing: Comply with the "Test Methods" table in the "Testing" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
 - 3. Factory-authorized service representative shall prepare the "Fire Alarm System Record of Completion" in the "Documentation" section of the "Fundamentals" chapter in NFPA 72 and the "Inspection and Testing Form" in the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
- D. Reacceptance Testing: Perform reacceptance testing to verify the proper operation of added or replaced devices and appliances.
- E. Prepare test and inspection reports.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain fire-alarm system.

END OF SECTION 28 46 21.11

This page intentionally left blank.

SECTION 31 11 00 EROSION CONTROL

PART 1 - GENERAL

1.1 SUMMARY

- A. This Section includes the following:
 - 1. Inlet Protection
 - 2. Sediment Log
 - 3. Temporary Seeding
- B. Provide temporary erosion control measures to prevent soil erosion and discharge of soil bearing water runoff or airborne dust to adjacent properties and walkways, according to erosion and sedimentation-control Drawings and requirements of authorities having jurisdiction. The Contractor shall provide erosion and sediment control in accordance with the Erosion Control Plan for the project. If a plan is not available, the Contractor shall provide erosion, and available, the Contractor shall provide erosion.

1.2 PROJECT CONDITIONS

A. All erosion control devices specified in the plans must be installed before grading and stripping of topsoil.

PART 2 - PRODUCTS

- 2.1 MATERIALS GENERAL
- A. Provide materials as required by governing agencies and on the approved site or erosion control plans.
- 2.2 INLET PROTECTION FILTER
- A. Install inlet protection filters as listed in the Wisconsin Department of Transportation (WisDOT) Erosion Control Product Acceptability List for Multi-Modal Applications.

2.3 SEDIMENT LOG

A. Sediment log shall be a minimum of 12" in diameter and listed in the WisDOT Erosion Control Product Acceptability List for Multi-Modal Applications.

2.4 TEMPORARY SEEDING

A. Temporary Seed Mixture Components.

Lbs/1000 SF	Species	Min. % Purity	Min. % Germ.	
2	Oats	98	90	
2.5	Rye	97	85	

PART 3 - EXECUTION

3.1 PROCEDURES AND MAINTENANCE

- A. Install silt fences and filter barriers at the beginning of the project.
- B. Verify that flows of water redirected from construction areas or generated by construction activity do not enter or cross protection zones.
- C. Inspect, maintain, and repair erosion- and sedimentation-control measures during construction until permanent vegetation has been established. Measures shall be inspected on a weekly basis and after a precipitation event of 0.5 inches or greater in a 24 hour period. Document inspections and maintenance performed.
- D. Remove erosion and sedimentation controls and restore and stabilize areas disturbed during removal. Removal of measures shall be after the site is 80 % stabilized (or approved by local, county, or state erosion control agency).
- E. The Contractor shall install erosion control measures including but not limited to:
 - 1. Silt Fence
 - 2. Sediment Log
 - 3. Temporary Seeding
- F. Minimize disturbed area. Stripping of vegetation, re-grading or other development shall be done in such a manner as to minimize erosion.
- G. Development plans shall preserve salient natural features, minimize land cuts and fills, and conform to the general topography so as to create the least erosion potential and to adequately contain the volume and velocity of surface water runoff.
- H. To the largest degree feasible, natural vegetation shall be retained, protected and supplemented. Disturbed areas and the duration of exposure thereof shall be kept to a practicable minimum and stabilized as quickly as practicable. Temporary vegetation and/or mulching shall be used to protect exposed critical areas during development.
- I. Permanent (final) vegetation and structural erosion control and drainage measures shall be installed as soon as practicable during development.
- J. Provisions shall be made to effectively accommodate the increased runoff caused by changed soil and surface conditions, both during and after development. Where necessary, the rate of surface water runoff shall be structurally retarded.

- K. Sediment in the runoff water shall be trapped until the disturbed area is stabilized by the use of debris or sediment basins, silt traps or similar measures.
- L. Locate stockpiles of soils away from waterways and wetlands.
 - 1. Protect soil stockpiles with erosion mat, seed and mulch or cover with tarpaulins or burlap.
 - 2. All stockpiles shall have the base of the pile protected with sediment log around the base of the pile.
- M. All erosion and sedimentation devices shall be inspected and repaired in the following frequencies:
 - 1. Weekly
 - 2. After each rainfall
 - 3. Daily during prolonged rainfall
- N. Sediment shall be removed after devices become one-third full.
- O. Repair all washouts.
- P. Maintain temporary erosion and sedimentation control structures until permanent soil erosion controls are completed and/or vegetation is established.
 - 1. Repair damaged structures.
 - 2. Replace lost structures.
 - 3. Remove sediment on a regular basis.
 - 4. Refill eroded areas as required for grade stabilization.

3.2 EARTH STRUCTURES

- A. Maintain temporary erosion and sedimentation control structures until permanent soil erosion controls are completed and/or vegetation is established.
 - 1. Repair damaged structures.
 - 2. Replace lost structures.
 - 3. Remove sediment on a regular basis.
 - 4. Refill eroded areas as required for grade stabilization.

3.3 ADJUST AND CLEAN

A. Clean premises of all litter and debris created by work of this Section.

END OF SECTION 31 11 00

This page intentionally left blank.

SECTION 31 20 00 EARTH MOVING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Excavating and filling for rough grading the Site.
 - 2. Preparing subgrades for pavements.
 - 3. Subbase course and base course for asphalt paving.
 - 4. Excavating and backfilling for utility trenches.
 - 5. Excavating and backfilling trenches for utilities and pits for buried utility structures.
 - 6. Excavating and Backfilling for Buildings and Structures.
 - 7. Drainage course for concrete slabs-on-grade.
 - 8. Subsurface drainage backfill for walls.
- B. Related Sections:
 - 1. Refer to Section 31 23 19 "Dewatering"
 - 2. Refer to Section 31 11 00 "Erosion Control"
 - 3. Refer to Section 32 92 00 "Turf and Grasses" for finish grading in turf and grass areas, including preparing and placing planting soil for turf areas.

1.3 DEFINITIONS

- A. Backfill: Soil material or controlled low-strength material used to fill an excavation.
 - 1. Initial Backfill: Backfill placed beside and over pipe in a trench, including haunches to support sides of pipe.
 - 2. Final Backfill: Backfill placed over initial backfill to fill a trench.
- B. Base Course: Aggregate layer placed between the subgrade and hot-mix asphalt paving.
- C. Bedding Course: Course placed over the excavated subgrade in a trench before laying pipe.
- D. Borrow Soil: Satisfactory soil imported from off-site for use as fill or backfill.
- E. Drainage Course: Aggregate layer supporting the slab-on-grade that also minimizes upward capillary flow of pore water.

- F. Excavation: Removal of material encountered above subgrade elevations and to lines and dimensions indicated.
 - 1. Authorized Additional Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions as directed by Owner's Representative. Authorized additional excavation and replacement material will be paid for according to Contract provisions for unit prices.
 - 2. Unauthorized Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions without direction by OWNER'S REPRESENTATIVE. Unauthorized excavation, as well as remedial work directed by OWNER'S REPRESENTATIVE, shall be without additional compensation.
- G. Fill: Soil materials used to raise existing grades.
- H. Structures: Buildings, footings, foundations, retaining walls, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.
- I. Subgrade: Uppermost surface of an excavation or the top surface of a fill or backfill immediately below subbase, drainage fill, drainage course, or topsoil materials.
- J. Utilities: On-site underground pipes, conduits, ducts, and cables as well as underground services within buildings.
- K. Sand: Clean, natural sand.
- 1.4 SUBMITTALS
- A. Material Test Reports: From a qualified testing agency indicating and interpreting test results for compliance of the following with requirements indicated:
 - 1. Classification according to ASTM D 2487 of each on-site and borrow soil material proposed for fill and backfill.
 - 2. Laboratory compaction curve according to ASTM D 698 for non-supporting sections and ASTM D 1557 for supporting sections for each on-site and borrow soil material proposed for fill and backfill.
- B. Field Quality Test Reports: From a qualified independent geotechnical engineering testing agency indicating subgrade, fill and backfill bearing capacities and degree of compaction.
- C. Contaminated soils and dewatering water disposal daily log, testing reports and quantity from receiving landfill. Dewatering water disposal shall be incidental.

1.5 PRE-INSTALLATION MEETINGS

- A. Pre-installation Conference: Conduct pre-excavation conference at Project site.
 - 1. Review methods and procedures related to earthmoving, including, but not limited to, the following:

- a. Personnel and equipment needed to make progress and avoid delays.
- b. Coordination of Work with utility locator service.
- c. Extent of trenching by hand or with air spade.
- d. Field quality control.
- e. Coordination of work to maintain access to building during construction.

1.6 FIELD CONDITIONS

- A. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or used facilities during earth-moving operations. Assure access to either north or south side of building at all times during construction.
 - 1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Government and authorities having jurisdiction.
 - 2. Provide alternate routes around closed or obstructed traffic ways if required by Government or authorities having jurisdiction.
- B. Utility Locator Service: Notify Digger's Hotline for area where Project is located before beginning earth-moving operations.
- C. Do not commence earth-moving operations until inlet protection is installed.
- D. Existing Utilities: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted and then only after arranging to provide temporary utility services according to requirements indicated.
 - 1. Notify Owner not less than two days in advance of proposed utility interruptions.
 - 2. Do not proceed with utility interruptions without Owner's written permission.
 - 3. Contact utility-locator service for area where Project is located before excavating.
- E. Demolish and completely remove from site existing underground utilities indicated to be removed. Coordinate with utility companies to shut off services if lines are active

PART 2 - PRODUCTS

2.1 SOIL MATERIALS

- A. General: Provide borrow soil materials when sufficient satisfactory soil materials are not available from excavations.
- B. Satisfactory Soils: Soil Classification Groups GW, GP, GM, SW, SP, and SM according to ASTM D 2487, or a combination of these groups; free of rock or gravel larger than 3 inches in any dimension, debris, waste, frozen materials, vegetation, and other deleterious matter.
- C. Unsatisfactory Soils: Soil Classification Groups GC, SC, CL, ML, OL, CH, MH, OH, and PT according to ASTM D 2487, or a combination of these groups.
 - 1. Unsatisfactory soils also include satisfactory soils not maintained within 2 percent of optimum moisture content at time of compaction.

- D. Base Course: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM C 294; with
 - 1. 3/4-inch Mix: At least 95 percent passing a 3/4-inch sieve, 40-75 percent passing a 3/8-inch sieve, 25-60 percent passing a No. 4 sieve and not more than 8 percent passing a No. 200 sieve.
- E. Breaker Run: Crushed stone; predominantly 6-inches or less in one direction and not more than 8 percent passing a No. 200 sieve. The size of the material shall be predominantly 3-inches to 6-inches.
- F. Bedding Course or Clean Stone: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940/D 2940M; except with 100 percent passing a 3/4-inch sieve and not more than 5 percent passing a No. 200 sieve.
- G. Drainage Course: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940/D 2940M; except with 100 percent passing a 3/4-inch sieve and not more than 5 percent passing a No. 200 sieve.
- H. Engineered Fill: 3/4-inch Mix: At least 95 percent passing a 3/4-inch sieve, 40-75 percent passing a 3/8-inch sieve, 25-60 percent passing a No. 4 sieve and not more than 8 percent passing a No. 200 sieve.
- I. Sand: Clean granular material meeting the requirement in Section 501.2.5.3.4 of the Wisconsin DOT Standard Specifications for Highway Construction.
- J. Geotextile Filter Fabric: Fabric shall meet the requirements of Section 645.2.4, Type DF, Schedule B or C of the Wisconsin DOT Standard Specifications for Highway Construction.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by earth-moving operations.
- B. Protect and maintain erosion and sedimentation controls during earth-moving operations.
- C. Protect subgrades and foundation soils from freezing temperatures and frost. Remove temporary protection before placing subsequent materials.

3.2 DEWATERING

- A. See Section 31 23 19 "Dewatering."
- B. Prevent surface water and ground water from entering excavations, from ponding on prepared subgrades, and from flooding Project site and surrounding area.

- C. Protect subgrades from softening, undermining, washout, and damage by rain or water accumulation.
 - 1. Reroute surface water runoff away from excavated areas. Do not allow water to accumulate in excavations. Do not use excavated trenches as temporary drainage ditches.

3.3 EXCAVATION, GENERAL

- A. Unclassified Excavation: Excavate to subgrade elevations regardless of the character of surface and subsurface conditions encountered. Unclassified excavated materials may include rock, soil materials, and obstructions. No changes in the Contract Sum or the Contract Time will be authorized for rock excavation or removal of obstructions.
 - 1. If excavated materials intended for fill and backfill include unsatisfactory soil materials and rock, replace with satisfactory soil materials.

3.4 EXCAVATION IN CONTAMINATED SOILS AREAS

A. Contaminated soils may exist within the project extents and excavation areas. Previous soil exploration did not identify contaminated soils, but underground petroleum tanks are present on the site. If contaminated soils or groundwater are encountered during site excavations, contact the Owner immediately.

3.5 EXCAVATION FOR STRUCTURES

- A. Excavate to indicated elevations and dimensions within a tolerance of plus or minus 1 inch (25 mm). If applicable, extend excavations a sufficient distance from structures for placing and removing concrete formwork, for installing services and other construction, and for inspections.
 - 1. Excavations for Footings and Foundations: Do not disturb bottom of excavation. Excavate by hand to final grade just before placing concrete reinforcement. Trim bottoms to required lines and grades to leave solid base to receive other work.
- B. Excavations at Edges of Tree- and Plant-Protection Zones:
 - 1. Excavate by hand or with an air spade to indicated lines, cross sections, elevations, and subgrades. If excavating by hand, use narrow-tine spading forks to comb soil and expose roots. Do not break, tear, or chop exposed roots. Do not use mechanical equipment that rips, tears, or pulls roots.
 - 2. Cut and protect roots.

3.6 EXCAVATION FOR UTILITIES AND TANKS

A. Excavate to indicated elevations and dimensions within a tolerance of plus or minus 1 inch. If applicable, extend excavations a sufficient distance from structures for placing and removing concrete formwork, for installing services and other construction, and for inspections.

- 1. Excavation for Underground Tanks, Basins, and Mechanical or Electrical Utility Structures: Excavate to elevations and dimensions indicated within a tolerance of plus or minus 1 inch. Do not disturb bottom of excavations intended as bearing surfaces.
- B. Excavate trenches to uniform widths to provide the following clearance on each side of pipe or conduit. Excavate trench walls vertically from trench bottom to 12 inches higher than top of pipe or conduit, unless otherwise indicated.
 - 1. Clearance: 12 inches each side of pipe or conduit.
- C. Trench Bottoms: Excavate trenches 6 inches deeper than bottom of pipe elevation to allow for bedding course, or to depth shown on the plans whichever is greater.
 - 1. Excavate trenches 6 inches deeper than elevation required in rock or other unyielding bearing material to allow for bedding course.

3.7 EXCAVATION FOR WALKS AND PAVEMENTS

A. Excavate surfaces under walks and pavements to indicated lines, cross sections, elevations, and subgrades.

3.8 SUBGRADE INSPECTION

- A. Notify OWNER'S REPRESENTATIVE when excavations have reached required subgrade.
- B. If OWNER'S REPRESENTATIVE determines that unsatisfactory soil is present, continue excavation and replace with compacted backfill or fill material as directed.
- C. Proof-roll subgrade below pavements with a pneumatic-tired and loaded 10-wheel, tandem-axle dump truck weighing not less than 15 tons to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades.
 - 1. Completely proof-roll subgrade in one direction. Limit vehicle speed to 3 mph (5 km/h).
 - 2. Excavate soft spots, unsatisfactory soils, and areas of excessive pumping or rutting, as determined by OWNER'S REPRESENTATIVE, and replace with compacted backfill or fill as directed.
- D. Authorized additional excavation and replacement material will be paid for according to Contract provisions for unit prices.
- E. Reconstruct subgrades damaged by freezing temperatures, frost, rain, accumulated water, or construction activities, as directed by OWNER'S REPRESENTATIVE, without additional compensation.

3.9 STORAGE OF SOIL MATERIALS

- A. Stockpile borrow soil materials and excavated satisfactory soil materials without intermixing. Place, grade, and shape stockpiles to drain surface water. Cover to prevent windblown dust.
 - 1. Stockpile soil materials away from edge of excavations. Do not store within drip line of remaining trees.

3.10 BACKFILL

- A. Place and compact backfill in excavations promptly, but not before completing the following:
 - 1. Construction below finish grade, where applicable, subdrainage, dampproofing, waterproofing, and perimeter insulation.
 - 2. Removing concrete formwork.
 - 3. Removing trash and debris.
 - 4. Removing temporary shoring, bracing, and sheeting.
 - 5. Installing permanent or temporary horizontal bracing on horizontally supported walls.
- B. Place backfill on subgrades free of mud, frost, snow, or ice.

3.11 SOIL FILL

- A. Place and compact fill material in layers to required elevations as follows:
 - 1. Under grass and planted areas, use satisfactory soil material.
 - 2. Under walks and pavements, use satisfactory soil material.
 - 3. Under steps and ramps, use engineered fill.
 - 4. Under building slabs, use engineered fill.
 - 5. Under footings and foundations, use engineered fill.
- B. Place soil fill on subgrades free of mud, frost, snow, or ice.

3.12 SOIL MOISTURE CONTROL

- A. Uniformly moisten or aerate subgrade and each subsequent fill or backfill soil layer before compaction to within 2 percent of optimum moisture content.
 - 1. Do not place backfill or fill soil material on surfaces that are muddy, frozen, or contain frost or ice.
 - 2. Remove and replace, or scarify and air dry, otherwise satisfactory soil material that exceeds optimum moisture content by 2 percent and is too wet to compact to specified dry unit weight.

3.13 COMPACTION OF SOIL BACKFILLS AND FILLS

- A. Place backfill and fill soil materials in layers not more than 8 inches in loose depth for material compacted by heavy compaction equipment and not more than 4 inches in loose depth for material compacted by hand-operated tampers.
- B. Place backfill and fill soil materials evenly on all sides of structures to required elevations and uniformly along the full length of each structure.
- C. Compact soil materials to not less than the following percentages of maximum dry unit weight according to ASTM D 1557:
 - 1. Under structures, buildings, steps, and pavements, scarify and recompact top 12 inches of existing subgrade and each layer of backfill or fill soil material at 95 percent.
 - 2. Under turf or unpaved areas, scarify and recompact top 6 inches below subgrade and compact each layer of backfill or fill soil material at 85 percent.
 - 3. For utility trenches, outside of supporting pavements, compact each layer of initial and final backfill soil material at 92 percent per ASTM D 698.

3.14 UTILITY TRENCH BACKFILL

- A. Place backfill that is free of mud, frost, snow, or ice.
- B. Place and compact bedding course on trench bottoms and where indicated on plans. Shape bedding course to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits.
- C. For conduit less than 30 inches below surface of pavements, provide 4-inch thick, concrete-base slab support. After installing and testing, completely encase piping or conduit in a minimum of 4 inches of concrete before backfilling or placing roadway base course.
- D. Backfill utility trenches under future pavements with select backfill. All other trenches may be backfilled with satisfactory soil. Backfill to be compacted in 8 inch maximum lifts to a density of 95 percent compaction per ASTM D 1557.
- E. Place and compact initial backfill, free of particles larger than 1 inch in any dimension over the utility pipe or conduit.
 - 1. Carefully compact initial backfill under pipe haunches and compact evenly up on both sides and along the full length of utility piping or conduit to avoid damage or displacement of piping or conduit. Coordinate backfilling with utilities testing.
- F. Backfill voids with satisfactory soil while installing and removing shoring and bracing.
- G. Place and compact final backfill of satisfactory soil to final subgrade elevation.
- H. Install warning tape directly above utilities, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

3.15 GRADING

- A. General: Uniformly grade areas to a smooth surface, free of irregular surface changes. Comply with compaction requirements and grade to cross sections, lines, and elevations indicated.
 - 1. Provide a smooth transition between adjacent existing grades and new grades.
 - 2. Cut out soft spots, fill low spots, and trim high spots to comply with required surface tolerances.
- B. Site Rough Grading: Slope grades to direct water away from buildings and to prevent ponding. Finish subgrades to elevations required to achieve indicated finish elevations, within the following subgrade tolerances:
 - 1. Turf or Unpaved Areas: Plus or minus 1/2 inch.
 - 2. Pavements: Plus or minus 1/8 inch.

3.16 SUBSURFACE DRAINAGE

- A. Subsurface Drain: Place subsurface drainage geotextile around perimeter of subdrainage trench. Place a 6-inch (150-mm) course of filter material on subsurface drainage geotextile to support subdrainage pipe. Encase subdrainage pipe in a minimum of 12 inches (300 mm) of filter material, placed in compacted layers 6 inches (150 mm) thick, and wrap in subsurface drainage geotextile, overlapping sides and ends at least 6 inches (150 mm).
 - 1. Compact each filter material layer to 85 percent of maximum dry unit weight according to ASTM D 698 with a minimum of two passes of a plate-type vibratory compactor.
- B. Drainage Backfill: Place and compact filter material over subsurface drain, in width indicated, to within 12 inches (300 mm) of final subgrade, in compacted layers 6 inches (150 mm) thick. Overlay drainage backfill with one layer of subsurface drainage geotextile, overlapping sides and ends at least 6 inches (150 mm).
 - 1. Compact each filter material layer to 85 percent of maximum dry unit weight according to ASTM D 698 with a minimum of two passes of a plate-type vibratory compactor.
 - 2. Place and compact impervious fill over drainage backfill in 6-inch- (150-mm-) thick compacted layers to final subgrade.

3.17 BASE COURSES UNDER PAVEMENTS AND WALKS

- A. Place base course on subgrades free of mud, frost, snow, or ice.
- B. On prepared subgrade, place base course under pavements and walks as follows:
 - 1. Place base course material over subbase course under hot-mix asphalt pavement.
 - 2. Shape base course to required crown elevations and cross-slope grades.
 - 3. Place base course 6 inches or less in compacted thickness in a single layer.

- 4. Place base course that exceeds 6 inches in compacted thickness in layers of equal thickness, with no compacted layer more than 6 inches thick or less than 3 inches thick.
- 5. Compact base course at optimum moisture content to required grades, lines, cross sections, and thickness to not less than 95 percent of maximum dry unit weight according to ASTM D 1557.
- C. Pavement Shoulders: Place shoulders along edges of base course to prevent lateral movement. Construct shoulders, at least 12 inches wide, of satisfactory soil materials and compact simultaneously with each base layer to not less than 95 percent of maximum dry unit weight according to ASTM D 698.

3.18 DRAINAGE COURSE UNDER CONCRETE SLABS-ON-GRADE

- A. Place drainage course on subgrades free of mud, frost, snow, or ice.
- B. On prepared subgrade, place and compact drainage course under cast-in-place concrete slabs-on-grade as follows:
 - 1. Install subdrainage geotextile on prepared subgrade according to manufacturer's written instructions, overlapping sides and ends.
 - 2. Place drainage course 6 inches (150 mm) or less in compacted thickness in a single layer.
 - 3. Place drainage course that exceeds 6 inches (150 mm) in compacted thickness in layers of equal thickness, with no compacted layer more than 6 inches (150 mm) thick or less than 3 inches (75 mm) thick.
 - 4. Compact each layer of drainage course to required cross sections and thicknesses to not less than 95 percent of maximum dry unit weight according to ASTM D 698.

3.19 FIELD QUALITY CONTROL

- A. Special Inspections: Engage a qualified special inspector to perform the following special inspections:
 - 1. Determine prior to placement of fill that site has been prepared in compliance with requirements.
 - 2. Determine that fill material classification and maximum lift thickness comply with requirements.
 - 3. Determine, during placement and compaction that in-place density of compacted fill complies with requirements.
 - 4. Witness and approve proof roll of subgrade.
- B. Testing Agency: Contractor shall engage a qualified geotechnical engineering testing agency to perform tests and inspections.
- C. Allow testing agency to inspect and test subgrades and each fill or backfill layer. Proceed with subsequent earth moving only after test results for previously completed work comply with requirements.

- D. Testing agency will test compaction of soils in place according to ASTM D 1556, ASTM D 2167, ASTM D 2937, and ASTM D 6938, as applicable. Tests will be performed at the following locations and frequencies:
 - 1. Paved and Building Slab Areas: At subgrade and at each compacted fill and backfill layer, at least one test for every 400 sq. ft. or less of paved area or building slab but in no case fewer than three tests.
- E. When testing agency reports that subgrades, fills, or backfills have not achieved degree of compaction specified, scarify, and moisten or aerate, or remove and replace soil materials to depth required; recompact and retest until specified compaction is obtained.

3.20 PROTECTION

- A. Protecting Graded Areas: Protect newly graded areas from traffic, freezing, and erosion. Keep free of trash and debris.
- B. Repair and reestablish grades to specified tolerances where completed or partially completed surfaces become eroded, rutted, settled, or where they lose compaction due to subsequent construction operations or weather conditions.
 - 1. Scarify or remove and replace soil material to depth as directed by OWNER'S REPRESENTATIVE; reshape and recompact.
- C. Where settling occurs before Project correction period elapses, remove finished surfacing, backfill with additional soil material, compact, and reconstruct surfacing.
 - 1. Restore appearance, quality, and condition of finished surfacing to match adjacent work, and eliminate evidence of restoration to greatest extent possible.

3.21 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Disposal: Remove surplus satisfactory soil and waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off Owner's property.

END OF SECTION 31 20 00

This page intentionally left blank.

SECTION 31 23 19 DEWATERING

PART 1 - GENERAL

1.1 SUMMARY

A. Section includes construction dewatering.

1.2 REFERENCES

- A. Wisconsin Administrative Code (WAC):
- B. Chapter NR 141 Monitoring Well Construction
- C. Chapter NR 812 Well Construction and Pump Installation
- D. Wisconsin Department of Natural Resources Technical Standards for Construction Site Erosion & Sediment Control (Technical Standards): http://www.dnr.state.wi.us/org/water/wm/nps/stormwater/techstds.htm#Construction

1.3 RELATED SECTIONS

A. Refer to Section 31 20 00 "Earth Moving."

1.4 ACTION SUBMITTALS

- A. Shop Drawings: For dewatering system, prepared by or under the supervision of a qualified professional engineer.
 - 1. Include plans, elevations, sections, and details.
 - 2. The plan shall include the location of dewatering practices, staging of dewatering, where water will be pumped from, rate of pumping, details of sediment removal practice and polymer approval from WDNR (if polymer is used).
 - 3. For deep wells or well point systems, provide copies of the site assessment, system design computations for removal of groundwater, and design information for sediment removal practices. Include layouts of piezometers and flow-measuring devices for monitoring performance of dewatering system.
 - 4. For sump dewatering in trenches or excavations, provide copies of sediment removal practice selection and discharge design calculations or information.
 - 5. Provide copies of all permits required for dewatering.
 - 6. Provide copies of daily monitoring and testing logs for dewatering practices as described in the DNR Dewatering Technical Standard.
 - 7. Provide copies of all borehole abandonment forms.
- B. Permits.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: An experienced installer that has specialized in dewatering work.

1.6 FIELD CONDITIONS

- A. Project-Site Information: A geotechnical report has been prepared for this Project and is available for information only. The opinions expressed in this report are those of a geotechnical engineer and represent interpretations of subsoil conditions, tests, and results of analyses conducted by a geotechnical engineer. Owner is not responsible for interpretations or conclusions drawn from this data.
 - 1. Make additional test borings and conduct other exploratory operations necessary for dewatering according to the performance requirements.
 - 2. The geotechnical report is included elsewhere in Project Manual.

1.7 PERMITS

- A. Pay for and obtain all permits/approval required by state and federal regulations.
- B. Necessary permits/approval includes, but is not limited to:
 - High capacity well approval under NR 812.09. Sump dewatering is not included in high capacity dewatering unless pumping rate is > 70 gallons per minute and is generally covered under the site erosion control permit. http://dnr.wi.gov/topic/Wells/HighCapacity.html
 - 2. If groundwater dewatering, groundwater dewatering permit may be required. Coordinate with Materials Management Plan. Wastewater pit/trench dewatering permit (WI-0049344) contact Dave Brick (608-275-3321), wastewater specialist. This permit, fact sheet and request for coverage form at: http://dnr.wi.gov/topic/wastewater/GeneralPermits.html
- C. When installing by jetting methods, provide own water source. Do not use hydrants as water source without permission from Construction representative and/or local utility, as applicable. Obtain and pay for any required hydrant use and permits.
- D. Comply with erosion control permit. Inspect dewatering system daily for erosion issues and add erosion control as necessary.

<u>1.8</u> <u>SAFETY</u>

- A. Prevent public access to dewatering system components.
- B. Abandon boreholes in accordance with applicable state and federal codes immediately following use.
- C. When pumping groundwater from contaminated soils area, follow Materials Management Plan.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Dewatering Performance: Design, furnish, install, test, operate, monitor, and maintain dewatering system of sufficient scope, size, and capacity to control hydrostatic

pressures and to lower, control, remove, and dispose of ground water and permit excavation and construction to proceed on dry, stable subgrades.

- 1. Design dewatering system, including comprehensive engineering analysis by a qualified professional.
- 2. Continuously monitor and maintain dewatering operations to ensure erosion control, stability of excavations and constructed slopes, prevention of flooding in excavation, and prevention of damage to subgrades and permanent structures.
- 3. Prevent surface water from entering excavations by grading, dikes, or other means.
- 4. Accomplish dewatering without damaging existing buildings, structures, and site improvements adjacent to excavation.
- 5. Remove dewatering system when no longer required for construction.
- B. Regulatory Requirements: Comply with governing EPA notification regulations before beginning dewatering. Comply with water and debris disposal regulations of authorities having jurisdiction.
- C. All deepwell and wellpoint dewatering equipment and well construction/abandonment materials shall meet the requirements of NR 141 and NR 812.
- D. Sump or trench dewatering shall use portable sediment removal devices and meet the requirements of DNR Technical Standard 1061. Portable sediment removal devices include but are not limited to: filter tanks, Type II Geotextile Bags with polymer addition and portable sand filters.
- E. Polymers used in dewatering to settle particles shall meet the DNR Technical Standard 1051 criteria and shall be approved by WDNR.

PART 3 - EXECUTION

- 3.1 PREPARATION
- A. Comply with local, state, and federal regulations.
- B. If contaminated soils or groundwater are encountered during site excavations contact the Owner immediately. Special dewatering procedures may be required.
- C. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by dewatering operations.
 - 1. Prevent surface water and subsurface or ground water from entering excavations, from ponding on prepared subgrades, and from flooding site or surrounding area.
 - 2. Protect subgrades and foundation soils from softening and damage by rain or water accumulation.
- D. Install dewatering system to ensure minimum interference with roads, streets, walks, and other adjacent occupied and used facilities.

- 1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction. Provide alternate routes around closed or obstructed traffic ways if required by authorities having jurisdiction.
- E. Provide temporary grading to facilitate dewatering and control of surface water.
- F. Protect and maintain temporary erosion and sedimentation controls, which are specified in 31 11 00 "Erosion Control" during dewatering operations.
- G. When deep wells or well point systems are utilized, prepare a system design and obtain permits in accordance with NR 812.09 for high capacity wells as defined by NR 812.07(53). Design system to dewater site as necessary to complete construction but minimize impact on local water table. Monitor water levels in wells adjacent to construction site. Adjust dewatering system configuration and operation as necessary if neighboring wells are adversely impacted. Do not adversely impact neighboring private wells.
- H. Coordinate dewatering with other contractors.

3.2 INSTALLATION

- A. Install dewatering system utilizing wells, well points, or similar methods complete with pump equipment, standby power and pumps, filter material gradation, valves, appurtenances, water disposal, and surface-water controls.
 - 1. Space well points or wells at intervals required to provide sufficient dewatering.
 - 2. Use filters or other means to prevent pumping of fine sands or silts from the subsurface.
- B. Place dewatering system into operation to lower water to specified levels before excavating below ground-water level.
- C. Provide sumps, sedimentation tanks, and other flow-control devices as required by authorities having jurisdiction.
- D. Provide standby equipment on-site, installed, and available for immediate operation, to maintain dewatering on continuous basis if any part of system becomes inadequate or fails.

3.3 OPERATION

- A. Operate system continuously until drains, sewers, and structures have been constructed and fill materials have been placed or until dewatering is no longer required.
- B. Operate system to lower and control ground water to permit excavation, construction of structures, and placement of fill materials on dry subgrades. Drain water-bearing strata above and below bottom of foundations, drains, sewers, and other excavations.
 - 1. Do not permit open-sump pumping that leads to loss of fines, soil piping, subgrade softening, and slope instability.

- 2. Reduce hydrostatic head in water-bearing strata below subgrade elevations of foundations, drains, sewers, and other excavations.
- 3. Maintain piezometric water level a minimum of 24" below bottom of excavation.
- C. Dispose of water removed by dewatering in a manner that avoids endangering public health, property, and portions of work under construction or completed. Dispose of water and sediment in a manner that avoids inconvenience to others.
- D. Remove dewatering system from Project site on completion of dewatering. Plug or fill well holes with sand or cut off and cap wells a minimum of 36 inches below overlying construction.

3.4 FIELD QUALITY CONTROL

- A. Observation Wells: Provide observation wells or piezometers, take measurements, and maintain at least the minimum number indicated; additional observation wells may be required by authorities having jurisdiction.
 - 1. Observe and record daily elevation of ground water and piezometric water levels in observation wells.
 - 2. Repair or replace, within 24 hours, observation wells that become inactive, damaged, or destroyed. In areas where observation wells are not functioning properly, suspend construction activities until reliable observations can be made. Add or remove water from observation-well risers to demonstrate that observation wells are functioning properly.
 - 3. Fill observation wells, remove piezometers, and fill holes when dewatering is completed.
- B. Provide continual observation to ensure that subsurface soils are not being removed by the dewatering operation.
- C. Prepare reports of observations daily. Daily records shall be kept of:
 - 1. Discharge duration and rate
 - 2. Observed water table at time of dewatering
 - 3. Type and amount of polymer used
 - 4. Maintenance activities

3.5 PROTECTION

- A. Protect and maintain dewatering system during dewatering operations.
- B. Promptly repair damages to adjacent facilities caused by dewatering.
- C. Remove dewatering system immediately after dewatering is complete in accordance with all state, local and federal regulations.

END OF SECTION 31 23 19

This page intentionally left blank.

SECTION 31 66 15 HELICAL PILES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes designing, furnishing, installing, and testing Helical Piles and Bracket Assemblies in accordance with the Drawings and this specification. Helical Piles shall be installed at the locations and to the elevation, minimum depth, and allowable superimposed load capacities shown on the Drawings or as established herein. This work also includes load testing and pre-loading Helical Piles.

1.3 REFERENCED CODES AND STANDARDS

- A. This specification is based on nationally recognized codes and standards including the references listed below. In case of a conflict between the reference and this specification, this specification shall govern.
- B. American Society for Testing and Materials (ASTM)
 - 1. ASTM A36/A36M Structural Steel
 - 2. ASTM A123-02 Standard Specification for Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products
 - 3. ASTM A153-05 Standard Specification for Zinc Coating (Hot Dip) on Iron and Steel Hardware
 - 4. ASTM A450/A450M-07 Standard Specification for General Requirements for Carbon and Low Alloy Steel Tubes
 - 5. ASTM D1143/D1143M-07 Standard Test Method for Piles Under Static Axial Compressive Load
 - 6. ASTM D3689 Standard Test Method for Individual Piles Under Static Axial Tensile Load
 - 7. ASTM D3966-07 Standard Test Method for Piles Under Lateral Loads
- C. American Society of Mechanical Engineers (ASME)
 - 1. ANSI/ASME Standard B18.2.1-1996, Square and Hex Bolts and Screws, Inch Series
- D. Occupational Safety and Health Administration (OSHA)
 - 1. Excavation Safety Guidelines
- E. ICC-Evaluation Services, Inc.
 - 1. AC358 Acceptance Criteria for Helical Foundation Systems and Devices

- F. American Welding Society
 - 1. ANSI/AWS B2.1-00 Standard for Welding Procedure and Performance Qualification

<u>1.4</u> <u>DEFINITIONS</u>

- A. Allowable Capacity: Ultimate capacity divided by a factor of safety.
- B. Augering: Rotation of the shaft with little or no advancement. It can occur when the helical bearing plates pass from a relatively soft material into a comparatively hard material. Augering can also result from insufficient crowd or downward pressure during installation. In some cases, augering may be (temporarily) necessary in order to grind through an obstruction.
- C. Brackets: Cap plate, angle, thread bar, or other termination device that is bolted or welded to the end of a Helical Pile after completion of installation to facilitate attachment to structures or embedment in cast-in-place concrete.
- D. Crowd: Axial compressive force or pressure applied to the helical pile as needed during installation to ensure the pile progresses into the ground a distance approximately equal to the helix pitch per revolution.
- E. Extension Section: Helical Pile or sections that follow the Lead Section into the ground and extend the Helical Lead to the appropriate depth. Extension Sections consist of a central shaft and may have helical bearing plates affixed to the shaft.
- F. Geotechnical Capacity (a.k.a. Ultimate Soil Capacity): The maximum load that can be resisted through bearing of helix plates in the soil which they are embedded.
- G. Helical Pile: Manufactured steel foundation with one or more helical bearing plates that is rotated into the ground to support structures.
- H. Helical Anchor: Same as a Helical Pile. Term generally used when axial tension is the primary service load. The term "Helical Pile" will be used throughout this specification for simplicity.
- I. Lead Section: The first section of a Helical Pile to enter the ground. Lead Sections consist of a central shaft with a tapered end and one or more helical bearing plates affixed to the shaft.
- J. Pile Design Professional: Registered Professional Engineer, licensed in the State of the project responsible for the design of Helical Piles and Brackets.
- K. Safety Factor: The ratio of the ultimate resistance available to the nominal load used for the design of any helical pile component or interface (Allowable Stress Design).

1.5 DESIGN AND PERFORMANCE REQUIREMENTS

A. Helical piles shall be designed to support the allowable loads indicated on the project plans. The overall length, helix configuration and minimum torsional resistance of a

helical pile shall be such that the required Geotechnical Capacity is developed by the helix plate(s) in an appropriate bearing stratum.

- 1. The Geotechnical Capacity of the Helical Piles shall be determined using bearing only and shall not include any load-resisting contribution from skin friction on the shaft of the Helical Pile. The effects of down-drag on the shaft of the Helical Pile shall be considered in reducing the available load-resisting capacity of the pile.
- B. All steel structure pile components shall be designed within the limits provided by the American Institute of Steel Construction (AISC). Either Allowable Stress Design (ASD) or Load & Resistance Factor Design (LRFD) are acceptable methods of analysis. Product testing in accordance with ICC-ES Acceptance Criteria 358 may also be considered as an acceptable means of establishing allowable system capacities.
- C. All piles shall be installed to provide a minimum factor of safety of 2.5. Design piles to limit settlement to a maximum of 0.5 inch.
- D. The pile design shall take into account such pile spacing, soil stratification, down-drag, corrosion and strain compatibility issues as are present for the project.
- E. Pile designer to design connection to anchor rods including provision for pile location tolerance.

1.6 QUALITY ASSURANCE

- A. Due to the special requirements for manufacture and quality control of Helical Piles and Brackets, all Helical Piles and Brackets shall be obtained from a company specializing in the manufacturing and distribution of these products. The Manufacturer shall have the following qualifications:
 - 1. Documentation showing manufacturer has at least 3 years of experience in the design and manufacture of Helical Piles and that the Manufacturer's Helical Piles have been used successfully in at least 3 engineered construction projects within the last 3 years.
 - 2. Current ICC-ES product evaluation report or complete description of product testing and engineering calculations used to assess product capacity.
 - 3. Manufacturer shall have established product testing and manufacturing quality assurance programs to assess and maintain product quality. A complete description of these programs shall be included with the Manufacturer qualifications submittal.
- B. Due to the special requirements for installation of Helical Piles and Brackets, all Helical Piles and Brackets shall be installed by an organization specializing in the installation of those products. The Installer shall have the following qualifications:
 - 1. Documentation the Installer has completed training in the proper methods of installation of Helical Piles and the mounting of Brackets.
 - 2. Resume of Installer's foreman including experience in the oversight of Helical Pile installation on at least three projects in the last 3 years, including project name, number and type of Helical Piles installed, project location, and client contact information.

- 3. List of installation and testing equipment and detailed description of proposed method of installation and load testing Helical Piles.
- 4. Current ANSI/AWS welding certificate and documentation of welder experience within the last 3 years.
- C. The Contractor shall engage a Pile Design Professional specialized in the engineering and design of Helical Piles to design all Helical Piles and Brackets. The Pile Design Professional shall have the following qualifications:
 - 1. At least five (5) years of experience in this type of work as well as graduate education in structural and/or geotechnical engineering.
 - 2. Documentation of Pile Design Professional having designed Helical Piles on one project, including project name, number and type of Helical Piles, project location, and client contact information.
 - 3. Professional errors and omissions liability insurance certificate.
 - 4. Documentation of current license to practice engineering in the project state.
- D. Manufacturer shall provide a one (1) year warranty against manufacturing defects on Helical Pile and Bracket products.

1.7 ACTION SUBMITTALS

- A. Shop Drawings: Submit for review and approval, Shop Drawings and specifications for the Helical Piles intended for use on the project. Installation shall not begin until shop drawings are approved. The Shop Drawings shall include the following:
 - 1. Helical Pile product identification number(s) and designation(s).
 - 2. Maximum allowable mechanical compression and tensile strength of the Helical Piles.
 - 3. Number of Helical Piles and respective design allowable capacities from the Drawings.
 - 4. Planned installation depth and the number of lead and extension sections.
 - 5. Preliminary helical configuration (number and diameter of helical bearing plates).
 - 6. Manufacturer's recommended capacity to installation torque ratio.
 - 7. Minimum final installation torque(s).
 - 8. Product identification numbers and designations for all Bracket Assemblies and number and size of connection bolts or concrete reinforcing steel detail.
 - 9. Corrosion protection coating on Helical Piles and Bracket Assemblies.
 - 10. Product data: Include technical data for all commodity products used.
 - 11. Site plan
 - a. Dimensioned pile layout.
 - b. Field located existing utilities and obstructions. Provide plan and elevation dimensions.
- B. Delegated-Design Submittal: Contractor shall submit design calculations and analysis data signed and sealed by the Pile Design Professional for the Helical Piles and Brackets intended for use on the project. Fabrication of custom piles shall not begin and orders for standard piles shall not be placed until delegated design submittal is approved. The design calculations shall include the following:

- 1. Reduction in shaft dimension and strength by the sacrificial thickness anticipated based on corrosion loss over the design life for project soil conditions.
- 2. Considerations for downdrag, buckling, and expansive soils (as appropriate).
- 3. Minimum installation depth to reach bearing stratum and to achieve pullout capacity (if required).
- 4. Soil bearing and pullout capacity.
- 5. Lateral resistance of the shaft (if required).
- 6. Estimated pile head movement at design loads.
- 1.8 SHIPPING, STORAGE, AND HANDLING
- A. All Helical Pile and Bracket Assemblies shall be free of structural defects and protected from damage. Store Helical Piles and Bracket Assemblies on wood pallets or supports to keep from contacting the ground. Damage to materials shall be cause for rejection.

PART 2 - PRODUCTS

2.1 HELICAL PILES AND BRACKETS

- A. The Contractor's Pile Design Professional shall select the appropriate size and type of Helical Piles and Brackets to support the design loads shown on the Drawings. These specifications and the Drawings provide minimum requirements to aid the Contractor in making appropriate materials selections. The size and number of helical bearing plates must be such that the Helical Piles achieve the appropriate torque and capacity in the soils at the site within the minimum depth requirements. Failure to achieve proper torque and capacity shall result in Contractor replacing Helical Piles as appropriate to support the required loads. All material replacements shall be acceptable to Engineer.
- B. The design strength of the helical bearing plates, shaft connections, Brackets, and the pile shaft itself shall be sufficient to support the design loads specified on the Drawings multiplied by appropriate service load factors. In addition, all Helical Piles shall be manufactured to the following criteria.
 - 1. Central Shaft: The central shaft shall consist of a high strength structural steel tube meeting the requirements of ASTM A513.
 - 2. Helical Bearing Plates: One or more helical bearing plates shall be affixed to the central shaft. Helical bearing plates shall be attached to central shafts via fillet welds continuous on top and bottom and around the leading edges.
 - a. Helical bearing plates shall be cold pressed into a near perfect helical shape that when affixed to the central shaft are perpendicular with the central shaft, of uniform pitch, and such that the leading and trailing edges are within 1/4 inch of parallel.
 - b. Average helical pitch shall be within plus or minus ¼ inch of the thickness of the helical bearing plate plus 3 inches.
 - c. All helical bearing plates shall have the same pitch.
 - d. Helical bearing plates shall have circular edge geometry.
 - e. Helical bearing plate spacing along the shaft shall be between 2.4 and 3.6 times the bearing plate diameter.

- f. Helical bearing plates shall be arranged such that they theoretically track the same path as the leading bearing plate.
- 3. Corrosion Protection: Helical Piles and Brackets shall be hot-dip galvanized (per ASTM A123 or A153 as applicable) after fabrication. Apply zinc-rich field coating to any/all galvanized surfaces damaged by welding or other operations.
- 4. Shaft Connections: The Helical Pile shaft connections shall consist of an external sleeve connection or a welded connection. External sleeve connections shall be in-line, straight and rigid and shall have a maximum tolerable slack of 1/16-inch. Welded connections shall consist of a full penetration groove weld all-around the central shaft. Shaft connections shall have a flexural strength at least as great as the shaft itself.
- 5. Bolts: Bolt holes through the external sleeve and central shaft shall have a diameter that is 1/16th inch greater than the bolt diameter. Bolts and nuts used to join Helical Pile sections at the shaft connections shall be hot-dip galvanized to match the central shaft. All Helical Pile bolts shall be securely snug tightened.
- 6. External sleeve: External sleeve Helical Pile shaft connections shall consist of a high strength structural steel tube outer sleeve meeting the requirements of ASTM A513. The outer sleeve shall be welded to the central shaft via a continuous fillet weld all-around. The fillet weld shall have a throat thickness equal to the external sleeve tube thickness.
- C. Helical Piles shall be fitted with a manufactured Bracket that facilitates connection to the structure. Brackets shall be rated for the design loads shown on the Drawings. Brackets shall be affixed to the end of Helical Piles via bolts, plug welds, or continuous penetration welds meeting the requirements for shaft connections given previously in these specifications.
- D. Retrofit Helical Piles shall include brackets for connection to existing grade beams or foundation walls. Design of the brackets, connection of brackets to the existing, and connection to the helical pile is by the helical pile professional engineer.
- E. Helical Piles shall be hot-dip galvanized according to ASTM A-123.

PART 3 - EXECUTION

- 3.1 PLACEMENT REQUIREMENTS
- A. Helical Piles shall be installed in all locations indicated on the drawings.
- 3.2 EXAMINATION
- A. Contractor shall make extensive effort to locate all utilities and structures above and underground in the area of the Work. Contractor shall hydroexcavate to determine the exact location of underground utilities and buried structures within a distance from a Helical Pile equal to three times the maximum helix diameter. The Contractor shall request marking of underground utilities by an underground utility location service as required by law, and shall avoid contact with all marked underground facilities. Contractor is responsible for protection of all utilities and underground facilities.

- B. Contractor shall review the contract drawings and project Geotechnical Report to determine subsurface conditions for sizing and installation of Helical Piles. In addition, Contractor shall make a site visit to observe conditions prior to the start of Work.
- C. Contractor shall notify Engineer of any condition that would affect proper installation of Helical Piles immediately after the condition is revealed. Contractor shall halt installation work until the matter can be resolved to the satisfaction of the Engineer. Costs associated with an unforeseen condition that could have been inferred by a reasonable Contractor from the contract drawings and the available geotechnical data shall not be the responsibility of the Owner.
- D. The Contractor shall have the option of performing additional subsurface tests using methods subject to the review and acceptance of the Engineer in order to establish final helical bearing plate configurations based on local soil conditions. The data collected along with other information pertinent to the project site shall be used to determine the required helical bearing plate configuration.
- E. If excavation is required for proper installation of Helical Piles, Contractor shall make safe excavations in accordance with OSHA standards. All excavations greater than 20 feet in depth or not in strict accordance with OSHA standard details shall be designed by a registered design professional specializing in the design of excavations and shoring. The costs of all excavations, shoring, and related design shall be born by the Contractor.

3.3 INSTALLATION EQUIPMENT

- A. Torque Motor: Helical Piles should be installed with high torque, low RPM torque motors, which allow the helical plates to advance with minimal soil disturbance. The torque motor shall be hydraulic power driven with clockwise and counterclockwise rotation capability. The torque motor shall be adjustable with respect to revolutions per minute during installation. Percussion drilling equipment shall not be permitted. The torque motor shall have torque capacity greater than the minimum final installation torque required for the project. The connection between the torque motor and the installation rig shall have no more than two pivot hinges oriented 90 degrees from each other. Additional hinges promote wobbling and affect lateral capacity.
- B. Installation Equipment: The installation equipment shall be capable of applying adequate crowd and torque simultaneously to ensure normal advancement of the Helical Piles. The equipment shall be capable of maintaining proper alignment and position.
- C. Drive Tool: The connection between the torque motor and Helical Pile shall be in-line, straight, and rigid, and shall consist of a hexagonal, square, or round kelly bar adapter and helical shaft socket. To ensure proper fit, the drive tool shall be manufactured by the Helical Pile manufacturer and used in accordance with the manufacturer's installation instructions.
- D. Connection Pins: The central shaft of the Helical Pile shall be attached to the drive tool by ASME SAE Grade 8 smooth tapered pins matching the number and diameter of the specified shaft connection bolts. The connection pins should be maintained in good condition and safe to operate at all times. The pins should be regularly inspected for wear and deformation. Pins should be replaced with identical pins when worn or damaged.

E. Torque Indicator: A torque indicator shall be used to measure installation torque during installation. The torque indicator can be an integral part of the installation equipment or externally mounted in-line with the installation tooling. The torque indicator shall be capable of torque measurements with a sensitivity of 500 ft-lb or less. Torque indicators shall have been calibrated within 1-year prior to start of Work. Torque indicators that are an integral part of the installation equipment shall be calibrated on-site. Torque indicators that are mounted in-line with the installation tooling shall be calibrated either on-site or at an appropriately equipped test facility. Indicators that measure torque as a function of hydraulic pressure shall be re-calibrated following any maintenance performed on the torque motor. Torque indicators shall be re-calibrated if, in the opinion of the Engineer, reasonable doubt exists as to the accuracy of the torque measurements.

3.4 INSTALLATION PROCEDURES

- A. Contractor shall furnish and install all helical piles per the project plans and approved pile design documentation. In the event of conflict between the project plans and the approved pile design documentation, the Contractor shall not begin construction on any affected items until receiving direction by the Engineer.
- B. The number and size of helical blades shall be determined by the Contractor's Pile Design Professional in order to achieve the required torque and tensile/bearing capacity for the soil conditions at the site. The ratio of design load to the total area of the helical bearing plates shall not exceed the Allowable Bearing Capacity.
- C. Connect the lead section to the Torque Motor using the Drive Tool and Connection Pins. Position and align the Lead Section at the location and to the inclination shown on the Drawings and crowd the pilot point into the soil. Advance the Lead Section and continue to add Extension Sections to achieve the Termination Criteria. All sections shall be advanced into the soil in a smooth, continuous manner at a rate of rotation between 5 and 25 revolutions per minute. Snug tight all coupling bolts.
 - 1. The lead section shall be positioned at the location as shown on the pile design drawings. Inclined helical piles can be positioned perpendicular to the ground to assist in initial advancement into the soil before the required batter angle shall be established. After initial penetration, the required inclination angle shall be established.
 - 2. Constant axial force (crowd) shall be applied while rotating Helical Piles into the ground. The crowd applied shall be sufficient to ensure that the Helical Pile advances uniformly into the ground a distance approximately equal to the blade pitch per revolution during normal advancement.
 - 3. The rate of rotation and magnitude of down pressure shall be adjusted for different soil conditions and depths.
- D. The manufacturer's torsional strength rating of the Helical Pile shall not be exceeded during installation.
- E. Bolt-hole elongation due to torsion of the shaft of a Helical Pile at the drive tool shall be limited to 1/4-inch. Helical Piles with bolt-hole damage exceeding this criterion shall be uninstalled, removed, and discarded.
- F. When the Termination Criteria of a Helical Pile is obtained, the Contractor shall adjust the elevation of the top end of the shaft to the elevation shown on the Drawings or as required. This adjustment may consist of cutting off the top of the shaft and drilling new holes to facilitate installation of Brackets to the orientation shown on the Drawings. Alternatively, installation may continue until the final elevation and orientation of the predrilled bolt holes are in alignment. Contractor shall not reverse the direction of torque and back-out the Helical Pile to obtain the final elevation.
- G. The Contractor shall install Brackets as directed by the Helical Pile manufacturer.
- H. All Helical Pile components, including the shaft and Bracket, shall be isolated from making a direct electrical contact with any concrete reinforcing bars or other non-galvanized metal objects since these contacts may alter corrosion rates.
- I. The Helical Pile installation technique shall be such that it is consistent with the geotechnical, logistical, environmental, and load carrying conditions of the project.

3.5 TERMINATION CRITERIA

- A. Helical Piles shall be advanced until all of the following criteria are satisfied.
 - 1. Axial capacity is verified by achieving the final installation torque as provided by the Pile Design Professional.
 - 2. Minimum depth is obtained. The minimum depth shall be as required to ensure all helical bearing plates are located below any OH/OL strata (see Section 1.5.F), or the depth at which the final installation torque is measured, whichever is greater. In addition, Helical Piles shall be advanced until the average torque over the last three (3) feet equals or exceeds the required final installation torque.
- B. If the torsional strength rating of the Helical Pile and/or the maximum torque of the installation equipment has been reached or augering occurs prior to achieving the minimum depth required, the Contractor shall have the following options:
 - 1. Terminate the installation at the depth obtained subject to the review and acceptance of the Engineer and Owner.
 - 2. Remove the Helical Pile and install a new one with fewer and/or smaller diameter helical bearing plates or with dual cutting edge helical bearing plates. The new helical configuration shall be subject to review and acceptance of the Engineer.
 - 3. Remove the Helical Pile and pre-drill a 4-inch diameter pilot hole in the same location and reinstall the anchor/pile.
 - 4. If the obstruction is shallow, remove the Helical Pile and remove the obstruction by surface excavation. Backfill and compact the resulting excavation and reinstall the anchor/pile.
 - 5. Remove the Helical Pile and relocate 1-foot to either side of the installation location subject to the review and acceptance of Engineer.
 - 6. Reverse the direction of torque, back-out the Helical Pile a distance of 1 to 2 feet and attempt to reinstall by decreasing crowd and augering through the obstruction.
 - 7. Remove the Helical Pile and sever the uppermost helical bearing plate from the Lead Section if more than one helical bearing plate is in use, or reshape the

helical bearing plates to create a special tapered edge by cutting with a band saw. Reinstall the anchor or pile with revised helical bearing plate configuration.

C. The Contractor shall install all Helical Piles to the depth required to achieve the specified installation torque by using additional Extension Sections.

3.6 ALLOWABLE TOLERANCES

- A. Helical Piles shall be installed within 2-inches of the indicated plan location.
- B. Helical pile shaft alignment shall be within 5 degrees of the inclination angle shown on the plans.
 - 1. Unless otherwise noted, Helical Piles indicated on the plans are to be vertical.
- C. Top elevation of helical piles shall be within ¹/₂ inch of the design vertical elevation.

3.7 FIELD QUALITY CONTROL

- A. Engage a qualified, independent testing and inspection agency acceptable to the Engineer to observe and document a minimum of 10 percent of Helical Pile installations. The inspection agency shall also observe and document all load tests.
- B. The Contractor shall provide the Engineer copies of installation records within 48 hours after each installation is completed. These installation records shall include, but are not limited to, the following information:
 - 1. Name of project and Contractor.
 - 2. Name of Contractor's supervisor during installation.
 - 3. Date and time of installation.
 - 4. Name and model of installation equipment.
 - 5. Type of torque indicator used.
 - 6. Location of Helical Pile by grid location, diagram, or assigned identification number.
 - 7. Type and configuration of Lead Section with length of shaft and number and size of helical bearing plates.
 - 8. Type and configuration of Extension Sections with length and number and size of helical bearing plates, if any.
 - 9. Installation duration and observations.
 - 10. Total length installed.
 - 11. Final elevation of top of shaft and cut-off length, if any.
 - 12. Final plumbness or inclination of shaft.
 - 13. Installation torque at minimum three-foot depth intervals.
 - 14. Final installation torque.
 - 15. Comments pertaining to interruptions, obstructions, or other relevant information.
 - 16. Verified axial load capacity.
- C. If a load test fails the forgoing acceptance criteria, the Contractor shall modify the Helical Pile design and/or installation methods and retest the modified pile, as directed by the Pile Design Professional and the Engineer. These modifications include, but are not limited to, increasing the pile installation depth, increasing the minimum final installation

torque, increasing the quantity and or size of the helical blades. Any modifications of design or construction procedures, and any retesting required shall be at the Contractor's expense.

- D. The Contractor shall provide the Engineer with copies of raw field load test data or reports within 24 hours after completion of each load test. Formal load test reports confirming configuration and construction details shall be provided to the Engineer within 7 days of completion of the load tests. This written documentation will either confirm the load capacity as required on the working drawings or propose changes based upon the results of the tests. At a minimum, the documentation shall include:
 - 1. Name of project and Contractor.
 - 2. Date, time, and duration of test.
 - 3. Location of test Helical Pile by grid location, diagram, or assigned identification number.
 - 4. Test procedure (ASTM D1143, D3689, or D3966).
 - 5. List of any deviations from procedure.
 - 6. Description of calibrated testing equipment and test set-up.
 - 7. Type and configuration of Helical Pile including lead section, number and type of extension sections, and manufacturer's product identification numbers.
 - 8. Load steps and duration of each load increment.
 - 9. Cumulative pile-head movement at each load step.
 - 10. Comments pertaining to test procedure, equipment adjustments, or other relevant information.

3.8 CLEANUP

A. Within one week of completion of the work, the Contractor shall remove any and all material, equipment, tools, building materials, concrete forms, debris, or other items resulting from installation of Helical Piles.

END OF SECTION 31 66 15

This page intentionally left blank.

SECTION 32 12 16 ASPHALT PAVING

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Hot-mix asphalt paving.
- 1.3 ACTION SUBMITTALS
- A. Hot-Mix Asphalt Designs:
 - 1. WisDOT approval of each hot-mix asphalt design proposed for the Work.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For paving-mix manufacturer and testing agency. Paving subcontractor and testing firm shall be approved to work on WisDOT projects.
- B. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Manufacturer Qualifications: A paving-mix manufacturer registered with and approved by Wis DOT.
- B. Testing Agency Qualifications: Qualified in accordance with WisDOT for testing indicated.
- C. Regulatory Requirements: Comply with materials, workmanship, and other applicable requirements of WisDOT or City of Madison standard specifications for asphalt paving work.
 - 1. Measurement and payment provisions and safety program submittals included in standard specifications do not apply to this Section.

1.6 FIELD CONDITIONS

- A. Environmental Limitations: Do not apply asphalt materials if subgrade is wet or excessively damp, if rain is imminent or expected before time required for adequate cure, or if the following conditions are not met:
 - 1. Tack Coat: Minimum surface temperature of 60 deg F.

- 2. Asphalt Base Course: Minimum surface temperature of 40 deg F and rising at time of placement.
- 3. Asphalt Surface Course: Minimum surface temperature of 60 deg F at time of placement.

PART 2 - PRODUCTS

2.1 AGGREGATES

- A. General: Use materials and gradations that have performed satisfactorily in previous installations.
- B. Coarse Aggregate: ASTM D692/D692M, sound; angular crushed stone, crushed gravel, or cured, crushed blast-furnace slag.
- C. Fine Aggregate: ASTM D1073, sharp-edged natural sand or sand prepared from stone, gravel, cured blast-furnace slag, or combinations thereof.
 - 1. For hot-mix asphalt, limit natural sand to a maximum of 20 percent by weight of the total aggregate mass.
- D. Mineral Filler: ASTM D242/D242M, rock or slag dust, hydraulic cement, or other inert material.
- 2.2 ASPHALT MATERIALS
- A. Asphalt Binder: binder designation PG 58-28.
- B. Tack Coat: ASTM D977 emulsified asphalt, or ASTM D2397/D2397M cationic emulsified asphalt, slow setting, diluted in water, of suitable grade and consistency for application.
- C. Water: Potable.

2.3 AUXILIARY MATERIALS

A. Recycled Materials for Hot-Mix Asphalt Mixes: Reclaimed asphalt pavement; reclaimed, unbound-aggregate base material; and recycled tires, asphalt shingles or glass from sources and gradations that have performed satisfactorily in previous installations, equal to performance of required hot-mix asphalt paving produced from all new materials.

<u>2.4</u> <u>MIXES</u>

- A. Hot-Mix Asphalt: Dense-graded, hot-laid, hot-mix asphalt plant mixes approved by WisDOT and complying with the following requirements:
 - 1. Provide mixes with a history of satisfactory performance in geographical area where Project is located.
 - 2. Base Course: 3 MT 58-28 S.
 - 3. Surface Course: 4 MT 58-28 S.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify that base course is dry and in suitable condition to begin paving.
- B. Proceed with paving only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Protection: Provide protective materials, procedures, and worker training to prevent asphalt materials from spilling, coating, or building up on curbs, driveway aprons, manholes, and other surfaces adjacent to the Work.
- B. Proof-roll base course below pavements with heavy pneumatic-tired equipment to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades.
 - 1. Completely proof-roll base course in one direction. Limit vehicle speed to 3 mph.
 - 2. Proof-roll with a loaded 10-wheel, tandem-axle dump truck weighing not less than 15 tons.
 - 3. Excavate soft spots, unsatisfactory soils, and areas of excessive pumping or rutting, as determined by Architect, and replace with compacted backfill or fill as directed.

3.3 SURFACE PREPARATION

- A. Ensure that prepared base course has been proof-rolled and is ready to receive paving. Immediately before placing asphalt materials, remove loose and deleterious material from substrate surfaces.
- B. Tack Coat: Apply uniformly to surfaces of existing pavement at a rate of 0.05 to 0.15 gal./sq. yd.
 - 1. Allow tack coat to cure undisturbed before applying hot-mix asphalt paving.
 - 2. Avoid smearing or staining adjoining surfaces, appurtenances, and surroundings. Remove spillages and clean affected surfaces.

3.4 HOT-MIX ASPHALT PLACEMENT

- A. Machine place hot-mix asphalt on prepared surface, spread uniformly, and strike off. Place asphalt mix by hand in areas inaccessible to equipment in a manner that prevents segregation of mix. Place each course to required grade, cross section, and thickness when compacted.
 - 1. Place hot-mix asphalt base course in number of lifts and thicknesses indicated.
 - 2. Place hot-mix asphalt surface course in single lift.
 - 3. Spread mix at a minimum temperature of 250 deg F.
 - 4. Begin applying mix along centerline of crown for crowned sections and on high side of one-way slopes unless otherwise indicated.

- 5. Regulate paver machine speed to obtain smooth, continuous surface free of pulls and tears in asphalt-paving mat.
- B. Place paving in consecutive strips not less than 10 feet wide unless infill edge strips of a lesser width are required.
 - 1. After first strip has been placed and rolled, place succeeding strips and extend rolling to overlap previous strips. Overlap mix placement about 1 to 1½ inches from strip to strip to ensure proper compaction of mix along longitudinal joints.
 - 2. Complete a section of asphalt base course before placing asphalt surface course.
- C. Promptly correct surface irregularities in paving course behind paver. Use suitable hand tools to remove excess material forming high spots. Fill depressions with hot-mix asphalt to prevent segregation of mix; use suitable hand tools to smooth surface.

<u>3.5</u> <u>JOINTS</u>

- A. Construct joints to ensure a continuous bond between adjoining paving sections. Construct joints free of depressions, with same texture and smoothness as other sections of hot-mix asphalt course.
 - 1. Clean contact surfaces and apply tack coat to joints.
 - 2. Offset longitudinal joints, in successive courses, a minimum of 6 inches.
 - 3. Offset transverse joints, in successive courses, a minimum of 24 inches.
 - 4. Construct transverse joints at each point where paver ends a day's work and resumes work at a subsequent time. Construct these joints using either "bulkhead" or "papered" method in accordance with AI MS-22, for both "Ending a Lane" and "Resumption of Paving Operations."
 - 5. Compact joints as soon as hot-mix asphalt will bear roller weight without excessive displacement.
 - 6. Compact asphalt at joints to a density within 2 percent of specified course density.

3.6 COMPACTION

- A. General: Begin compaction as soon as placed hot-mix paving will bear roller weight without excessive displacement. Compact hot-mix paving with hot hand tampers or with vibratory-plate compactors in areas inaccessible to rollers.
 - 1. Complete compaction before mix temperature cools to 185 deg F.
- B. Breakdown Rolling: Complete breakdown or initial rolling immediately after rolling joints and outside edge. Examine surface immediately after breakdown rolling for indicated crown, grade, and smoothness. Correct laydown and rolling operations to comply with requirements.
- C. Intermediate Rolling: Begin intermediate rolling immediately after breakdown rolling while hot-mix asphalt is still hot enough to achieve specified density. Continue rolling until hot-mix asphalt course has been uniformly compacted to WisDOT density requirements:

- D. Finish Rolling: Finish roll paved surfaces to remove roller marks while hot-mix asphalt is still warm.
- E. Edge Shaping: While surface is being compacted and finished, trim edges of pavement to proper alignment. Bevel edges while asphalt is still hot; compact thoroughly.
- F. Repairs: Remove paved areas that are defective or contaminated with foreign materials and replace with fresh, hot-mix asphalt. Compact by rolling to specified density and surface smoothness.
- G. Protection: After final rolling, do not permit vehicular traffic on pavement until it has cooled and hardened.
- H. Erect barricades to protect paving from traffic until mixture has cooled enough not to become marked.

3.7 INSTALLATION TOLERANCES

- A. Pavement Thickness: Compact each course to produce thickness indicated within the following tolerances:
 - 1. Base Course: Plus or minus 1/2 inch.
 - 2. Surface Course: Plus 1/4 inch, no minus.
- B. Pavement Surface Smoothness: Compact each course to produce surface smoothness within the following tolerances as determined by using a 10-foot straightedge applied transversely or longitudinally to paved areas:
 - 1. Surface Course: ¼ inch.

3.8 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. In-Place Density: Perform density testing as required by WisDOT standard specifications.
- C. Remove and replace or install additional hot-mix asphalt where test results or measurements indicate that it does not comply with specified requirements.

END OF SECTION 32 12 16

This page intentionally left blank.

SECTION 32 13 13 CONCRETE PAVING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Sidewalks
 - 2. Aprons
 - 3. Driveways

<u>1.3</u> <u>DEFINITIONS</u>

- A. Cementitious Materials: Portland cement alone or in combination with one or more of blended hydraulic cement, fly ash and other pozzolans, and ground granulated blastfurnace slag.
- 1.4 ACTION SUBMITTALS
- A. Product Data: For each type of product indicated.

1.5 INFORMATIONAL SUBMITTALS

- A. Material Certificates: For the following, from manufacturer:
 - 1. Cementitious materials.
 - 2. Fiber reinforcement.
 - 3. Admixtures.
 - 4. Curing compounds.
 - 5. Bonding agent or epoxy adhesive.
 - 6. Joint fillers.
- B. Material Test Reports: For each of the following:
 - 1. Aggregates.
- C. Field quality-control reports.

1.6 QUALITY ASSURANCE

A. Ready-Mix-Concrete Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C 94/C 94M requirements for production facilities and equipment.

- B. Concrete Testing Service: Engage a qualified testing agency to perform material evaluation tests and to design concrete mixtures.
- C. ACI Publications: Comply with ACI 301 (ACI 301M) unless otherwise indicated.

1.7 PROJECT CONDITIONS

A. Traffic Control: Maintain access for vehicular and pedestrian traffic as required for other construction activities.

PART 2 - PRODUCTS

2.1 FORMS

- A. Form Materials: Plywood, metal, metal-framed plywood, or other approved panel-type materials to provide full-depth, continuous, straight, and smooth exposed surfaces.
- B. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect concrete surfaces and that will not impair subsequent treatments of concrete surfaces.

2.2 CONCRETE MATERIALS

- A. Cementitious Material: Use the following cementitious materials, of same type, brand, and source throughout Project:
 - 1. Portland Cement: ASTM C 150, gray portland cement Type I. Supplement with the following, if desired:
 - a. Fly Ash: ASTM C 618, Class C.
 - b. Ground Granulated Blast-Furnace Slag: ASTM C 989, Grade 100 or 120.
- B. Normal-Weight Aggregates: ASTM C 33, Class 4S, uniformly graded. Provide aggregates from a single source.
 - 1. Maximum Coarse-Aggregate Size: 1 inch (25 mm) nominal.
 - 2. Fine Aggregate: Free of materials with deleterious reactivity to alkali in cement.
- C. Water: Potable and complying with ASTM C 94/C 94M.
- D. Air-Entraining Admixture: ASTM C 260.
- E. Chemical Admixtures: Admixtures certified by manufacturer to be compatible with other admixtures and to contain not more than 0.1 percent water-soluble chloride ions by mass of cementitious material.
 - 1. Water-Reducing Admixture: ASTM C 494/C 494M, Type A.
 - 2. Retarding Admixture: ASTM C 494/C 494M, Type B.
 - 3. Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type D.

2.3 FIBER REINFORCEMENT (OPTIONAL)

A. Synthetic Fiber: Monofilament or fibrillated polypropylene fibers engineered and designed for use in concrete paving, complying with ASTM C 1116/C 1116M, Type III, ½ to 1½ inches (13 to 38 mm) long.

2.4 CURING MATERIALS

- A. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet.
- B. White, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 2, Class B, dissipating.

2.5 RELATED MATERIALS

A. Joint Fillers: ASTM D 1751, asphalt-saturated cellulosic fiber in preformed strips.

2.6 CONCRETE MIXTURES

- A. Prepare design mixtures, proportioned according to ACI 301 (ACI 301M), for each type and strength of normal-weight concrete, and as determined by either laboratory trial mixtures or field experience. A previous mix design with performance history may be submitted.
 - 1. Use a qualified independent testing agency for preparing and reporting proposed concrete design mixtures for the trial batch method.
- B. Proportion mixtures to provide normal-weight concrete with the following properties:
 - 1. Compressive Strength (28 Days): 4000 psi (27.6 MPa).
 - 2. Maximum Water-Cementitious Materials Ratio at Point of Placement: 0.45.
 - 3. Slump Limit: 4 inches (100 mm), plus or minus 1 inch (25 mm).
- C. Add air-entraining admixture at manufacturer's prescribed rate to result in normal-weight concrete at point of placement having an air content as follows:
 - 1. Air Content: 6 percent plus or minus 1.5 percent for 1-inch (25-mm) or 3/4-inch nominal maximum aggregate size.
- D. Limit water-soluble, chloride-ion content in hardened concrete to 0.15 percent by weight of cement.
- E. Chemical Admixtures: Use admixtures according to manufacturer's written instructions.
 - 1. Use water-reducing admixture in concrete as required for placement and workability.
 - 2. Use water-reducing and retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.
- F. Cementitious Materials: Limit percentage, by weight, of cementitious materials other than portland cement in concrete as follows:

- 1. Fly Ash or Pozzolan: 25 percent.
- 2. Ground Granulated Blast-Furnace Slag: 50 percent.
- 3. Combined Fly Ash or Pozzolan, and Ground Granulated Blast-Furnace Slag: 50 percent, with fly ash or pozzolan not exceeding 25 percent.
- G. Synthetic Fiber: Uniformly disperse in concrete mixture at manufacturer's recommended rate, but not less than 1.0 lb/cu. yd. (0.60 kg/cu. m).
- 2.7 CONCRETE MIXING
- A. Ready-Mixed Concrete: Measure, batch, and mix concrete materials and concrete according to ASTM C 94/C 94M. Furnish batch certificates for each batch discharged and used in the Work.
 - 1. When air temperature is between 85 and 90 deg F (30 and 32 deg C), reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F (32 deg C), reduce mixing and delivery time to 60 minutes.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine exposed subgrades and subbase surfaces for compliance with requirements for dimensional, grading, and elevation tolerances.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Remove loose material from compacted subbase surface immediately before placing concrete.

3.3 EDGE FORMS AND SCREED CONSTRUCTION

- A. Set, brace, and secure edge forms, bulkheads, and intermediate screed guides to required lines, grades, and elevations. Install forms to allow continuous progress of work and so forms can remain in place at least 24 hours after concrete placement.
- B. Clean forms after each use and coat with form-release agent to ensure separation from concrete without damage.

<u>3.4</u> JOINTS

- A. General: Form construction, isolation, and contraction joints and tool edges true to line, with faces perpendicular to surface plane of concrete. Construct transverse joints at right angles to centerline unless otherwise indicated.
 - 1. When joining existing paving, place transverse joints to align with previously placed joints unless otherwise indicated.

- B. Construction Joints: Set construction joints at side and end terminations of paving and at locations where paving operations are stopped for more than one-half hour unless paving terminates at isolation joints.
- C. Isolation Joints: Form isolation joints of preformed joint-filler strips abutting the building.
 - 1. Extend joint fillers full width and depth of joint.
 - 2. Terminate joint filler not less than ½ inch (13 mm) or more than 1 inch (25 mm) below finished surface if joint sealant is indicated.
 - 3. Place top of joint filler flush with finished concrete surface if joint sealant is not indicated.
 - 4. Furnish joint fillers in one-piece lengths. Where more than one length is required, lace or clip joint-filler sections together.
 - 5. During concrete placement, protect top edge of joint filler with metal, plastic, or other temporary preformed cap. Remove protective cap after concrete has been placed on both sides of joint.
- D. Contraction Joints: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of the concrete thickness.
 - 1. Grooved Joints: Form contraction joints after initial floating by grooving and finishing each edge of joint with grooving tool to a ¼-inch (6-mm) radius. Repeat grooving of contraction joints after applying surface finishes. Eliminate grooving-tool marks on concrete surfaces.
- E. Edging: After initial floating, tool edges of paving and joints in concrete with an edging tool to a ¼-inch (6-mm) radius. Repeat tooling of edges after applying surface finishes. Eliminate edging-tool marks on concrete surfaces.

3.5 CONCRETE PLACEMENT

- A. Before placing concrete, inspect and complete formwork installation and items to be embedded or cast-in.
- B. Remove snow, ice, or frost from subbase surface before placing concrete. Do not place concrete on frozen surfaces.
- C. Moisten subbase to provide a uniform dampened condition at time concrete is placed. Do not place concrete around manholes or other structures until they are at required finish elevation and alignment.
- D. Comply with ACI 301 (ACI 301M) requirements for measuring, mixing, transporting, and placing concrete.
- E. Do not add water to concrete during delivery or at Project site. Do not add water to fresh concrete after testing.
- F. Deposit and spread concrete in a continuous operation between transverse joints. Do not push or drag concrete into place or use vibrators to move concrete into place.

- G. Consolidate concrete according to ACI 301 (ACI 301M) by mechanical vibrating equipment supplemented by hand spading, rodding, or tamping.
 - 1. Consolidate concrete along face of forms and adjacent to transverse joints with an internal vibrator. Keep vibrator away from side forms. Use only square-faced shovels for hand spreading and consolidation.
- H. Screed paving surface with a straightedge and strike off.
- I. Commence initial floating using bull floats or darbies to impart an open-textured and uniform surface plane before excess moisture or bleed water appears on the surface. Do not further disturb concrete surfaces before beginning finishing operations or spreading surface treatments.
- J. Cold-Weather Placement: Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing, or low temperatures. Comply with ACI 306.1 and the following:
 - When air temperature has fallen to or is expected to fall below 40 deg F (4.4 deg C), uniformly heat water and aggregates before mixing to obtain a concrete mixture temperature of not less than 50 deg F (10 deg C) and not more than 80 deg F (27 deg C) at point of placement.
 - 2. Do not use frozen materials or materials containing ice or snow.
 - 3. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in design mixtures.
- K. Hot-Weather Placement: Comply with ACI 301 (ACI 301M) and as follows when hotweather conditions exist:
 - Cool ingredients before mixing to maintain concrete temperature below 90 deg F (32 deg C) at time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated in total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.
 - 2. Fog-spray forms and subgrade just before placing concrete. Keep subgrade moisture uniform without standing water, soft spots, or dry areas.

3.6 FLOAT FINISHING

- A. General: Do not add water to concrete surfaces during finishing operations.
- B. Float Finish: Begin the second floating operation when bleed-water sheen has disappeared, and concrete surface has stiffened sufficiently to permit operations. Float surface with power-driven floats or by hand floating if area is small or inaccessible to power units. Finish surfaces to true planes. Cut down high spots and fill low spots. Refloat surface immediately to uniform granular texture.
 - 1. Medium-to-Fine-Textured Broom Finish: Draw a soft-bristle broom across floatfinished concrete surface perpendicular to line of traffic to provide a uniform, fineline texture.

3.7 CONCRETE PROTECTION AND CURING

- A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures.
- B. Comply with ACI 306.1 for cold-weather protection.
- C. Evaporation Retarder: Apply evaporation retarder to concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h (1 kg/sq. m x h) before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete but before float finishing.
- D. Begin curing after finishing concrete but not before free water has disappeared from concrete surface.
- E. Curing Methods: Cure concrete by moisture-retaining-cover curing or curing compound as follows:
 - 1. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moistureretaining cover, placed in widest practicable width, with sides and ends lapped at least 12 inches (300 mm) and sealed by waterproof tape or adhesive. Immediately repair any holes or tears occurring during installation or curing period using cover material and waterproof tape.
 - 2. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas that have been subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating, and repair damage during curing period.

3.8 PAVING TOLERANCES

- A. Comply with tolerances in ACI 117 and as follows:
 - 1. Elevation: 3/8 inch (10 mm).
 - 2. Thickness: Plus 3/8 inch (10 mm), minus ¼ inch (6 mm).
 - 3. Surface: Gap below 10-foot- (3-m-) long, unleveled straightedge not to exceed ¹/₄ inch (6 mm).
 - 4. Contraction Joint Depth: Plus ¹/₄ inch (6 mm), no minus.
 - 5. Joint Width: Plus 1/8 inch (3 mm), no minus.

3.9 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Testing Services: Testing of composite samples of fresh concrete obtained according to ASTM C 172 shall be performed according to the following requirements:
 - 1. Testing Frequency: Obtain at least one (1) composite sample for each separate placement location of each concrete mixture placed each day.

- 2. Slump: ASTM C 143/C 143M; one test at point of placement for each composite sample, but not less than one test for each day's placement of each concrete mixture. Perform additional tests when concrete consistency appears to change.
- 3. Air Content: ASTM C 231, pressure method; one test for each composite sample, but not less than one test for each day's placement of each concrete mixture.
- 4. Concrete Temperature: ASTM C 1064/C 1064M; one test hourly when air temperature is 40 deg F (4.4 deg C) and below and when it is 80 deg F (27 deg C) and above, and one test for each composite sample.
- 5. Compression Test Specimens: ASTM C 31/C 31M; cast and laboratory cure one set of three standard cylinder specimens for each composite sample.
- 6. Compressive-Strength Tests: ASTM C 39/C 39M; test one specimen at seven days and two specimens at 28 days.
 - a. A compressive-strength test shall be the average compressive strength from two specimens obtained from same composite sample and tested at 28 days.
- C. Strength of each concrete mixture will be satisfactory if compressive-strength tests equal or exceed specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi (3.4 MPa).
- D. Test results shall be reported in writing to Owner, concrete manufacturer, and Contractor within 48 hours of testing. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mixture proportions and materials, compressive breaking strength, and type of break for both 7- and 28-day tests.
- E. Additional Tests: Testing and inspecting agency shall make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met.
- F. Concrete paving will be considered defective if it does not pass tests and inspections.
- G. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.
- H. Prepare test and inspection reports.

3.10 REPAIRS AND PROTECTION

- A. Remove and replace concrete paving that is broken, damaged, or defective or that does not comply with requirements in this Section. Remove work in complete sections from joint to joint unless otherwise approved.
- B. Protect concrete paving from damage. Exclude traffic from paving for at least 14 days after placement. When construction traffic is permitted, maintain paving as clean as possible by removing surface stains and spillage of materials as they occur.

C. Maintain concrete paving free of stains, discoloration, dirt, and other foreign material. Sweep paving not more than two days before date scheduled for Substantial Completion inspections.

END OF SECTION 32 13 13

This page intentionally left blank.

SECTION 32 13 73 CONCRETE PAVING JOINT SEALANTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Hot-applied, fuel-resistant joint sealants.
 - 2. Joint-sealant backer materials.
 - 3. Primers.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Paving-Joint-Sealant Schedule: Include the following information:
 - 1. Joint-sealant application, joint location, and designation.
 - 2. Joint-sealant manufacturer and product name.
 - 3. Joint-sealant formulation.
 - 4. Joint-sealant color.

1.4 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of joint sealant and accessory.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.

1.6 FIELD CONDITIONS

- A. Do not proceed with installation of joint sealants under the following conditions:
 - 1. When ambient and substrate temperature conditions are outside limits permitted by joint-sealant manufacturer or are below 40 deg F.
 - 2. When joint substrates are wet.
 - 3. Where joint widths are less than those allowed by joint-sealant manufacturer for applications indicated.
 - 4. Where contaminants capable of interfering with adhesion have not yet been removed from joint substrates.

PART 2 - PRODUCTS

2.1 MATERIALS, GENERAL

A. Compatibility: Provide joint sealants, backing materials, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by joint-sealant manufacturer, based on testing and field experience.

2.2 HOT-APPLIED, FUEL-RESISTANT JOINT SEALANTS

- A. Hot-Applied, Fuel-Resistant, Single-Component Joint Sealants: ASTM D 7116, Type I or Type II.
- B. Hot-Applied, Fuel-Resistant, Single-Component Joint Sealants: ASTM D 7116, Type III.

2.3 JOINT-SEALANT BACKER MATERIALS

A. Round Backer Rods for Hot-Applied Joint Sealants: ASTM D 5249, Type 1, of diameter and density required to control sealant depth and prevent bottom-side adhesion of sealant.

2.4 PRIMERS

A. Primers: Product recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine joints to receive joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting joint-sealant performance.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Cleaning of Joints: Before installing joint sealants, clean out joints immediately to comply with joint-sealant manufacturer's written instructions.
 - 1. Remove all foreign material from joint substrates that could interfere with adhesion of joint sealant, including dust, old joint sealants, oil, grease, waterproofing, water repellents, water, surface dirt, and frost.
- B. Joint Priming: Prime joint substrates where indicated or where recommended in writing by joint-sealant manufacturer, based on preconstruction joint-sealant-substrate tests or prior experience. Apply primer to comply with joint-sealant manufacturer's written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces.

3.3 INSTALLATION OF JOINT SEALANTS

- A. Comply with joint-sealant manufacturer's written installation instructions for products and applications indicated unless more stringent requirements apply.
- B. Joint-Sealant Installation Standard: Comply with recommendations in ASTM C 1193 for use of joint sealants as applicable to materials, applications, and conditions.
- C. Install joint-sealant backings to support joint sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.
 - 1. Do not leave gaps between ends of joint-sealant backings.
 - 2. Do not stretch, twist, puncture, or tear joint-sealant backings.
 - 3. Remove absorbent joint-sealant backings that have become wet before sealant application and replace them with dry materials.
- D. Install joint sealants immediately following backing installation, using proven techniques that comply with the following:
 - 1. Place joint sealants so they fully contact joint substrates.
 - 2. Completely fill recesses in each joint configuration.
 - 3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.
- E. Tooling of Nonsag Joint Sealants: Immediately after joint-sealant application and before skinning or curing begins, tool sealants according to the following requirements to form smooth, uniform beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint:
 - 1. Remove excess joint sealant from surfaces adjacent to joints.
 - 2. Use tooling agents that are approved in writing by joint-sealant manufacturer and that do not discolor sealants or adjacent surfaces.
- F. Provide joint configuration to comply with joint-sealant manufacturer's written instructions unless otherwise indicated.

3.4 CLEANING AND PROTECTION

- A. Clean off excess joint sealant as the Work progresses, by methods and with cleaning materials approved in writing by joint-sealant manufacturers.
- B. Protect joint sealants, during and after curing period, from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out and remove damaged or deteriorated joint sealants immediately and replace with joint sealant so installations in repaired areas are indistinguishable from the original work.

3.5 PAVING-JOINT-SEALANT SCHEDULE

- A. Joint-Sealant Application: Fuel-resistant joints within concrete paving.
 - 1. Joint Location:
 - a. Expansion and isolation joints in concrete paving.
 - b. Contraction joints in concrete paving.
 - c. Other joints as indicated.
 - 2. Joint Sealant: Fuel-resistant, multicomponent, pourable, modified-urethane, elastomeric joint sealant Hot-applied, fuel-resistant, single-component joint sealant.

END OF SECTION 32 13 73

SECTION 32 17 23 PAVEMENT MARKINGS

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Painted markings applied to asphalt paving.
 - 2. Painted markings applied to concrete surfaces.

1.3 ACTION SUBMITTALS

- A. Product Data: Include technical data and tested physical and performance properties.
 - 1. Pavement-marking paint, latex.

1.4 QUALITY ASSURANCE

- A. Regulatory Requirements: Comply with materials, workmanship, and other applicable requirements of WisDOT for pavement-marking work.
 - 1. Measurement and payment provisions and safety program submittals included in standard specifications do not apply to this Section.

1.5 FIELD CONDITIONS

A. Environmental Limitations: Proceed with pavement marking only on clean, dry surfaces and at a minimum ambient or surface temperature of 55 deg F for water-based materials, and not exceeding 95 deg F.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain pavement-marking paints from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

A. Accessibility Standard: Comply with applicable provisions in the USDOJ's "2010 ADA Standards for Accessible Design.

2.3 PAVEMENT-MARKING PAINT

- A. Pavement-Marking Paint, Latex: MPI #97, latex traffic-marking paint.
 - 1. Color: Yellow for pavement.
 - 2. White: Crosswalk

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify that pavement-marking substrate is dry and in suitable condition to begin pavement marking in accordance with manufacturer's written instructions.
- B. Proceed with pavement marking only after unsatisfactory conditions have been corrected.

3.2 PAVEMENT MARKING

- A. Do not apply pavement-marking paint until layout, colors, and placement have been verified with Owner.
- B. Allow asphalt paving or concrete surfaces to age for a minimum of seven (7) days before starting pavement marking.
- C. Sweep and clean surface to eliminate loose material and dust.
- D. Apply paint with mechanical equipment to produce pavement markings, of dimensions indicated, with uniform, straight edges. Apply at manufacturer's recommended rates to provide a minimum wet film thickness of 15 mils.
 - 1. Apply graphic symbols and lettering with paint-resistant, die-cut stencils, firmly secured to asphalt paving or concrete surface. Mask an extended area beyond edges of each stencil to prevent paint application beyond stencil. Apply paint so that it cannot run beneath stencil.

3.3 PROTECTING AND CLEANING

- A. Protect pavement markings from damage and wear during remainder of construction period.
- B. Clean spillage and soiling from adjacent construction using cleaning agents and procedures recommended by manufacturer of affected construction.

END OF SECTION 32 17 23

SECTION 32 91 13 SOIL PREPARATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes planting soils specified by composition of the mixes.
- B. Related Requirements:
 - 1. Refer to Section 32 92 00 "Turf and Grasses" for turf and grasses.

1.3 DEFINITIONS

- A. AAPFCO: Association of American Plant Food Control Officials.
- B. Backfill: The earth used to replace or the act of replacing earth in an excavation. This can be amended, or unamended soil as indicated.
- C. CEC: Cation exchange capacity.
- D. Compost: The product resulting from the controlled biological decomposition of organic material that has been sanitized through the generation of heat and stabilized to the point that it is beneficial to plant growth.
- E. Duff Layer: A surface layer of soil, typical of forested areas, that is composed of mostly decayed leaves, twigs, and detritus.
- F. Imported Soil: Soil that is transported to Project site for use.
- G. Layered Soil Assembly: A designed series of planting soils, layered on each other that together produce an environment for plant growth.
- H. Manufactured Soil: Soil produced by blending soils, sand, stabilized organic soil amendments, and other materials to produce planting soil.
- I. NAPT: North American Proficiency Testing Program. An SSSA program to assist soil-, plant-, and water-testing laboratories through interlaboratory sample exchanges and statistical evaluation of analytical data.
- J. Organic Matter: The total of organic materials in soil exclusive of undecayed plant and animal tissues, their partial decomposition products, and the soil biomass; also called "humus" or "soil organic matter."

- K. Planting Soil: Existing, on-site soil; imported soil; or manufactured soil that has been modified as specified with soil amendments and perhaps fertilizers to produce a soil mixture best for plant growth.
- L. RCRA Metals: Hazardous metals identified by the EPA under the Resource Conservation and Recovery Act.
- M. SSSA: Soil Science Society of America.
- N. Subgrade: Surface or elevation of subsoil remaining after excavation is complete, or the top surface of a fill or backfill before planting soil is placed.
- O. Subsoil: Soil beneath the level of subgrade; soil beneath the topsoil layers of a naturally occurring soil profile, typified by less than 1 percent organic matter and few soil organisms.
- P. Surface Soil: Soil that is present at the top layer of the existing soil profile. In undisturbed areas, surface soil is typically called "topsoil"; but in disturbed areas such as urban environments, the surface soil can be subsoil.
- Q. USCC: U.S. Composting Council.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include test data substantiating that products comply with requirements.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For each testing agency.
- B. Preconstruction Test Reports: For preconstruction soil analyses specified in "Preconstruction Testing" Article.

1.6 QUALITY ASSURANCE

- A. Testing Agency Qualifications: An independent, state-operated, or university-operated laboratory; experienced in soil science, soil testing, and plant nutrition; with the experience and capability to conduct the testing indicated; and that specializes in types of tests to be performed.
 - 1. Laboratories: Subject to compliance with requirements, provide testing by the following, or approved equal:
 - a. University of Wisconsin Soil Testing Laboratories, 8452 Mineral Point Road, Verona, WI 53593; (608) 262-4364.
 - 2. All topsoil testing and re-testing shall be performed by a single laboratory.

1.7 PRECONSTRUCTION TESTING

- A. Preconstruction Testing Service: Engage a qualified testing agency to perform preconstruction soil analyses on existing, on-site soil stripped during Site Clearing operations and/or any imported topsoil intended for use on the site.
- B. Preconstruction Soil Analyses: For each unamended soil stockpile source, perform testing on soil samples and furnish soil analysis and a written report containing soil-amendment and fertilizer recommendations by a qualified testing agency performing the testing according to "Soil-Sampling Requirements" and "Testing Requirements" articles.
 - 1. Follow all guidelines indicated in publication from UW-Madison Soil Testing Laboratory called "Sampling Instructions".
 - 2. Have testing agency identify and label samples and test reports according to sample collection and labeling requirements.
 - 3. Provide report results for Landscape Category L2, "Lawn, New from Seed".
 - 4. Include request for additional testing for the following tests: Lead (Pb), Soluble Salts, Physical Analysis (% sand, silt & clay) and Heavy Metals.

1.8 SOIL-SAMPLING REQUIREMENTS

- A. General: Collect and process soil samples in accordance with UW-Madison Publication A2166 "Sampling Lawn and Garden Soils for Soil Testing".
- B. Clearly label all samples with a number and a location, corresponding to each separate stockpile or topsoil source. Provide to the laboratory for testing a single, uniform sample for each topsoil stockpile on-site and/or for each off-site source or location.
- C. Submit the test results to the Architect for review and approval before using any of the topsoil on this project.

PART 2 - PRODUCTS

2.1 TOPSOIL

- A. Topsoil: Existing, on-site surface soil, with the duff layer, if any, retained; and stockpiled on-site or off-site locally sourced topsoil material. Topsoil shall be clean salvaged or imported material capable of passing the ½" sieve and meeting the requirements of Section 625.2(1) of the Standard Specifications for Highway Construction. The material shall be free of rocks, gravel, wood, debris, and of noxious weeds and their seeds.
- B. Topsoil testing results shall also indicate that topsoil falls within the following acceptable ranges and/or can be easily amended to produce topsoil conforming to the following requirements:
 - 1. Final pH between 6.0-7.2
 - 2. USDA classification loam, sandy loam, clay loam
 - 3. Phosphorous (P) between 6-10ppm
 - 4. Potassium (K) between 51-100 ppm
 - 5. Organic Matter between 5-8%

- 6. C:N Ratio between 12:1 to 15:1
- 7. Soluble Salts in the range of 0-2 dS/m
- 8. Moisture Capacity of greater than 15%
- 9. Heavy Metals acceptable ranges are as follows:
 - a. Cd 0.01-3.0 ppm
 - b. Co 1.0-40.0 ppm
 - c. Cr 5.0-1000.0 ppm
 - d. Cu 2.0-100.0 ppm
 - e. Fe 10000-50000 ppm
 - f. Mn 100-4000 ppm
 - g. Mo 0.5-40.0 ppm
 - h. Ni 1.0-200.0 ppm
 - i. Pb 2.0-200.0 ppm
 - j. Zn 10-300 ppm
 - k. Li 1.2 90.0 ppm
- C. Topsoils falling outside of the ranges of acceptability that are not easily amended and/or contain high amounts of soluble salts or heavy metals will be rejected for use on this project.

2.2 PLANTING SOIL MIXTURE

- A. Topsoil (imported or suitable stockpiled topsoil) and amendment mixture for use in all planting beds and for all areas to be seeded as indicated on drawings:
 - 1. 2 parts topsoil.
 - 2. 1 part compost.
 - 3. 1 part sand.
 - 4. Other amendments and fertilizers as recommended by the soil test results, to adjust pH, or as specified in "Turfs and Grasses" Section.
- B. Thoroughly blend planting soil mix before spreading.
- C. Final pH of 6.5-7.2.
- D. Final planting soil mix is subject to approval by Owner's Representative.

2.3 INORGANIC SOIL AMENDMENTS

- A. Lime: ASTM C 602, agricultural liming material containing a minimum of 80 percent calcium carbonate equivalent and as follows:
 - 1. Class: T, with a minimum of 99 percent passing through a No. 8 sieve and a minimum of 75 percent passing through a No. 60 sieve.
- B. Sulfur: Granular, biodegradable, and containing a minimum of 90 percent elemental sulfur, with a minimum of 99 percent passing through a No. 6 sieve and a maximum of 10 percent passing through a No. 40 sieve.

- C. Iron Sulfate: Granulated ferrous sulfate containing a minimum of 20 percent iron and 10 percent sulfur.
- D. Perlite: Horticultural perlite, soil amendment grade.
- E. Agricultural Gypsum: Minimum 90 percent calcium sulfate, finely ground with 90 percent passing through a No. 50 sieve.
- F. Sand: Clean, washed, natural or manufactured, free of toxic materials, and according to ASTM C 33/C 33M.
- 2.4 ORGANIC SOIL AMENDMENTS
- A. Peat Moss: Type 1 sphagnum, weed and seed free, pH 3.1-5.0.
- B. Leaf Compost: Screened and free of trash and other debris.
- C. Compost: In compliance with WDNR Specification S100.

PART 3 - EXECUTION

- <u>3.1</u> <u>GENERAL</u>
- A. Place topsoil the following depth: Lawn seeding areas 6".
- B. Place planting soil mixture at the following depth: Planting beds 18".
- C. Verify that no foreign or deleterious material or liquid such as paint, paint washout, concrete slurry, concrete layers or chunks, cement, plaster, oils, gasoline, diesel fuel, paint thinner, turpentine, tar, roofing compound, or acid has been deposited in planting soil.
- D. Proceed with placement only after unsatisfactory conditions have been corrected.

3.2 PLACING AND MIXING PLANTING SOIL OVER EXPOSED SUBGRADE

- A. General: Apply topsoil on-site to produce required planting soil. Do not apply materials or till if existing soil or subgrade is frozen, muddy, or excessively wet.
- B. Subgrade Preparation: Till or disc subgrade to a minimum depth of 4 inches in any dimension and remove sticks, roots, rubbish, and other extraneous matter and legally dispose of them off Owner's property.
 - 1. Mix thoroughly into top 2 inches of subgrade.
- C. Mixing: Spread remainder of topsoil to total depth 6 inches, but not less than required to meet finish grades after mixing with amendments and natural settlement. Do not spread if soil or subgrade is frozen, muddy, or excessively wet.
 - 1. Amendments: Add any soil amendments necessary to produce satisfactory topsoil blend and mix approximately half the thickness of unamended topsoil over prepared, loosened subgrade.

- D. Compaction: Compact each blended lift of planting soil to 75 percent of maximum Standard Proctor density according to ASTM D 698 and tested in-place.
- E. Finish Grading: Grade planting soil to a smooth, uniform surface plane with loose, uniformly fine texture. Roll and rake, remove ridges, and fill depressions to meet finish grades.

3.3 PROTECTION

- A. Protect areas of in-place soil from additional compaction, disturbance, and contamination. Prohibit the following practices within these areas except as required to perform planting operations:
 - 1. Storage of construction materials, debris, or excavated material.
 - 2. Parking vehicles or equipment.
 - 3. Vehicle traffic.
 - 4. Foot traffic.
 - 5. Erection of sheds or structures.
 - 6. Impoundment of water.
 - 7. Excavation or other digging unless otherwise indicated.
- B. If planting soil or subgrade is over compacted, disturbed, or contaminated by foreign or deleterious materials or liquids, remove the planting soil and contamination; restore the subgrade as directed by Architect and replace contaminated planting soil with new planting soil.

3.4 CLEANING

- A. Protect areas adjacent to planting-soil preparation and placement areas from contamination. Keep adjacent paving and construction clean and work area in an orderly condition.
- B. Remove surplus soil and waste material including excess subsoil, unsuitable materials, trash, and debris and legally dispose of them off Owner's property unless otherwise indicated.
 - 1. Dispose of excess subsoil and unsuitable materials on-site where directed by Owner.

END OF SECTION 32 91 13

SECTION 32 92 00 TURF AND GRASSES

PART 1 - GENERAL

- 1.1 RELATED DOCUMENTS
- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- 1.2 SUMMARY
- A. Section Includes:
 - 1. Lawn Seeding.
- 1.3 DEFINITIONS
- A. Finish Grade: Elevation of finished surface of planting soil.
- B. Pesticide: A substance or mixture intended for preventing, destroying, repelling, or mitigating a pest. Pesticides include insecticides, miticides, herbicides, fungicides, rodenticides, and molluscicides. They also include substances or mixtures intended for use as a plant regulator, defoliant, or desiccant.
- C. Pests: Living organisms that occur where they are not desired or that cause damage to plants, animals, or people. Pests include insects, mites, grubs, mollusks (snails and slugs), rodents (gophers, moles, and mice), unwanted plants (weeds), fungi, bacteria, and viruses.
- D. Planting Soil: Existing, on-site soil; imported soil; or manufactured soil that has been modified with soil amendments and perhaps fertilizers to produce a soil mixture best for plant growth. See Section 32 91 13 "Soil Preparation" for topsoil requirements to produce acceptable planting soils.
- E. Subgrade: The surface or elevation of subsoil remaining after excavation is complete, or the top surface of a fill or backfill before planting soil is placed.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For landscape Installer.
- B. Certification of Grass Seed: From seed vendor for each grass-seed monostand or mixture, stating the botanical and common name, percentage by weight of each species and variety, and percentage of purity, germination, and weed seed. Include the year of production and date of packaging.
- C. Pesticides and Herbicides: Product label and manufacturer's application instructions specific to Project.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: A qualified landscape installer whose work has resulted in successful turf establishment.
 - 1. Professional Membership: Installer shall be a member in good standing of either the Professional Landcare Network or the American Nursery and Landscape Association.
 - 2. Experience: Five years' experience in turf installation.
 - 3. Pesticide Applicator: State licensed, commercial.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Seed and Other Packaged Materials: Deliver packaged materials in original, unopened containers showing weight, certified analysis, name and address of manufacturer, and indication of compliance with state and Federal laws, as applicable.
- B. Bulk Materials:
 - 1. Do not dump or store bulk materials near structures, utilities, walkways, and pavements, or on existing turf areas or plants.
 - 2. Provide erosion-control measures to prevent erosion or displacement of bulk materials; discharge of soil-bearing water runoff; and airborne dust reaching adjacent properties, water conveyance systems, or walkways.
 - 3. Accompany each delivery of bulk materials with appropriate certificates.

1.7 FIELD CONDITIONS

- A. Seeding Restrictions: Seed during one of the following periods. Coordinate seeding periods with initial maintenance periods to provide required maintenance from date of seeding completion.
 - 1. Spring Seeding: April 1 to June 15.
 - 2. Fall Seeding: September 1 to October 15.
- B. Weather Limitations: Proceed with seeding only when existing and forecasted weather conditions permit seeding to be performed when beneficial and optimum results may be obtained. Apply products during favorable weather conditions according to manufacturer's written instructions.

1.8 MAINTENANCE

- A. Initial Lawn Maintenance Service: Provide full maintenance by skilled employees of landscape Installer. Maintain as required in this Section. Begin maintenance immediately after seeding completion and continue until acceptable turf is established but for not less than the following periods:
 - 1. Seeded Turf: 60 days from date of substantial completion or project acceptance, whichever is later.
 - 2. When initial maintenance period has not elapsed before end of seeding season, or turf is not fully established, continue maintenance during the next seeding season.

<u>1.9</u> <u>GUARANTEE</u>

- A. The contractor shall guarantee the germination of seed installed during the regular seeding seasons.
- B. If seeding occurs late in the season and germination cannot be guaranteed, Contractor shall work to provide erosion control and prevention coverage for any and all bare soil areas over winter and shall re-seed in the spring.

PART 2 - PRODUCTS

2.1 <u>SEED</u>

- A. Grass Seed: Fresh, clean, dry, new-crop seed complying with AOSA's "Rules for Testing Seeds" for purity and germination tolerances.
- B. Seed Species: State-certified seed of grass species as follows:
 - 1. Lawn Seeding: Reference Bid Package A Seed Mix
 - a. Composition Proportions by weight:
 - 1) Baron bluegrass: 20%
 - 2) Majestic bluegrass 20%
 - 3) Touchdown bluegrass 20%
 - 4) Pennlawn fescue 20%
 - 5) Fiesta rye grass 20%
 - 6) Or approved equal
 - 2. Contractor may submit alternate blends for review, but approval will be based on similarity to the blends outlined above. Approval of any alternates is at the sole discretion of the Landscape Architect.

2.2 FERTILIZERS

- A. Lawn: All fertilizer shall be a commercial balanced 16-8-8 fertilizer delivered to the site in bags labeled with the Manufacturer's guaranteed analysis.
- B. Special protection: If stored at the site, protect fertilizer from the elements at all times.

2.3 MULCHES

- A. Compost Mulch: Well-composted, stable, and weed-free organic matter, pH range of 5.5 to 8; moisture content 35 to 55 percent by weight; 100 percent passing through 1-inch sieve; soluble salt content of 2 to 5 decisiemens/m; not exceeding 0.5 percent inert contaminants and free of substances toxic to plantings; and as follows:
 - 1. Organic Matter Content: 50 to 60 percent of dry weight.

2.4 PESTICIDES

- A. General: Pesticide, registered and approved by the EPA, acceptable to authorities having jurisdiction, and of type recommended by manufacturer for each specific problem and as required for Project conditions and application. Do not use restricted pesticides unless authorized in writing by authorities having jurisdiction.
- B. Pre-Emergent Herbicide (Selective and Nonselective): Effective for controlling the germination or growth of weeds within seeded areas at the soil level directly below the mulch layer.
- C. Post-Emergent Herbicide (Selective and Nonselective): Effective for controlling weed growth that has already germinated.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas to receive seed for compliance with requirements and conditions affecting installation and performance.
 - It is the responsibility of the Landscape Contractor to verify that sufficient Planting Soil has been provided both in terms of quality and quantity (depths) as indicated in Section 32 91 13 "Soil Preparation". If insufficiencies in planting soil occur, Landscape Contractor shall notify Landscape Architect and General Contractor immediately and shall not begin any seeding operations until any and all unsatisfactory conditions have been corrected.
 - 2. Verify that no foreign or deleterious material or liquid such as paint, paint washout, concrete slurry, concrete layers or chunks, cement, plaster, oils, gasoline, diesel fuel, paint thinner, turpentine, tar, roofing compound, or acid has been deposited in soil within a lawn area.
 - 3. Uniformly moisten excessively dry soil that is not workable, and which is too dusty.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.
- C. If contamination by foreign or deleterious material or liquid is present in soil within a planting area, remove the soil and contamination as directed and replace with new planting soil.

3.2 PREPARATION

- A. Protect structures; utilities; sidewalks; pavements; and other facilities, trees, shrubs, and plantings from damage caused by seeding operations.
 - 1. Protect grade stakes set by others until directed to remove them.

3.3 FERTILIZING

A. Apply the specified fertilizer at the rate of 10 pounds per 1,000 square feet, raking lightly into the soil.
3.4 SEEDING

- A. Sow seed with spreader or seeding machine. Do not broadcast or drop seed when wind velocity exceeds 5 mph.
 - 1. Evenly distribute seed by sowing equal quantities in two directions at right angles to each other.
 - 2. Do not use wet seed or seed that is moldy or otherwise damaged.
 - 3. Do not seed against existing trees. Limit extent of seed to outside edge of planting saucer.
- B. Sow Lawn at a total rate of 5 lb./1000 sq. ft min.
- C. Rake seed lightly into top 1/8 inch of soil, roll lightly, and water with fine spray.
- D. Protect seeded areas with erosion-control blankets and mats where indicated on Drawings; install and anchor according to manufacturer's written instructions.
- E. Protect seeded areas that are not within areas of erosion control blankets or mats with compost mulch immediately after seeding. Lightly moisten seeded areas and scatter or spray mulch uniformly to a thickness of 3/16 inch and roll surface smooth, taking care not to displace seed or topsoil.

3.5 MAINTENANCE

- A. Maintain and establish lawn by watering, weeding, mowing, trimming, reseeding, and performing other operations as required to establish healthy, viable stand of lawn. Roll, regrade, and re-seed bare or eroded areas and re-mulch to produce a uniformly smooth turf. Provide materials and installation the same as those used in the original installation.
 - 1. Fill in as necessary soil subsidence that may occur because of settling or other processes. Replace materials and turf damaged or lost in areas of subsidence.
 - 2. In areas where mulch has been disturbed by wind or maintenance operations, add new mulch and anchor as required to prevent displacement.
 - 3. Apply treatments as required to keep turf and soil free of pests and pathogens or disease. Use integrated pest management practices whenever possible to minimize the use of pesticides and reduce hazards.
- B. Watering: Seeded areas are to be watered daily to maintain adequate soil surface moisture for proper seed germination. Watering shall continue for not less than 30 days following seeding. Thereafter, apply ½" of water twice weekly until final acceptance.
 - 1. Schedule watering to prevent wilting, puddling, erosion, and displacement of seed or mulch. Lay out temporary watering system to avoid walking over muddy or newly seeded areas.
- C. Mowing: Lawns shall not be mowed shorter than four (4) inches at any mowing. The first mowing shall correspond to the time when the lawn has become fully established, vigorous, and robust.

- D. Premature mowing of lawns can damage the seed bed. The contractor will be held fully responsible for evaluating the health and vigor of the lawn during all maintenance activities and shall adjust maintenance practices, in consultation with Owner's Project Representative, to produce a healthy, vigorous and fully-established lawn by the end of the maintenance period.
- E. Turf Postfertilization: Do not fertilize lawns unless specifically directed to do so by seed supplier.
- F. The Contractor shall utilize organic methods and materials for applications to reduce pests or weeds (compost, etc.). The use of any chemical pesticides or herbicides shall be approved by Owner prior to any applications on this site during installation or maintenance period
- G. If chemical products are approved, apply pesticides and other chemical products and biological control agents in accordance with requirements of authorities having jurisdiction and manufacturer's written recommendations. Coordinate applications with Owner's operations and others in proximity to the Work. Notify Owner before each application is performed.
- H. Post-Emergent Herbicides (Selective and Non-Selective): Apply only as necessary to treat already-germinated weeds and in accordance with manufacturer's written recommendations.
- I. Contractor shall possess all training and certificates necessary to safely apply any and all pesticides and herbicides.

3.6 SATISFACTORY TURF

- A. Turf installations shall meet the following criteria as determined by Architect:
 - 1. Satisfactory Seeded Turf: At end of maintenance period, a healthy, uniform, close stand of grass has been established, free of weeds and surface irregularities, with coverage exceeding 90 percent over any 10 sq. ft. and bare spots not exceeding 5 by 5 inches.
- B. Use specified materials to reestablish turf that does not comply with requirements and continue maintenance until turf is satisfactory.

3.7 PESTICIDE APPLICATION

- A. Apply pesticides and other chemical products and biological control agents according to requirements of authorities having jurisdiction and manufacturer's written recommendations. Coordinate applications with Owner's operations and others in proximity to the Work. Notify Owner before each application is performed.
- B. Post-Emergent Herbicides (Selective and Nonselective): Apply only as necessary to treat already-germinated weeds and according to manufacturer's written recommendations.

3.8 CLEANUP AND PROTECTION

- A. Promptly remove soil and debris created by turf work from paved areas. Clean wheels of vehicles before leaving site to avoid tracking soil onto roads, walks, or other paved areas.
- B. Remove surplus soil and waste material, including excess subsoil, unsuitable soil, trash, and debris, and legally dispose of them off Owner's property.
- C. Erect temporary fencing or barricades and warning signs as required to protect newly seeded areas from traffic. Maintain fencing and barricades throughout initial maintenance period and remove after lawns are established.
- D. Remove nondegradable erosion-control measures after grass establishment period.

END OF SECTION 32 92 00

This page intentionally left blank.

SECTION 33 05 00 COMMON WORK RESULTS FOR UTILITIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Piping joining materials.
 - 2. Transition fittings.
 - 3. Sleeves.
 - 4. Grout.
 - 5. Flowable fill.
 - 6. Piped utility demolition.
 - 7. Piping system common requirements.
 - 8. Equipment installation common requirements.
 - 9. Painting.
 - 10. Concrete bases.
 - 11. Metal supports and anchorages.
- 1.3 DEFINITIONS
- A. Exposed Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions.
- B. Concealed Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters.
- C. ABS: Acrylonitrile-butadiene-styrene plastic.
- D. CPVC: Chlorinated polyvinyl chloride plastic.
- E. PE: Polyethylene plastic.
- F. PVC: Polyvinyl chloride plastic.
- 1.4 QUALITY ASSURANCE
- A. Steel Support Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Steel Piping Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications."
 - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping."

- 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current.
- C. Comply with ASME A13.1 for lettering size, length of color field, colors, and viewing angles of identification devices.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
- B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending.

1.6 COORDINATION

- A. Coordinate installation of required supporting devices and set sleeves in poured-in-place concrete and other structural components as they are constructed.
- B. Coordinate installation of identifying devices after completing covering and painting if devices are applied to surfaces.
- C. Coordinate size and location of concrete bases. Formwork, reinforcement, and concrete requirements are specified in Division 03.

PART 2 - PRODUCTS

2.1 PIPING JOINING MATERIALS

- A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents.
 - 1. ASME B16.21, nonmetallic, flat, asbestos free, 1/8-inch (3.2-mm) maximum thickness, unless otherwise indicated.
 - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges.
 - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges.
 - 2. AWWA C110, rubber, flat face, 1/8 inch (3.2 mm) thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated.
- B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated.
- C. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated.
- D. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813.

- E. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for generalduty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated.
- F. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.
- G. Solvent Cements for Joining Plastic Piping:
 - 1. ABS Piping: ASTM D 2235.
 - 2. CPVC Piping: ASTM F 493.
 - 3. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656.
 - 4. PVC to ABS Piping Transition: ASTM D 3138.
- H. Fiberglass Pipe Adhesive: As furnished or recommended by pipe manufacturer.

2.2 TRANSITION FITTINGS

- A. Transition Fittings, General: Same size as, and with pressure rating at least equal to and with ends compatible with, piping to be joined.
- B. Transition Couplings NPS 1-1/2 (DN 40) and Smaller:
 - 1. Underground Piping: Manufactured piping coupling or specified piping system fitting.
 - 2. Aboveground Piping: Specified piping system fitting.
- C. AWWA Transition Couplings NPS 2 (DN 50) and Larger:
 - 1. Description: AWWA C219, metal sleeve-type coupling for underground pressure piping.
- D. Plastic-to-Metal Transition Fittings:
 - 1. Description: One-piece fitting with manufacturer's Schedule 80 equivalent dimensions; one end with threaded brass insert, and one solvent-cement-joint or threaded end.
- E. Plastic-to-Metal Transition Unions:
 - 1. Description: MSS SP-107, four-part union. Include threaded end, solventcement-joint or threaded plastic end, rubber O-ring, and union nut.
- F. Flexible Transition Couplings for Underground Nonpressure Drainage Piping: See Editing Instruction No. 1 in the Evaluations for cautions about naming manufacturers and products. Retain one of two subparagraphs and list of manufacturers below. See Section 01 60 00 "Product Requirements."
 - 1. Description: ASTM C 1173 with elastomeric sleeve, ends same size as piping to be joined, and corrosion-resistant metal band on each end.

2.3 SLEEVES

- A. Galvanized-Steel Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.
- B. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, galvanized, plain ends.
- C. Cast-Iron Sleeves: Cast or fabricated "wall pipe" equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop, unless otherwise indicated.
- D. Molded PVC Sleeves: Permanent, with nailing flange for attaching to wooden forms.
- E. PVC Pipe Sleeves: ASTM D 1785, Schedule 40.
- F. Molded PE Sleeves: Reusable, PE, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

<u>2.4</u> <u>GROUT</u>

- A. Description: ASTM C 1107, Grade B, nonshrink and nonmetallic, dry hydraulic-cement grout.
 - 1. Characteristics: Post hardening, volume adjusting, nonstaining, noncorrosive, nongaseous, and recommended for interior and exterior applications.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.
 - 3. Packaging: Premixed and factory packaged.
- 2.5 FLOWABLE FILL
- A. Description: Low-strength-concrete, flowable-slurry mix.
 - 1. Cement: ASTM C 150, Type I, portland.
 - 2. Density: 115- to 145-lb/cu. ft.
 - 3. Aggregates: ASTM C 33, natural sand, fine and crushed gravel, or stone, coarse.
 - 4. Aggregates: ASTM C 33, natural sand, fine.
 - 5. Admixture: ASTM C 618, fly-ash mineral.
 - 6. Water: Comply with ASTM C 94/C 94M.
 - 7. Strength: 100 to 200 psig at 28 days.

PART 3 - EXECUTION

- 3.1 PIPED UTILITY DEMOLITION
- A. Disconnect, demolish, and remove piped utility systems, equipment, and components indicated to be removed.
 - 1. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
 - 2. Piping to Be Abandoned in Place: Drain piping. Fill abandoned piping with flowable fill, and cap or plug piping with same or compatible piping material.

- 3. Equipment to Be Removed: Disconnect and cap services and remove equipment.
- 4. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make operational.
- 5. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to Owner.
- B. If pipe, insulation, or equipment to remain is damaged in appearance or is unserviceable, remove damaged or unserviceable portions and replace with new products of equal capacity and quality.

3.2 PIPING INSTALLATION

- A. Install piping according to the following requirements and utilities Sections specifying piping systems.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on the Coordination Drawings.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping to permit valve servicing.
- E. Install piping at indicated slopes.
- F. Install piping free of sags and bends.
- G. Install fittings for changes in direction and branch connections.
- H. Select system components with pressure rating equal to or greater than system operating pressure.
- I. Sleeves are not required for core-drilled holes.
- J. Permanent sleeves are not required for holes formed by removable PE sleeves.
- K. Install sleeves for pipes passing through concrete and masonry walls and concrete floor and roof slabs.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of equipment areas or other wet areas 2 inches above finished floor level.
 - 2. Install sleeves in new walls and slabs as new walls and slabs are constructed.
 - a. Pipe Sleeves: For pipes smaller than NPS 6 (DN 150).

- b. Steel Sheet Sleeves: For pipes NPS 6 (DN 150) and larger, penetrating gypsum-board partitions.
- L. Verify final equipment locations for roughing-in.
- M. Refer to equipment specifications in other Sections for roughing-in requirements.

3.3 PIPING JOINT CONSTRUCTION

- A. Join pipe and fittings according to the following requirements and utilities Sections specifying piping systems.
- B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.
- D. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.
- E. Welded Joints: Construct joints according to AWS D10.12/D10.12M, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article.
- F. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads.
- G. Grooved Joints: Assemble joints with grooved-end pipe coupling with coupling housing, gasket, lubricant, and bolts according to coupling and fitting manufacturer's written instructions.
- H. Soldered Joints: Apply ASTM B 813 water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy (0.20 percent maximum lead content) complying with ASTM B 32.
- I. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8.
- J. Pressure-Sealed Joints: Assemble joints for plain-end copper tube and mechanical pressure seal fitting with proprietary crimping tool to according to fitting manufacturer's written instructions.
- K. Plastic Piping Solvent-Cemented Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:

- 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
- 2. ABS Piping: Join according to ASTM D 2235 and ASTM D 2661 appendixes.
- 3. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.
- 4. PVC Pressure Piping: Join schedule number ASTM D 1785, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule-number PVC pipe and socket fittings according to ASTM D 2855.
- 5. PVC Nonpressure Piping: Join according to ASTM D 2855.
- 6. PVC to ABS Nonpressure Transition Fittings: Join according to ASTM D 3138 Appendix.
- L. Plastic Pressure Piping Gasketed Joints: Join according to ASTM D 3139.
- M. Plastic Nonpressure Piping Gasketed Joints: Join according to ASTM D 3212.
- N. Plastic Piping Heat-Fusion Joints: Clean and dry joining surfaces by wiping with clean cloth or paper towels. Join according to ASTM D 2657.
 - 1. Plain-End PE Pipe and Fittings: Use butt fusion.
 - 2. Plain-End PE Pipe and Socket Fittings: Use socket fusion.
- O. Bonded Joints: Prepare pipe ends and fittings, apply adhesive, and join according to pipe manufacturer's written instructions.

3.4 PIPING CONNECTIONS

- A. Make connections according to the following, unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 (DN 50) and smaller, adjacent to each valve and at final connection to each piece of equipment.
 - 2. Install flanges, in piping NPS 2-1/2 (DN 65) and larger, adjacent to flanged valves and at final connection to each piece of equipment.
 - 3. Install dielectric fittings at connections of dissimilar metal pipes.

3.5 EQUIPMENT INSTALLATION

- A. Install equipment level and plumb, unless otherwise indicated.
- B. Install equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference with other installations. Extend grease fittings to an accessible location.
- C. Install equipment to allow right of way to piping systems installed at required slope.

3.6 PAINTING

A. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish.

3.7 CONCRETE BASES

A. Concrete Bases: Anchor equipment to concrete base according to equipment manufacturer's written instructions and according to seismic codes at Project.

- 1. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit.
- 2. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of base.
- 3. Install epoxy-coated anchor bolts for supported equipment that extend through concrete base, and anchor into structural concrete floor.
- 4. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
- 5. Install anchor bolts to elevations required for proper attachment to supported equipment.
- 6. Install anchor bolts according to anchor-bolt manufacturer's written instructions.
- 7. Use 3000-psi, 28-day compressive-strength concrete and reinforcement as specified in Section 32 13 13 "Concrete Paving."

3.8 ERECTION OF METAL SUPPORTS AND ANCHORAGES

- A. Refer to structural steel section.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor piped utility materials and equipment.
- C. Field Welding: Comply with AWS D1.1/D1.1M.

<u>3.9</u> <u>GROUTING</u>

- A. Mix and install grout for equipment base bearing surfaces, pump and other equipment base plates, and anchors.
- B. Clean surfaces that will come into contact with grout.
- C. Provide forms as required for placement of grout.
- D. Avoid air entrapment during placement of grout.
- E. Place grout, completely filling equipment bases.
- F. Place grout on concrete bases and provide smooth bearing surface for equipment.
- G. Place grout around anchors.
- H. Cure placed grout.

END OF SECTION 33 05 00

SECTION 33 11 16 SITE WATER UTILITY DISTRIBUTION PIPING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Pipe, fittings, valves, and accessories necessary for water main service construction.

1.2 SUBMITTALS

- A. Include following information as minimum:
 - 1. Manufacturer's specifications and catalog data for pipe, fittings, valves and other special items.
 - 2. Shop drawings.
- B. Laboratory tests for materials:
 - 1. Ductile iron pipe: certify that pipe conforms to AWWA C151/ANSI A21.51.
- C. Pressure and bacteriological test reports.

<u>1.3</u> <u>TESTS</u>

- A. Contractor shall employ and pay for approved testing laboratory for tests required to show compliance with specifications.
- B. Provide samples of materials required for laboratory tests and pay cost of all tests including transportation charges on samples.
- C. Incorporate no materials in work until laboratory tests have been furnished which show materials comply with specifications.
- D. Contractor shall provide and pay for water and equipment used to show compliance with specifications.

1.4 REGULATORY REQUIREMENTS

A. Provide all pipe, fittings, valves, hydrants, and accessories necessary for complete water main service construction in compliance with the Local Authority's Water Works Standards.

PART 2 - PRODUCTS

2.1 WATERMAIN PIPE AND FITTINGS

- A. Mechanical-Joint, Ductile-Iron Pipe: AWWA C151, with mechanical-joint bell and plain spigot end unless grooved or flanged ends are indicated.
 - 1. Mechanical-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
 - 2. Glands, Gaskets, and Bolts: AWWA C111, ductile- or gray-iron glands, rubber gaskets, and steel bolts.
- B. Push-on-Joint, Ductile-Iron Pipe: AWWA C151, with push-on-joint bell and plain spigot end unless grooved or flanged ends are indicated.
 - 1. Push-on-Joint, Ductile-Iron Fittings: AWWA C110, ductile- or gray-iron standard pattern or AWWA C153, ductile-iron compact pattern.
 - 2. Gaskets: AWWA C111, rubber.
- C. Flanges: ASME 16.1, Class 125, cast iron.

2.2 FITTINGS

- A. Mechanical joint, fittings meeting ANSI/AWWA C153/A21.53 compact design with joint meeting ANSI C111 /AWWA C111, 250 psi pressure rating, except as otherwise specified.
 - 1. Retainer glands: Clow Corporation F-1058, or equal.
 - 2. Caps: Clow Corporation, or equal.
 - 3. Plugs: Clow Corporation, or equal.

2.3 <u>VALVES</u>

- A. AWWA, Cast-Iron Gate Valves:
 - 1. Nonrising-Stem, Resilient-Seated Gate Valves:
 - a. Description: Gray- or ductile-iron body and bonnet; with bronze or gray- or ductile-iron gate, resilient seats, bronze stem, and stem nut.
 - 1) Standard: AWWA C509.
 - 2) Minimum Pressure Rating: 200 psig (1380 kPa).
 - 3) End Connections: Mechanical joint.
 - 4) Interior Coating: Complying with AWWA C550.

2.4 WARNING TAPE SYSTEM

A. Provide warning tape system as described in Section 31 20 00, Earth Moving.

2.5 GATE VALVE ACCESSORIES AND SPECIALTIES

- A. Tapping-Sleeve Assemblies:
 - 1. Description: Sleeve and valve compatible with drilling machine.
 - a. Standard: MSS SP-60.

- b. Tapping Sleeve: Cast- or ductile-iron or stainless-steel, two-piece bolted sleeve with flanged outlet for new branch connection. Include sleeve matching size and type of pipe material being tapped and with recessed flange for branch valve.
- c. Valve: AWWA, cast-iron, nonrising-stem, resilient-seated gate valve with one raised face flange mating tapping-sleeve flange.
- B. Valve Boxes: Comply with AWWA M44 for cast-iron valve boxes. Include top section, adjustable extension of length required for depth of burial of valve, plug with lettering "WATER," and bottom section with base that fits over valve and with a barrel approximately 5 inches in diameter.
 - 1. Operating Wrenches: Steel, tee-handle with one pointed end, stem of length to operate deepest buried valve, and socket matching valve operating nut.
- C. Indicator Posts: UL 789, FMG-approved, vertical-type, cast-iron body with operating wrench, extension rod, and adjustable cast-iron barrel of length required for depth of burial of valve.
- 2.6 PLUG VALVES
- A. Plug Valves:
 - 1. Description: Resilient-seated eccentric.
 - a. Standard: MSS SP-108.
 - b. Body: Cast iron.
 - c. Pressure Rating: 175-psig minimum CWP.
 - d. Seat Material: Suitable for potable-water service.

PART 3 - EXECUTION

- 3.1 BACKFILLING
- A. Backfilling and compaction of all water utility items shall be done in accordance with Section 31 20 00, Earth Moving.
- 3.2 PIPE INSTALLATION
- A. Lay pipe to line and depth shown on plans.
- A. Install PVC, AWWA pipe according to ASTM F 645 and AWWA M23.
- B. Install ductile-iron, water-service piping according to AWWA C600 and AWWA M41.
- C. When the depth is not shown on the plans, the pipe shall be buried with 5 feet of cover as determined from the top of pipe.
- D. Bedding material shall be placed to a minimum of 4 inches below the bottom of the pipe and to a height of 12 inches above the top of pipe.

- E. Keep pipe and fittings free of debris and foreign matter.
- F. Assemble all joints in accordance with manufacturer's recommendations.
- G. Utilize full lengths of pipe, except at fittings.
- H. Provide reaction blocking and restraints at the following locations:
 - 1. Bend deflecting 22-1/2 degrees or more
 - 2. Valves and tees
 - 3. Plugs and caps
- I. When it is necessary to interrupt an existing system to complete construction, the Contractor shall adhere to the following:
 - 1. No controls or appurtenances shall be operated without the Owner's consent or direction.
 - 2. Work requiring interruption of existing service shall be done at the Owner's convenience and normal working schedule.
- J. Pipe shall be buried with a minimum depth of 6.5 feet. If this depth cannot be achieved, insulation shall be placed in accordance with state code over the top of the pipe.

3.3 THRUST BLOCKS

- A. Provide concrete thrust blocks with minimum 25 MPa (3,000 psi) compressive strength (28 day) where piping changes direction or dead ends; precast thrust blocks are not permitted.
- B. Carry thrust block to undisturbed edge of trench for bearing.
- C. Minimum thickness of thrust blocks: 0.3 m (12").
- D. Bearing area of thrust blocks as shown on drawings
- E. Refer to detail shown on plans for general arrangement of thrust blocks.

3.4 POLYETHYLENE ENCASEMENT

- A. Wrap all below ground metal in accordance with AWWA C105, including:
 - 1. Fittings, valves and valve boxes
 - 2. Corporations, curb stops and curb boxes their entire length
 - 3. Copper water services
 - 4. All metal restraining devices

3.5 VALVE INSTALLATION

- A. AWWA Gate Valves: Comply with AWWA C600 and AWWA M44. Install each underground valve with stem pointing up and with valve box.
- B. AWWA Valves Other Than Gate Valves: Comply with AWWA C600 and AWWA M44.

3.6 CONNECTIONS

- A. See Section 33 05 00 "Common Work Results for Utilities" for piping connections to valves and equipment.
- B. Connect water-distribution piping to water supply system.
- C. Coordinate connection with Madison Water Utility.

3.7 FIELD QUALITY CONTROL

- A. Piping Tests: Conduct piping tests before joints are covered and after concrete thrust blocks have hardened sufficiently. Fill pipeline 24 hours before testing and apply test pressure to stabilize system. Use only potable water.
- B. Hydrostatic Tests: Test at not less than one-and-one-half times working pressure for two hours.
 - 1. Increase pressure in 50-psig increments and inspect each joint between increments. Hold at test pressure for 1 hour; decrease to 0 psig. Slowly increase again to test pressure and hold for 1 more hour. Maximum allowable leakage is 2 quarts per hour per 100 joints. Remake leaking joints with new materials and repeat test until leakage is within allowed limits.
- C. Prepare reports of testing activities.
- 3.8 IDENTIFICATION
- A. Install continuous underground detectable warning tape during backfilling of trench for underground water-distribution piping. Locate below finished grade, directly over piping. Underground warning tapes are specified in Section 31 20 00 "Earth Moving."
- B. Permanently attach equipment nameplate or marker indicating plastic water-service piping, on main electrical meter panel. See Section 33 05 00 "Common Work Results for Utilities" for identifying devices.
- 3.9 CLEANING
- A. Clean and disinfect water-distribution piping as follows:
 - 1. Purge new water-distribution piping systems and parts of existing systems that have been altered, extended, or repaired before use.
 - 2. Use purging and disinfecting procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in NFPA 24 for flushing of piping. Flush piping system with clean, potable water until dirty water does not appear at points of outlet.
 - 3. Use purging and disinfecting procedure prescribed by authorities having jurisdiction or, if method is not prescribed by authorities having jurisdiction, use procedure described in AWWA C651 or do as follows:

- a. Fill system or part of system with water/chlorine solution containing at least 50 ppm of chlorine; isolate and allow to stand for 24 hours.
- b. Drain system or part of system of previous solution and refill with water/chlorine solution containing at least 200 ppm of chlorine; isolate and allow to stand for 3 hours.
- c. After standing time, flush system with clean, potable water until no chlorine remains in water coming from system.
- d. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedure if biological examination shows evidence of contamination.
- B. Prepare reports of purging and disinfecting activities.
- C. Test in a testing laboratory to pass a safe sample test.
- 3.10 WATER SERVICES
- A. Conform with plumbing codes.
- B. Provide in sizes and locations requested by Owner.
- C. Services shall terminate 5 feet away from the proposed building for connection to building plumbing.
- D. Unions may not be used unless approved by Owner's Representative.

END OF SECTION 33 11 16

SECTION 33 13 13 SANITARY SEWERS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Pipe and fittings for sanitary sewer
 - 2. Nonpressure and pressure couplings.
 - 3. Cleanouts.

1.2 SUBMITTALS

- A. Product Data: For the following:
 - 1. Pipe materials and accessories.
- B. Shop Drawings: For manholes. Include plans, elevations, sections, details, and frames and covers.

1.3 DELIVERY, STORAGE, AND HANDLING

- A. Do not store plastic pipe and fittings in direct sunlight.
- B. Protect pipe, pipe fittings, and seals from dirt and damage.

PART 2 - PRODUCTS

- 2.1 PVC PIPE AND FITTINGS
- A. PVC Sewer Service
 - 1. Conform with ASTM D1784 and D1785
 - 2. Sizes 4" and 6": Schedule 40
 - 3. Joints: solvent weld conforming to ASTM D2855

2.2 NONPRESSURE-TYPE TRANSITION COUPLINGS

- A. Comply with ASTM C 1173, elastomeric, sleeve-type, reducing or transition coupling, for joining underground nonpressure piping. Include ends of same sizes as piping to be joined and corrosion-resistant-metal tension band and tightening mechanism on each end.
- B. Sleeve Materials:
 - 1. For Plastic Pipes: ASTM F 477, elastomeric seal or ASTM D 5926, PVC.
 - 2. For Dissimilar Pipes: ASTM D 5926, PVC or other material compatible with pipe materials being joined.

3. Description: Elastomeric sleeve with stainless-steel shear ring and corrosionresistant-metal tension band and tightening mechanism on each end.

2.3 CLEANOUTS

- A. Cast-Iron Cleanouts:
 - 1. Description: ASME A112.36.2M, round, gray-iron housing with clamping device and round, secured, scoriated, gray-iron cover. Include gray-iron ferrule with inside calk or spigot connection and countersunk, tapered-thread, brass closure plug.
 - 2. Top-Loading Classification(s): Heavy Duty.
 - 3. Sewer Pipe Fitting and Riser to Cleanout: ASTM A 74, Service class, cast-iron soil pipe and fittings.
- B. PVC Cleanouts:
 - 1. Description: PVC body with PVC threaded plug. Include PVC sewer pipe fitting and riser to cleanout of same material as sewer piping.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Excavating, trenching, and backfilling are specified in Division 31 Section "Earth Moving."

3.2 PIPING INSTALLATION

- A. General Locations and Arrangements: Drawing plans and details indicate general location and arrangement of underground sanitary sewer piping. Location and arrangement of piping layout take into account design considerations. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.
- B. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for using lubricants, cements, and other installation requirements.
- C. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.
- D. When installing pipe under streets or other obstructions that cannot be disturbed, use pipe-jacking process of microtunneling.
- E. Install gravity-flow, nonpressure, drainage piping according to the following:
 - 1. Install piping pitched down in direction of flow as indicated on drawings
 - 2. Install PVC gravity sewer piping according to ASTM D 2321 and ASTM F 1668.

F. Clear interior of piping and manholes of dirt and superfluous material as work progresses. Maintain swab or drag in piping, and pull past each joint as it is completed. Place plug in end of incomplete piping at end of day and when work stops.

3.3 PIPE JOINT CONSTRUCTION

- A. Join gravity-flow, nonpressure, drainage piping according to the following:
 - 1. Join PVC gravity sewer piping according to ASTM D 2321 and ASTM D 3034 for elastomeric-seal joints or ASTM D 3034 for elastomeric-gasket joints.
 - 2. Join dissimilar pipe materials with nonpressure-type, flexible or rigid couplings.
 - 3. Join PP sewer piping according to ASTM D 2321 and pipe manufacturer's recommendations.
- B. Pipe couplings, expansion joints, and deflection fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
 - 1. Use nonpressure flexible couplings where required to join gravity-flow, nonpressure sewer piping unless otherwise indicated.

3.4 CLEANOUT INSTALLATION

- A. Install cleanouts and riser extensions from sewer pipes to cleanouts at grade. Use castiron soil pipe fittings in sewer pipes at branches for cleanouts, and use cast-iron soil pipe for riser extensions to cleanouts. Install piping so cleanouts open in direction of flow in sewer pipe.
 - 1. Use Heavy-Duty, top-loading classification cleanouts.
- B. Set cleanout frames and covers in earth in cast-in-place-concrete block, 18 by 18 by 12 inches deep. Set with tops 1 inch above surrounding grade.
- C. Set cleanout frames and covers in concrete pavement and roads with tops flush with pavement surface.

3.5 CONNECTIONS

- A. Connect nonpressure, gravity-flow drainage piping to building's sanitary building drains.
- B. Make connections to existing piping and underground manholes.
 - 1. Use commercially manufactured wye fittings for piping branch connections. Remove section of existing pipe, install wye fitting into existing piping, and encase entire wye fitting plus 6-inch overlap with not less than 6 inches of concrete with 28-day compressive strength of 3000 psi.
 - 2. Make branch connections from side into existing piping, NPS 4 to NPS 20. Remove section of existing pipe, install wye fitting into existing piping, and encase entire wye with not less than 6 inches of concrete with 28-day compressive strength of 3000 psi.
 - 3. Make branch connections from side into existing piping, NPS 21 or larger, or to underground manholes by cutting opening into existing unit large enough to allow

3 inches of concrete to be packed around entering connection. Cut end of connection pipe passing through pipe or structure wall to conform to shape of, and be flush with, inside wall unless otherwise indicated. On outside of pipe or manhole wall, encase entering connection in 6 inches of concrete for minimum length of 12 inches to provide additional support of collar from connection to undisturbed ground.

- a. Use concrete that will attain a minimum 28-day compressive strength of 3000 psi unless otherwise indicated.
- b. Use epoxy-bonding compound as interface between new and existing concrete and piping materials.
- 4. Protect existing piping and manholes to prevent concrete or debris from entering while making tap connections. Remove debris or other extraneous material that may accumulate.

3.6 IDENTIFICATION

- A. Arrange for installation of green warning tapes directly over piping and at outside edges of underground manholes.
 - 1. Use detectable warning tape over all piping.
 - Install detectable warning tape into manhole by drilling and sealing tape 300mm (12") from top of structure into sidewall. Install detectable warning tape to be accessible at cover of clean-out.

3.7 FIELD QUALITY CONTROL

- A. Inspect interior of piping to determine whether line displacement or other damage has occurred. Inspect after approximately 24 inches of backfill is in place, and again at completion of Project.
 - 1. Defects requiring correction include the following:
 - a. Alignment: Less than full diameter of inside of pipe is visible between structures.
 - b. Deflection: Flexible piping with deflection that prevents passage of ball or cylinder of size not less than 92.5 percent of piping diameter.
 - c. Damage: Crushed, broken, cracked, or otherwise damaged piping.
 - d. Infiltration: Water leakage into piping.
 - e. Exfiltration: Water leakage from or around piping.
 - 2. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.
 - 3. Reinspect and repeat procedure until results are satisfactory.
- B. Test new piping systems, and parts of existing systems that have been altered, extended, or repaired, for leaks and defects.
 - 1. Do not enclose, cover, or put into service before inspection and approval.

- 2. Test completed piping systems according to requirements of authorities having jurisdiction.
- 3. Schedule tests and inspections by authorities having jurisdiction with at least 24 hours' advance notice.
- 4. Submit separate report for each test.
- 5. Hydrostatic Tests: Test sanitary sewerage according to requirements of authorities having jurisdiction and the following:
 - a. Fill sewer piping with water. Test with pressure of at least 10-foot head of water, and maintain such pressure without leakage for at least 15 minutes.
 - b. Close openings in system and fill with water.
 - c. Purge air and refill with water.
 - d. Disconnect water supply.
 - e. Test and inspect joints for leaks.
- 6. Air Tests: Test sanitary sewerage according to requirements of authorities having jurisdiction, UNI-B-6, and the following:
 - a. Test plastic gravity sewer piping according to ASTM F 1417.
 - b. Test concrete gravity sewer piping according to ASTM C 1628.
- 7. Manholes: Perform hydraulic test according to ASTM C 969.
- C. Leaks and loss in test pressure constitute defects that must be repaired.
- D. Replace leaking piping using new materials, and repeat testing until leakage is within allowances specified.
- 3.8 CLEANING
- A. Clean dirt and superfluous material from interior of piping. Flush with potable water.

END OF SECTION 33 13 13

This page intentionally left blank.

SECTION 33 41 00 STORM UTILITY DRAINAGE PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Pipe and fittings.
 - 2. Inlets and Catch Basins.
 - 3. Manholes.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. Shop Drawings:
 - 1. Stormwater inlets, catch basins and manholes. Include plans, elevations, sections, details, frames, covers, and grates.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Show pipe sizes, locations, and elevations. Show other piping in same trench and clearances from storm drainage system piping. Indicate interface and spatial relationship between manholes, piping, and proximate structures.
- B. Product Certificates: For each type of cast-iron soil pipe and fitting, from manufacturer.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Do not store plastic manholes, pipe, and fittings in direct sunlight.
- B. Protect pipe, pipe fittings, and seals from dirt and damage.
- C. Handle stormwater inlets according to manufacturer's written rigging instructions.

1.6 PROJECT CONDITIONS

- A. Interruption of Existing Storm Drainage Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
 - 1. Notify Owner no fewer than two days in advance of proposed interruption of service.

2. Do not proceed with interruption of service without Owner's written permission.

PART 2 - PRODUCTS

- 2.1 CONCRETE PIPE AND FITTINGS
- A. Reinforced-Concrete Sewer Pipe and Fittings: ASTM C 76.
 - 1. Bell-and-spigot ends
 - 2. Class III, Wall B.
- B. Polypropylene storm sewer pipe shall conform to ASTM F2881 and AASHTO M330 and have a smooth interior and corrugated exterior.
 - 1. Pipes shall be joined with gasketed bell and spigot meeting the requirements of ASTM F2881. Gaskets shall conform to ASTM F477.
 - 2. Fittings shall conform to ASTM F2881 and AASHTO M330 and ASTM F477.
 - 3. Pipe shall be watertight and conform to ASTM D3212.
 - 4. Polypropylene compound for the pipe shall be impact modified copolymer meeting the material requirements of ASTM F2881, Section 5 and AASHTO M330, Section 6.1.
- C. PVC Pipe and Fittings
 - 1. Cellular Core PVC Pipe: ASTM F 891, Schedule 80.
 - 2. PVC Socket Fittings: ASTM D 2665, made to ASTM D 3311, drain, waste, and vent patterns and to fit Schedule 80 pipe.

2.2 INLETS AND CATCH BASINS

- A. Standard Precast Concrete Catch Basins and Inlets:
 - 1. Description: ASTM C 478 (ASTM C 478M), precast, reinforced concrete, of depth indicated, with provision for sealant joints.
 - 2. Base Section: 6-inch (150-mm) minimum thickness for floor slab and 4-inch (102mm) minimum thickness for walls and base riser section, and separate base slab or base section with integral floor.
 - 3. Joint Sealant: ASTM C 990 (ASTM C 990M), bitumen or butyl rubber.
 - 4. Adjusting Rings: Interlocking rings with level or sloped edge in thickness and shape matching catch basin frame and grate. Include sealant recommended by ring manufacturer.
 - 5. Pipe Connectors: ASTM C 923 (ASTM C 923M), resilient, of size required, for each pipe connecting to base section.
- B. Designed Precast Concrete Catch Basins and Inlets: ASTM C 913, precast, reinforced concrete; designed according to ASTM C 890 for A-16 (ASSHTO HS20-44), heavy-traffic, structural loading; of depth, shape, and dimensions indicated, with provision for joint sealants.
 - 1. Joint Sealants: ASTM C 990 (ASTM C 990M), bitumen or butyl rubber.

- 2. Adjusting Rings: Interlocking rings with level or sloped edge in thickness and shape matching catch basin frame and grate. Include sealant recommended by ring manufacturer.
- 3. Pipe Connectors: ASTM C 923 (ASTM C 923M), resilient, of size required, for each pipe connecting to base section.
- C. Frames and Grates: ASTM A 536, Grade 60-40-18, ductile iron designed for HS 20, structural loading.
 - 1. Size: 36" round grate opening see detail on drawings.

2.3 MANHOLES

- A. Standard Precast Concrete Manholes:
 - 1. Description: ASTM C 478, precast, reinforced concrete, of depth indicated, with provision for sealant joints.
 - 2. Diameter: 48 inches minimum unless otherwise indicated.
 - 3. Ballast: Increase thickness of precast concrete sections or add concrete to base section as required to prevent flotation.
 - 4. Top Section: Eccentric-cone type unless concentric-cone or flat-slab-top type is indicated, and top of cone of size that matches grade rings.
 - 5. Joint Sealant: ASTM C 990, bitumen or butyl rubber.
 - 6. Steps: ASTM A 615/A 615M, deformed, ½ inch steel reinforcing rods encased in ASTM D 4101, PP wide enough to allow worker to place both feet on one step and designed to prevent lateral slippage off step. Cast or anchor steps into sidewalls at 12- to 16-inch intervals. Omit steps if total depth from floor of manhole to finished grade is less than 60 inches.
 - 7. Grade Rings: Reinforced-concrete rings, 6- to 9-inch (150- to 225-mm) total thickness, to match diameter of manhole frame and cover, and height as required to adjust manhole frame and cover to indicated elevation and slope.

PART 3 - EXECUTION

- 3.1 EARTHWORK
- A. Excavation, trenching, and backfilling are specified in Section 31 20 00 "Earth Moving."

3.2 PIPING INSTALLATION

- A. General Locations and Arrangements: Drawing plans and details indicate general location and arrangement of underground storm drainage piping. Location and arrangement of piping layout take into account design considerations. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.
- B. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements.

- C. Install manholes for changes in direction unless fittings are indicated. Use fittings for branch connections unless direct tap into existing sewer is indicated.
- D. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.
- E. Install gravity-flow, nonpressure drainage piping according to the following:
 - 1. Install piping pitched down in direction of flow.
 - 2. Install reinforced-concrete sewer piping according to ASTM C 1479 and ACPA's "Concrete Pipe Installation Manual."

3.3 POLYPROPYLENE PIPE

- A. Install polypropylene and PVC pipe according to ASTM D2321 and manufacturer's recommendations.
- B. Minimum cover over pipe shall be 3 feet.

3.4 PIPE JOINT CONSTRUCTION

- A. Join gravity-flow, nonpressure drainage piping according to the following:
 - 1. Join reinforced-concrete sewer piping according to ACPA's "Concrete Pipe Installation Manual" for rubber-gasketed joints.
 - 2. Join dissimilar pipe materials with nonpressure-type flexible couplings.

3.5 CATCH BASIN AND INLET INSTALLATION

- A. Construct catch basins to sizes and shapes indicated.
- B. Set frames and grates to elevations indicated.

3.6 MANHOLE INSTALLATION

- A. General: Install manholes, complete with appurtenances and accessories indicated.
- B. Install precast concrete manhole sections with sealants according to ASTM C 891.
- C. Where specific manhole construction is not indicated, follow manhole manufacturer's written instructions.
- D. Set tops of frames and covers flush with finished surface of manholes that occur in pavements with a minimum of 4-inches of adjustment. Set tops 3 inches above finished surface elsewhere unless otherwise indicated.
- 3.7 CONNECTIONS
- A. Make connections to existing piping and underground manholes.

1. Protect existing piping, manholes, and structures to prevent concrete or debris from entering while making tap connections. Remove debris or other extraneous material that may accumulate.

3.8 CLEANING

A. Clean interior of piping of dirt and superfluous materials. Flush with water.

END OF SECTION 33 41 00

This page intentionally left blank.

This page intentionally left blank.

